
Chapter 1

INTRODUCTION TO CALCULUS

In the English language, the rules of grammar are used to speak and write
effectively. Asking for a cookie at the age of ten was much easier than when you
were first learning to speak. These rules developed over time. Calculus developed 
in a similar way. Sir Isaac Newton and Gottfried Wilhelm von Leibniz independently
organized an assortment of ideas and methods that were circulating among the
mathematicians of their time. As a tool in the service of science, calculus served its
purpose very well. More than two centuries passed, however, before mathematicians
had identified and agreed on its underlying principles—its grammar. In this chapter,
you will see some of the ideas that were brought together to form the underlying
principles of calculus.

CHAPTER EXPECTATIONS
In this chapter, you will

• simplify radical expressions, Section 1.1

• use limits to determine the slope and the equation of the tangent to a graph,
Section 1.2

• pose problems and formulate hypotheses regarding rates of change, Section 1.3,
Career Link

• calculate and interpret average and instantaneous rates of change and relate
these values to slopes of secants and tangents, Section 1.3

• understand and evaluate limits using appropriate properties, Sections 1.4, 1.5

• examine continuous functions and use limits to explain why a function is
discontinuous, Sections 1.5, 1.6

NEL
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Review of Prerequisite Skills

Before beginning this chapter, review the following concepts from previous
courses:
• determining the slope of a line:

• determining the equation of a line
• using function notation for substituting into and evaluating functions
• simplifying algebraic expressions
• factoring expressions
• finding the domain of functions
• calculating average rate of change and slopes of secant lines
• estimating instantaneous rate of change and slopes of tangent lines

Exercise

1. Determine the slope of the line passing through each of the following 
pairs of points:

a. and d. and 

b. and e. and 

c. and f. and 

2. Determine the equation of a line for the given information.

a. slope 4, y-intercept d. through and 

b. slope y-intercept 5 e. vertical, through 

c. through and f. horizontal, through 

3. Evaluate for 

a. c.

b. d.

4. For determine each of the following values:

a. b. c. d.

5. Consider the function f given by 

Calculate each of the following:

a. b. c. d. f 13 2f 178 2f 10 2f 1�33 2
f 1x 2 � e�3 � x, if x 6 0

�3 � x, if x � 0

f 110 2f 10 2f 1�3 2f 1�10 2f 1x 2 �
x

x2 � 4
,

f 1x 2 � 15x � 2 22f 1x 2 � 14x � 2 2 13x � 6 2 f 1x 2 � �3x2 � 2x � 1f 1x 2 � �3x � 5

x � 2.

1�3, 5 214, 12 21�1, 6 2 1�3, 5 2�2,

1�6, 8 21�2, 4 2�2

a 7

4
, �

1

4
ba 3

4
, 

1

4
b11, 4 210, 0 2 1�2, 4 21�2.1, 4.4121�1, 4 213, �4 2 1�1, 4 210, 0 216, �7 212, 5 2

m �
¢y
¢x
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6. A function s is defined for by 

Evaluate each of the following:

a. b. c. d. e.

7. Expand, simplify, and write each expression in standard form.

a. d.

b. e.

c. f.

8. Factor each of the following:

a. c. e.

b. d. f.

9. Determine the domain of each of the following:

a. d.

b. e.

c. f.

10. The height of a model rocket in flight can be modelled by the equation
, where h is the height in metres at t seconds.

Determine the average rate of change in the model rocket’s height with
respect to time during

a. the first second b. the second second

11. Sacha drains the water from a hot tub. The hot tub holds 1600 L of water. 
It takes 2 h for the water to drain completely. The volume of water in the hot 

tub is modelled by , where V is the volume in litres at
t minutes and .

a. Determine the average rate of change in volume during the second hour.

b. Estimate the instantaneous rate of change in volume after exactly 60 min.

c. Explain why all estimates of the instantaneous rate of change in volume
where result in a negative value.

12. a. Sketch the graph of 

b. Draw a tangent line at the point and estimate its slope.

c. Estimate the instantaneous rate of change in when .x � 5f 1x 215, f 15 22 ,f 1x 2 � �21x � 3 22 � 4.

0 � t � 120

0 � t � 120
V1t 2 � 1600 � t2

9

h1t 2 � �4.9t 2 � 25t � 2

y �
1x � 3 2 1x � 4 21x � 2 2 1x � 1 2 1x � 5 2y �

3

x � 1

y �
6x

2x2 � 5x � 3
y � x3

h1x 2 �
x2 � 4

x
y � Vx � 5

2x3 � x2 � 7x � 6x3 � 2x2 � xx2 � x � 6

27x3 � 642x2 � 7x � 6x3 � x

19a � 5 23x15x � 3 2 � 2x13x � 2 2 1a � 2 2315 � x 2 13 � 4x 2 1x � 1 2 1x � 3 2�12x � 5 2 1x � 2 21x � 6 2 1x � 2 2
s1100 2s11 2s10 2s1�1 2s1�2 2

s1t 2 � µ 1
t

,   if �3 6 t 6 0

5,    if t � 0

t3,   if t 7 0

t 7 �3

NEL
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CHAPTER 1: ASSESSING ATHLETIC PERFORMANCE

InvestigateCAREER LINK

Differential calculus is fundamentally about the idea of instantaneous
rate of change. A familiar rate of change is heart rate. Elite athletes are
keenly interested in the analysis of heart rates. Sporting performance is
enhanced when an athlete is able to increase his or her heart rate at a
slower pace (that is, to get tired less quickly). A heart rate is described
for an instant in time. 

Heart rate is the instantaneous rate of change in the total number 
of heartbeats with respect to time. When nurses and doctors count
heartbeats and then divide by the time elapsed, they are not
determining the instantaneous rate of change but are calculating the
average heart rate over a period of time (usually 10 s). In this chapter,
the idea of the derivative will be developed, progressing from the
average rate of change calculated over smaller and smaller intervals 
until a limiting value is reached at the instantaneous rate of change.

Case Study—Assessing Elite Athlete Performance

The table shows the number of heartbeats of an athlete who is
undergoing a cardiovascular fitness test. Complete the discussion
questions to determine if this athlete is under his or her maximum
desired heart rate of 65 beats per minute at precisely 30 s.

DISCUSSION QUESTIONS 

1. Graph the number of heartbeats versus time (in minutes) on graph
paper, joining the points to make a smooth curve. Draw a second
relationship on the same set of axes, showing the resting heart rate
of 50 beats per minute. Use the slopes of the two relationships
graphed to explain why the test results indicate that the person
must be exercising.

2. Discuss how the average rate of change in the number of heartbeats
over an interval of time could be calculated using this graph. Explain
your reasoning.

3. Calculate the athlete’s average heart rate over the intervals of
and Show the progression of

these average heart rate calculations on the graph as a series of
secants.

4. Use the progression of these average heart-rate secants to make a
graphical prediction of the instantaneous heart rate at . Is
the athlete’s heart rate less than 65 beats per minute at ?
Estimate the heart rate at t � 60 s.

t � 30 s
t � 30 s

320 s, 40 s 4 .310 s, 50 s 4 ,30 s, 60 s 4 ,

Time
(s) (min)

Number of
Heartbeats

10 0.17 9

20 0.33 19

30 0.50 31

40 0.67 44

50 0.83 59

60 1.00 75

C A R E E R  L I N K
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What Is Calculus?
Two simple geometric problems originally led to the development of what is
now called calculus. Both problems can be stated in terms of the graph of a
function 

• The problem of tangents: What is the slope of the tangent to the graph of
a function at a given point P?

• The problem of areas: What is the area under a graph of a function
between and 

Interest in the problem of tangents and the problem of areas dates back to 
scientists such as Archimedes of Syracuse (287–212 BCE), who used his vast
ingenuity to solve special cases of these problems. Further progress was made
in the seventeenth century, most notably by Pierre de Fermat (1601–1665) and
Isaac Barrow (1630–1677), a professor of Sir Isaac Newton (1642–1727) at
the University of Cambridge, England. Professor Barrow recognized that there
was a close connection between the problem of tangents and the problem of
areas. However, it took the genius of both Newton and Gottfried Wilhelm von
Leibniz (1646–1716) to show the way to handle both problems. Using the 
analytic geometry of Rene Descartes (1596–1650), Newton and Leibniz
showed independently how these two problems could be solved by means of
new operations on functions, called differentiation and integration. Their 
discovery is considered to be one of the major advances in the history of
mathematics. Further research by mathematicians from many countries using
these operations has created a problem-solving tool of immense power and
versatility, which is known as calculus. It is a powerful branch of mathematics,
used in applied mathematics, science, engineering, and economics.

We begin our study of calculus by discussing the meaning of a tangent and
the related idea of rate of change. This leads us to the study of limits and, at
the end of the chapter, to the concept of the derivative of a function.

y = f(x)

y

a b0

slope = ?

area = ?

P

x

x � b?x � ay � f 1x 2
y � f 1x 2 .

C H A P T E R  1



NEL6

Section 1.1—Radical Expressions:
Rationalizing Denominators

Now that we have reviewed some concepts that will be needed before beginning
the introduction to calculus, we have to consider simplifying expressions with
radicals in the denominator of radical expressions. Recall that a rational number
is a number that can be expressed as a fraction (quotient) containing integers.
So the process of changing a denominator from a radical (square root) to a rational
number (integer) is called rationalizing the denominator. The reason that we
rationalize denominators is that dividing by an integer is preferable to dividing 
by a radical number.

In certain situations, it is useful to rationalize the numerator. Practice with
rationalizing the denominator prepares you for rationalizing the numerator.

There are two situations that we need to consider: radical expressions with 
one-term denominators and those with two-term denominators. For both, the
numerator and denominator will be multiplied by the same expression, which
is the same as multiplying by one.

EXAMPLE 1 Selecting a strategy to rationalize the denominator

Simplify by rationalizing the denominator.

Solution

When the denominator of a radical fraction is a two-term expression, you can
rationalize the denominator by multiplying by the conjugate.

An expression such as has the conjugate 

Why are conjugates important? Recall that the linear terms are eliminated when
expanding a difference of squares. For example,

 � a2 � b2

 1a � b 2 1a � b 2 � a2 � ab � ab � b2

Va � Vb.�a � �b

 �
3V5

20

 �
3V5

4 � 5

 
3

4V5
�

3

4V5
�
V5

V5

3
4�5

(Multiply both the numerator  
and denominator by )

(Simplify)

�5

1 . 1 R A D I C A L  E X P R E S S I O N S : R AT I O N A L I Z I N G  D E N O M I N ATO R S
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If a and b were radicals, squaring them would rationalize them.

Consider this product: m, n rational

Notice that the result is rational!

EXAMPLE 2 Creating an equivalent expression by rationalizing the denominator

Simplify by rationalizing the denominator.

Solution

EXAMPLE 3 Selecting a strategy to rationalize the denominator

Simplify the radical expression by rationalizing the denominator.

Solution

The numerator can also be rationalized in the same way as the denominator was
in the previous expressions.

�
2V6 � 3

3

�
5 Q2V6 � 3R

15

�
5 Q2V6 � 3R

24 � 9

�
5 Q2V6 � 3R
4V36 � 9

5

2V6 � 3
�

5

2V6 � 3
�

2V6 � 3

2V6 � 3

5
2�6 � 3

 �
2 Q�6 � �3R

3

 �
2 Q�6 � �3R

6 � 3

 
2

V6 � V3
�

2

V6 � V3
�
V6 � V3

V6 � V3

2
�6 � �3

� m � n

� Q�mR2 � �mn � �mn � Q�nR2QVm � VnR QVm � VnR,

(Multiply both the numerator and

denominator by )

(Simplify)

�6 � �3

(The conjugate is )

(Simplify)

(Divide by the common factor of 5)

2�6 � �32�6 � �3
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EXAMPLE 4 Selecting a strategy to rationalize the numerator

Rationalize the numerator of the expression .
Solution

�
2

V7 � V3

�
4

2 Q�7 � �3R
�

7 � 3

2 Q�7 � �3R
V7 � V3

2
�
V7 � V3

2
�
V7 � V3

V7 � V3

�7 � �3
2

IN SUMMARY

Key Ideas

• To rewrite a radical expression with a one-term radical in the denominator,
multiply the numerator and denominator by the one-term denominator.

• When the denominator of a radical expression is a two-term expression,
rationalize the denominator by multiplying the numerator and denominator
by the conjugate, and then simplify.

Need to Know

• When you simplify a radical expression such as , multiply the numerator
and denominator by the radical only.

• is the conjugate and vice versa.�a � �b,�a � �b

�
�6
10

�3

5�2
�

�2

�2
�

�6
512 2

�3
5�2

�
�a � �b

a � b

1

�a � �b
�

1

�a � �b
�

�a � �b

�a � �b

�
�ab

b

�a

�b
�

�a

�b
�

�b

�b

(Multiply the numerator and

denominator by )

(Simplify)

(Divide by the common factor of 2)

�7 � �3

1 . 1 R A D I C A L  E X P R E S S I O N S : R AT I O N A L I Z I N G  D E N O M I N ATO R S
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Exercise 1.1

PART A
1. Write the conjugate of each radical expression.

a. c. e.

b. d. f.

2. Rationalize the denominator of each expression. Write your answer in
simplest form.

a. c.

b. d.

PART B
3. Rationalize each denominator.

a. c. e.

b. d. f.

4. Rationalize each numerator.

a. b. c.

5. a. Rationalize the denominator of 

b. Rationalize the denominator of 

c. Why are your answers in parts a and b the same? Explain.

6. Rationalize each denominator.

a. c. e.

b. d. f.

7. Rationalize the numerator of each of the following expressions:

a. b. c.
Vx � h � x

x
Vx � 4 � 2

x
Va � 2

a � 4

V18 � V12

V18 � V12

3V2 � 2V3

V12 � V8

2V6

2V27 � V8

3V5

4V3 � 5V2

2V2

V16 � V12

2V2

2V3 � V8

8�2
2�5 � 3�2

.

8�2
�20 � �18

.

V5 � 2

2V5 � 1

2 � 3V2

2

V5 � 1

4

3V3 � 2V2

3V3 � 2V2

2V5 � 8

2V5 � 3

2V5

2V5 � 3V2

2V3 � V2

5V2 � V3

V3 � V2

V3 � V2

3

V5 � V2

3V5 � V2

2V2

2V3 � 3V2

V2

4V3 � 3V2

2V3

V3 � V5

V2

�V5 � 2V23V3 � V2V3 � V2

V2 � V5�2V3 � V22�3 � 4

K

C

A
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Section 1.2—The Slope of a Tangent

You are familiar with the concept of a tangent to a curve. What geometric
interpretation can be given to a tangent to the graph of a function at a point P?
A tangent is the straight line that most resembles the graph near a point. Its
slope tells how steep the graph is at the point of tangency. In the figure below,
four tangents have been drawn.

The goal of this section is to develop a method for determining the slope of a
tangent at a given point on a curve. We begin with a brief review of lines and
slopes.

Lines and Slopes

The slope m of the line joining points and is defined as 

The equation of the line l in point-slope form is or 

The equation in slope–y-intercept form is where b is the y-intercept of
the line.

To determine the equation of a tangent to a curve at a given point, we first need 
to know the slope of the tangent. What can we do when we only have one point? 
We proceed as follows:

Q Q
Q

0

secant

tangent 
at P

P
x

y

y = f (x)

y � mx � b,

y � y1 � m1x � x1 2 .y � y1
x � x1

� m

m �
¢y
¢x �

y2 � y1
x2 � x1

.

P21x2, y2 2P11x1, y1 2
0

x

y
P2 (x2, y2)

Dx

Dy
P1 (x1, y1)

l

T1

T2

y = f (x)T3

T4
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Consider a curve and a point P that lies on the curve. Now consider
another point Q on the curve. The line joining P and Q is called a secant. Think of
Q as a moving point that slides along the curve toward P, so that the slope of the
secant PQ becomes a progressively better estimate of the slope of the tangent at P.

This suggests the following definition of the slope of the tangent:

We will illustrate this idea by finding the slope of the tangent to the parabola
at 

INVESTIGATION 1 A. Determine the y-coordinates of the following points that lie on the graph of
the parabola 

i) ii) iii) iv)

B. Calculate the slopes of the secants through and each of the points Q1,
Q2, Q3, and Q4.

C. Determine the y-coordinates of each point on the parabola, and then repeat
part B using the following points.

i) ii) iii) iv)

D. Use your results from parts B and C to estimate the slope of the tangent at
point .

E. Graph and the tangent to the graph at .

In this investigation, you found the slope of the tangent by finding the limiting
value of the slopes of a sequence of secants. Since we are interested in points Q
that are close to on the parabola it is convenient to write Q as 

where h is a very small nonzero number. The variable h
determines the position of Q on the parabola. As Q slides along the parabola
toward P, h will take on values successively smaller and closer to zero. We say
that “h approaches zero” and use the notation “ ”hS 0.

13 � h, 13 � h 22 2 , y � x2P13, 9 2
P13, 9 2y � x2

P13, 9 2
Q812.999, y 2Q712.99, y 2Q612.9, y 2Q512.5, y 2

P13, 9 2 Q413.001, y 2Q313.01, y 2Q213.1, y 2Q113.5, y 2y � x2:

P13, 9 2 .y � x2

y � f 1x 2

Slope of a Tangent

The slope of the tangent to a curve at a point P is the limiting slope of the
secant PQ as the point Q slides along the curve toward P. In other words, the
slope of the tangent is said to be the limit of the slope of the secant as Q
approaches P along the curve.
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INVESTIGATION 2 A. Using technology or graph paper, draw the parabola 

B. Let P be the point 

C. Determine the slope of the secant through Q1 and , Q2 and and
so on, for points , , ,

, and .

D. Draw these secants on the same graph you created in part A.

E. Use your results to estimate the slope of the tangent to the graph of f at point P.

F. Draw the tangent at point .

INVESTIGATION 3 A. Determine an expression for the slope of the secant PQ through points 
and 

B. Explain how you could use the expression in a part A to predict the slope of
the tangent to the parabola at point .

The slope of the tangent to the parabola at point P is the limiting slope of the
secant line PQ as point Q slides along the parabola; that is, as we write
“ ” as the abbreviation for “limiting value as h approaches 0.”

Therefore, from the investigation, the slope of the tangent at a point P is

slope of the secant PQ

EXAMPLE 1 Reasoning about the slope of a tangent as a limiting value
Determine the slope of the tangent to the graph of the parabola at .

Solution
Using points and  , , the slope of the secant 
PQ is

 � 16 � h 2 �
h16 � h 2

h

 �
9 � 6h � h2 � 9

h

 �
13 � h 22 � 9

3 � h � 3

 
¢x

¢y
�

y2 � y1

x2 � x1

h � 0Q13 � h, 13 � h 22 2P13, 9 2
P13, 9 2f 1x 2 � x2

2 .1lim
hS0

lim
hS0

hS 0,

P13, 9 2f 1x 2 � x2

Q13 � h, 13 � h 22 2 . P13, 9 2
P11, 12

Q511.0001, f 11.0001 2 2Q411.001, f 11.001 2 2 Q311.01, f 11.01 2 2Q211.1, f 11.1 2 2Q111.5, f 11.5 2 2 P11, 12P11, 1211, 12 . f 1x 2 � x2.

(Substitute)

(Expand)

(Simplify and factor)

(Divide by the common factor of h)
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As the value of approaches 6, and thus . 

We conclude that the slope of the tangent at to the parabola is 6.

EXAMPLE 2 Selecting a strategy involving a series of secants to estimate the 
slope of a tangent

a. Use your calculator to graph the parabola Plot the 

points on the parabola from to where x is an integer.
b. Determine the slope of the secants using each point from part a and point

.
c. Use the result of part b to estimate the slope of the tangent at .

Solution
a. Using the x-intercepts of and 7, the equation of the axis of symmetry is 

, so the x-coordinate of the vertex is 3.

Substitute into 

Therefore, the vertex is .

The y-intercept of the parabola is 

The points on the parabola are , , ,
and 

The parabola and the secants through each point and point are shown
in red. The tangent through is shown in green.

b. Using points and the slope is 

Using the other points and the slopes are 0.125, 0,

and respectively.

c. The slope of the tangent at is between and It can be
determined to be using points closer and closer to P15, 1.5 2 .�0.5

�0.625.�0.375P15, 1.5 2�0.625,�0.375,�0.25,

�0.125,P15, 1.5 2 , m �
1.5 � 0

5 � 1�1 2 � 0.25.P15, 1.5 2 ,1�1, 0 2

6

P(5, 1.5)
4

2

0
–2

2 4 6–4 –2

y

x

P15, 1.5 2 P15, 1.5 216, 0.875 2 .14, 1.875 2 , 15, 1.5 2 , 12, 1.875 2 , 13, 2 2 ,11, 1.5 210, 0.875 21�1, 0 2
7
8.

13, 2 2y � �
1
8 13 � 1 2 13 � 7 2 � 2

y � �
1
8 1x � 1 2 1x � 7 2 .x � 3

x �
�1 � 7

2 � 3

�1

P15, 1.5 2P15, 1.5 2 x � 6,x � �1

y � �
1
8 1x � 1 2 1x � 7 2 .

y � x2P13, 9 2 lim
hS0
16 � h 2 � 616 � h 2hS 0,

Tech  Support
For help graphing

functions using a

graphing calculator,

see Technology

Appendix p. 597.
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The Slope of a Tangent at an Arbitrary Point
We can now generalize the method used above to derive a formula for the slope of
the tangent to the graph of any function 

Let be a fixed point on the graph of and let
represent any other point on the graph. If Q is a horizontal

distance of h units from P, then and Point Q then has
coordinates 

The slope of the secant PQ is 

This quotient is fundamental to calculus and is referred to as the 
difference quotient. Therefore, the slope m of the tangent at is 

slope of the secant PQ which may be written as 

EXAMPLE 3 Connecting limits and the difference quotient to the slope of a tangent
a. Using the definition of the slope of a tangent, determine the slope of the 

tangent to the curve at the point determined by 
b. Determine the equation of the tangent.
c. Sketch the graph of and the tangent at 

Solution
a. The slope of the tangent can be determined using the expression above. In this

example, and 

Then

and

� �h2 � 2h � 4

� �9 � 6h � h2 � 12 � 4h � 1

f 13 � h 2 � �13 � h 22 � 413 � h 2 � 1

f 13 2 � �13 22 � 413 2 � 1 � 4

a � 3.f 1x 2 � �x2 � 4x � 1

x � 3.y � �x2 � 4x � 1

x � 3.y � �x2 � 4x � 1

m � lim
hS0

 
f 1a � h 2 � f 1a 2

h .2 ,1lim
hS0

P1a, f 1a 22
¢y
¢x �

f 1a � h 2 � f 1a 2
a � h � a �

f 1a � h 2 � f 1a 2
h .

Q1a � h, f 1a � h 2 2 . y � f 1a � h 2 .x � a � h
Q1x, y 2 � Q1x, f 1x 2 2 y � f 1x 2 ,P1a, f 1a 2 2 y � f 1x 2 .

Slope of a Tangent as a Limit

The slope of the tangent to the graph at point is

if this limit exists.m � lim
¢xS0

¢y
¢x � lim

hS0
 
f 1a � h 2 � f 1a 2

h ,

P1a, f 1a 2 2y � f 1x 2

1 . 2 T H E  S L O P E  O F  A  TA N G E N T

y = f(x)

y

x
0

tangent
at P

P(a, f(a))

Q(a + h, f(a + h))

h
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The slope of the tangent at is

The slope of the tangent at is 
b. The equation of the tangent at is or 
c. Using graphing software, we obtain

EXAMPLE 4 Selecting a limit strategy to determine the slope of a tangent

Determine the slope of the tangent to the rational function at

point 

Solution
Using the definition, the slope of the tangent at is

 �  lim
hS0

 

 
12 � 3h � 12 � 6h

2 � h
 

h

 � lim 
hS0

 
6 � 3h � 6

2 � h
�

612 � h 2
2 � h

 

h

 �  lim
hS0

 

6 � 3h � 6

2 � h
� 6

h

 m � lim
hS0

 
f 12 � h 2 � f 12 2

h

12, 6 2
12, 6 2 . f 1x 2 �

3x � 6
x

10

5

–5

–10

0 5 10

(3, 4)

–10 –5

x

y

y = –x2 + 4x + 1

y = –2x + 10

y � �2x � 10.
y � 4
x � 3 � �2,13, 4 2�2.x � 3

 � �2

 � lim
hS0 
1�h � 2 2 � lim

hS0
 
h1�h � 2 2

h

 � lim 
hS0

3�h2 � 2h � 4 4 � 4

h

 m � lim
hS0

 
f 13 � h 2 � f 13 2

h

13, 4 2
(Substitute)

(Simplify and factor)

(Divide by the common factor)

(Evaluate)

(Substitute)

(Determine a common denominator)

(Simplify)
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Therefore, the slope of the tangent to at is 

EXAMPLE 5 Determining the slope of a line tangent to a root function
Find the slope of the tangent to at 

Solution

Using the limit of the difference quotient, the slope of the tangent at is

Therefore, the slope of the tangent to at is 
1
6.x � 9 f 1x 2 � Vx

 �
1

6

 � lim
hS0

  
1

�9 � h � 3

 � lim
hS0

  
h

h1�9 � h � 3 2
 � lim

hS0
  
19 � h 2 � 9

h1�9 � h � 3 2
 � lim

hS0
  

�9 � h � 3

h
�

�9 � h � 3

�9 � h � 3

 � lim
hS0

  
�9 � h � 3

h

 m � lim
hS0

  
f 19 � h 2 � f 19 2

h

x � 9

 f 19 � h 2 � V9 � h

 f 19 2 � V9 � 3

x � 9.f 1x 2 � �x

�1.5.12, 6 2f 1x 2 �
3x � 6

x

 � �1.5

 � lim
hS0

 
�3

2 � h

 � lim
hS0

 
�3h

2 � h
�

1

h

 � lim
hS0

 

 
�3h

 2 � h 
 

h
(Multiply by the reciprocal)

(Evaluate)

(Substitute)

(Rationalize the numerator)

(Simplify)

(Divide by the common factor of h)

(Evalute)
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INVESTIGATION 4 A graphing calculator can help us estimate the slope of a tangent at a point. The
exact value can then be found using the definition of the slope of the tangent
using the difference quotient. For example, suppose that we wish to find the
slope of the tangent to at 

A. Graph 

B. Explain why the values for the WINDOW were chosen.
Observe that the function entered in is the difference quotient 

for and Remember that this approximates the slope of the
tangent and not the graph of 

C. Use the TRACE function to find 
This means that the slope of the secant passing through the points where

and is about 3.2. The value 3.2 could be used as
an approximation for the slope of the tangent at 

D. Can you improve this approximation? Explain how you could improve 
your estimate. Also, if you use different WINDOW values, you can see a 
different-sized, or differently centred, graph.

E. Try once again by setting and note the different
appearance of the graph. Use the TRACE function to find 

and then What is your 
guess for the slope of the tangent at now? Explain why only estimation
is possible.

F. Another way of using a graphing calculator to approximate the slope of the
tangent is to consider h as the variable in the difference quotient. For this

example, at look at 

G. Trace values of h as You can use the table or graph function of your

calculator. Graphically, we say that we are looking at in the

neighbourhood of To do this, graph and examine the 

value of the function as xS 0.

y �
11 � x 2 3 � 1

xh � 0.

11 � h 2 3 � 1
h

hS 0.

f 1a � h 2 � f 1a 2
h �

11 � h 2 3 � 13

h .x � 1,f 1x 2 � x3

x � 1
Y � 3.7055414.X � 1.106383,Y � 2.4802607,

X � 0.90425532,
 Xmax � 10, Xmin � �9,

x � 1.
x � 1 � 0.01 � 1.01x � 1

Y � 3.159756.X � 1.0212766,

f 1x 2 � x3.
h � 0.01.f 1x 2 � x3

f 1a � h 2 � f 1a 2
hY1

Y1 �
1 1x � 0.01 2 3 � x3 2

0.01 .

x � 1.y � f 1x 2 � x3
For help graphing

functions, tracing, and

using the table feature

on a graphing calculator,

see Technology

Appendices p. 597 

and p. 599.

Tech  Support
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Exercise 1.2

PART A
1. Calculate the slope of the line through each pair of points.

a.

b.

c.

2. Determine the slope of a line perpendicular to each of the following:

a.

b.

3. State the equation and sketch the graph of each line described below.

a. passing through and 

b. having slope 8 and y-intercept 6

c. having x-intercept 5 and y-intercept 

d. passing through and 15, �9 215, 6 2 �3

Q53, �5
3R1�4, �4 2

13x � 7y � 11 � 0

y � 3x � 5

11.5, �1 216.3, �2.6 2 ,a
7

2
, �

7

2
ba 1

2
, 

3

2
b ,

1�3, �8 212, 7 2 ,

IN SUMMARY

Key Ideas

• The slope of the tangent to a curve at a point P is the limit of the slopes of
the secants PQ as Q moves closer to P.

• The slope of the tangent to the graph of at is given by

Need to Know

• To find the slope of the tangent at a point 

• find the value of 

• find the value of 

• evaluate lim
hS0

 f1a � h 2  � f1a 2
h

f 1a � h 2f 1a 2 P1a, f 1a 2 2 ,
mtangent � lim

¢xS0
 ¢

y
¢x � lim

hS0
 
f1a � h 2 � f1a 2

h .

P1a,f1a 2 2y � f1x 2mtangent � lim
QSP
1slope of secant PQ 2
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4. Simplify each of the following difference quotients:

a. d.

b. e.

c. f.

5. Rationalize the numerator of each expression to obtain an equivalent 
expression.

a. b. c.

PART B
6. Determine an expression, in simplified form, for the slope of the secant PQ.

a. where 

b.

c.

7. Consider the function 

a. Copy and complete the following table of values. P and Q are points on
the graph of f 1x 2 .

f 1x 2 � x3.

Q19 � h,�9 � h 2P19, 3 2 , Q11 � h, 11 � h 23 � 2 2P11, 3 2 , f 1x 2 � 3x2Q11 � h, f 11 � h 2 2 ,P11, 3 2 ,
V5 � h � V5

h

Vh2 � 5h � 4 � 2

h

V16 � h � 4

h

�1

2 � h
�

1

2

h

1

1 � h
� 1

h

3

4 � h
�

3

4

h

13 � h 24 � 81

h

311 � h 22 � 3

h

15 � h 23 � 125

h

P Q
Slope of Line

PQ12,  2 13,  212,  2 12.5,  212,  2 12.1,  212,  2 12.01,  212,  2 11,  212,  2 11.5,  212,  2 11.9,  212,  2 11.99,  2

K

b. Use your results for part a to approximate the slope of the tangent to the
graph of at point P.

c. Calculate the slope of the secant PQ, where the x-coordinate of Q is 

d. Use your result for part c to calculate the slope of the tangent to the graph
of at point P.f 1x 2

2 � h.

f 1x 2
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e. Compare your answers for parts b and d.

f. Sketch the graph of and the tangent to the graph at point P.

8. Determine the slope of the tangent to each curve at the given value of x.

a. b. c.

9. Determine the slope of the tangent to each curve at the given value of x.

a.

b.

c.

10. Determine the slope of the tangent to each curve at the given value of x.

a. b. c.

11. Determine the slope of the tangent to each curve at the given point.

a. d.

b. e.

c. f.

12. Sketch the graph of the function in question 11, part e. Show that the slope of

the tangent can be found using the properties of circles.

13. Explain how you would approximate the slope of the tangent at a point 
without using the definition of the slope of the tangent.

14. Using technology, sketch the graph of Explain how the

slope of the tangent at can be found without using the difference quotient.

15. Determine the equation of the tangent to at (3, 1).

16. Determine the equation of the tangent to where 

17. For find

a. the coordinates of point A, where 

b. the coordinates of point B, where 

c. the equation of the secant AB

d. the equation of the tangent at A

e. the equation of the tangent at B

x � 5

x � 3,

f 1x 2 � x2 � 4x � 1,

x � 2.y � x2 � 7x � 12

y � x2 � 3x � 1

P10, 3 2 y �
3
4V16 � x2.

y �
4 � x

x � 2
, 18, 2 2y � 3x3, 11, 3 2 13, 4 2y � �25 � x2,1�2, �2 2f 1x 2 �

4
x

,

y � �x � 7, 116, 3 212, �2 2y � x2 � 3x,

x � 3y �
1

x � 2
,x � 1y �

8

3 � x
,y �

8
x

, x � 2

x � 2y � �5x � 1,

x � 9y � �x � 5,

x � 3y � �x � 2,

x � �2y � x3,x � 3y � x2 � x,y � 3x2, x � �2

f 1x 2

C
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18. Copy the following figures. Draw an approximate tangent for each curve at
point P and estimate its slope.

a. d.

b. e.

c. f.

19. Find the slope of the demand curve , at point 

20. It is projected that, t years from now, the circulation of a local newspaper will
be Find how fast the circulation is increasing
after 6 months. Hint: Find the slope of the tangent when 

21. Find the coordinates of the point on the curve where the 
tangent is parallel to the line 

22. Find the points on the graph of at which the tangent is 
horizontal.

PART C
23. Show that, at the points of intersection of the quadratic functions and

the tangents to the functions are perpendicular.

24. Determine the equation of the line that passes through (2, 2) and is parallel to
the line tangent to at 

25. a. Determine the slope of the tangent to the parabola at
the point whose x-coordinate is a. 

b. At what point on the parabola is the tangent line parallel to the line

c. At what point on the parabola is the tangent line perpendicular to the line
x � 35y � 7 � 0?

10x � 2y � 18 � 0?

y � 4x2 � 5x � 2

1�1, 5 2 .y � �3x3 � 2x

y �
1
2 � x2,

y � x2

y �
1
3x3 � 5x �

4
x

y � 8x.
f 1x 2 � 3x2 � 4x

t � 0.5.
C1t 2 � 100t2 � 400t � 5000.

15, 10 2 .p 7 1,D1p 2 �
20

Vp � 1

P

P

P
P

PP

A

T
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t (h) 0 1 2 2.5 3

s(t) (km) 62 133 210 250 293

Section 1.3—Rates of Change

Many practical relationships involve interdependent quantities. For example, the
volume of a balloon varies with its height above the ground, air temperature varies
with elevation, and the surface area of a sphere varies with the length of the radius.

These and other relationships can be described by means of a function, often
of the form The dependent variable, y, can represent quantities such
as volume, air temperature, and area. The independent variable, x, can represent
quantities such as height, elevation, and length.

We are often interested in how rapidly the dependent variable changes when there is a
change in the independent variable. Recall that this concept is called rate of change. In
this section, we show that an instantaneous rate of change can be calculated by finding
the limit of a difference quotient in the same way that we find the slope of a tangent.

Velocity as a Rate of Change
An object moving in a straight line is an example of a rate-of-change model. It is
customary to use either a horizontal or vertical line with a specified origin to
represent the line of motion. On such a line, movement to the right or upward is
considered to be in the positive direction, and movement to the left (or down) is
considered to be in the negative direction. An example of an object moving along
a line would be a vehicle entering a highway and travelling north 340 km in 4 h.

The average velocity would be km>h, since 

If gives the position of the vehicle on a straight section of the highway at 
time t, then the average rate of change in the position of the vehicle over a time 

interval is 

INVESTIGATION You are driving with a broken speedometer on a highway. At any instant, you do
not know how fast the car is going. Your odometer readings are given

average velocity �
¢s
¢t

.

s1t 2
average velocity �

change in position

change in time

340
4 � 85

y � f 1x 2 .
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A. Determine the average velocity of the car over each interval.
B. The speed limit is 80 km/h. Do any of your results in part A suggest that you

were speeding at any time? If so, when?
C. Explain why there may be other times when you were travelling above the

posted speed limit.
D. Compute your average velocity over the interval , if km

and km.
E. After 3 h of driving, you decide to continue driving from Goderich to Huntsville,

a distance of 345 km. Using the average velocity from part D, how long would it
take you to make this trip?

EXAMPLE 1 Reasoning about average velocity

A pebble is dropped from a cliff, 80 m high. After t seconds, the pebble is s metres
above the ground, where 

a. Calculate the average velocity of the pebble between the times s and s.
b. Calculate the average velocity of the pebble between the times s and s.
c. Explain why your answers for parts a and b are different.

Solution

a.

m>s
The average velocity in this 2 s interval is m>s.

b.

m>s
The average velocity in this 0.5 s interval is m>s.�12.5

� �12.5

�
68.75 � 75

0.5

average velocity �
s11.5 2 � s11 2

1.5 � 1

� 68.75
s11.5 2 � 80 � 511.5 22 �20

� �20

�
�40

2

�
35 � 75

2

average velocity �
s13 2 � s11 2

3 � 1

s13 2 � 35

s11 2 � 75

average velocity �
¢s

¢t

t � 1.5t � 1
t � 3t � 1

0 � t � 4.s1t 2 � 80 � 5t2,

s17 2 � 609
s14 2 � 3754 � t � 7
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c. Since gravity causes the velocity to increase with time, the smaller interval of
0.5 s gives a lower average velocity, as well as giving a value closer to the 
actual velocity at time 

The following table shows the results of similar calculations of the average
velocity over successively smaller time intervals:

It appears that, as we shorten the time interval, the average velocity is
approaching the value m>s. The average velocity over the time interval

is

If the time interval is very short, then h is small, so 5h is close to 0 and the
average velocity is close to m>s. The instantaneous velocity when 
is defined to be the limiting value of these average values as h approaches 0.
Therefore, the velocity (the word “instantaneous” is usually omitted) at time 

s is m>s.

In general, suppose that the position of an object at time t is given by the function
In the time interval from to the change in position is

The average velocity over this time interval is , which is the

same as the slope of the secant PQ where and . The
velocity at a particular time is calculated by finding the limiting value of
the average velocity as hS 0.

t � a
Q1a � h, s1a � h 2 2P1a, s1a 2 2¢s

¢t �
s1a � h 2 � s1a 2

h

¢s � s1a � h 2 � s1a 2 . t � a � h,t � as1t 2 .
v � lim

hS0
1�10 � 5h 2 � �10t � 1

t � 1�10

h � 0� �10 � 5h,

�
�10h � 5h2

h

�
75 � 10h � 5h2 � 75

h

�
380 � 511 � h 22 4 � 380 � 511 22 4

h

average velocity �
s11 � h 2 � s11 2

h

1 � t � 1 � h
�10

t � 1.

Time Interval Average Velocity (m/s)

1 � t � 1.1 �10.5

1 � t � 1.01 �10.05

1 � t � 1.001 �10.005

s = s (t )

s
Q

t

P

a a + h

s (a)
h

s

s (a + h)
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Note that the velocity is the slope of the tangent to the graph of at
The speed of an object is the absolute value of its velocity. It indicates

how fast an object is moving, whereas velocity indicates both speed and direction
(relative to a given coordinate system).

EXAMPLE 2 Selecting a strategy to calculate velocity

A toy rocket is launched straight up so that its height s, in metres, at time t, in
seconds, is given by What is the velocity of the rocket 
at 

Solution
Since 

The velocity at is

Therefore, the velocity of the rocket is 10 m/s downward at s.t � 4

� �10

� lim
hS0 
1�10 � 5h 2� lim

hS0
 
h1�10 � 5h 2

h

� lim 
hS0

3�10h � 5h2 4
h

v14 2 � lim 
hS0

s14 � h 2 � s14 2
h

t � 4

� 42

s14 2 � �514 22 � 3014 2 � 2

� �5h2 � 10h � 42

� �80 � 40h � 5h2 � 120 � 30h � 2

s14 � h 2 � �514 � h 22 � 3014 � h 2 � 2

s1t 2 � �5t2 � 30t � 2,

t � 4?
s1t 2 � �5t2 � 30t � 2.

P1a, s1a 22 . s1t 2v1a 2

Instantaneous Velocity

The velocity of an object with position function at time is 

v1a 2 � lim
¢tS0

¢s

¢t
� lim 

hS0

s1a � h 2 � s1a 2
h

t � a,s1t 2 ,

(Substitute)

(Factor)

(Simplify)

(Evaluate)
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Comparing Average and Instantaneous Rates of Change

Velocity is only one example of the concept of rate of change. In general, suppose
that a quantity y depends on x according to the equation As the
independent variable changes from a to , the
corresponding change in the dependent variable y is ¢y � f 1a � h 2 � f 1a 2 .1¢x �  a � h � a � h 2a � h

y � f 1x 2 .

Instantaneous Rates of Change

Therefore, we conclude that the instantaneous rate of change in 

with respect to x when is , provided that 

the limit exists.

lim
hS0

 
f 1a � h 2 � f 1a 2

h
lim
¢xS0

 
¢y
¢x �x � a

y � f 1x 2

From the diagram, it follows that the average rate of change equals the slope of
the secant PQ of the graph of where and 
The instantaneous rate of change in y with respect to x when is defined to
be the limiting value of the average rate of change as hS 0.

x � a
Q1a �  h,  f 1a �  h 2 2 .P1a, f 1a 2 2f 1x 2

y = f(x)
y

Q

x

P

a a + h

f(a + h)

f(a)
x

y

It should be noted that, as with velocity, the instantaneous rate of change in y
with respect to x at equals the slope of the tangent to the graph of 
at 

EXAMPLE 3 Selecting a strategy to calculate instantaneous rate of change

The total cost, in dollars, of manufacturing x calculators is given by 

a. What is the total cost of manufacturing 100 calculators?
b. What is the rate of change in the total cost with respect to the number of 

calculators, x, being produced when x � 100?

C1x 2 � 10Vx � 1000.

x � a.
y � f 1x 2x � a

Average Rate of Change

The difference quotient is called the average rate of 

change in y with respect to x over the interval from to x � a � h.x � a

¢y
¢x �

f 1a � h 2 � f 1a 2
h
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Solution
a.

Therefore, the total cost of manufacturing 100 calculators is $1100.
b. The rate of change in the cost at is given by

Therefore, the rate of change in the total cost with respect to the number of
calculators being produced, when 100 calculators are being produced, is $0.50
per calculator.

An Alternative Form for Finding Rates of Change

In Example 1, we determined the velocity of the pebble at by taking the
limit of the average velocity over the interval as h approaches 0.

We can also determine the velocity at by considering the average velocity
over the interval from 1 to a general time t and letting t approach the value 1. 

Then,

s11 2 � 75

s1t 2 � 80 – 5t2

t � 1

1 � t � 1 � h
t � 1

� 0.5

�
100110V100 � 0 � 100 2

� lim
hS0

 
100110V100 � h � 100 2

� lim
hS0

 
100h

h110V100 � h � 100 2
� lim

hS0
 
1001100 � h 2 � 10 000

h110V100 � h � 100 2
� lim

hS0
 
10V100 � h � 100

h
�

10V100 � h � 100

10V100 � h � 100

� lim 
hS0

10V100 � h � 1000 � 1100

h

lim 
hS0

C 1100 � h 2 � C1100 2
h

x � 100

� 1100C1100 2 � 10V100 � 1000

(Substitute)

(Rationalize the numerator)

(Expand)

(Simplify)

(Evaluate)
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In general, the velocity of an object at time is 

Similarly, the instantaneous rate of change in with respect to x when

is lim 
xSa

f 1x 2 � f 1a 2
x � a .x � a

y � f 1x 2v1a 2 � lim
tSa

 
s1t 2 � s1a 2

t � a .t � a

� �10

� lim
tS1

�511 � t 2� lim 
tS1

511 � t 2 11 � t 2
t � 1

� lim 
tS1

5 � 5t2

t � 1

v11 2 � lim
tS1

 
s1t 2 � s11 2

t � 1

IN SUMMARY

Key Ideas

• The average velocity can be found in the same way that we found the slope
of the secant.

• The instantaneous velocity is the slope of the tangent to the graph of the
position function and is found in the same way that we found the slope of
the tangent.

Need to Know

• To find the average velocity (average rate of change) from to ,
we can use the difference quotient and the position function 

• The rate of change in the position function, s is the velocity at and
we can find it by computing the limiting value of the average velocity as :

v1a 2 � lim 
hS0

s1a � h 2 � s1a 2
h

hS 0
t � a,1t 2 ,

¢s
¢t

�
s 1a � h 2 � s 1a 2

h

s1t 2 t � a � ht � a

average velocity �
change in position

change in time
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Exercise 1.3

PART A
1. The velocity of an object is given by At what times,

in seconds, is the object at rest?

2. Give a geometrical interpretation of the following expressions, if s is a
position function:

a. b.

3. Give a geometrical interpretation of 

4. Use the graph to answer each question.

a. Between which two consecutive points is the average rate of change in the
function the greatest?

b. Is the average rate of change in the function between A and B greater than
or less than the instantaneous rate of change at B?

c. Sketch a tangent to the graph somewhere between points D and E such
that the slope of the tangent is the same as the average rate of change in
the function between B and C.

5. What is wrong with the statement “The speed of the cheetah was 65 km/h
north”?

6. Is there anything wrong with the statement “A school bus had a velocity of 
60 km/h for the morning run, which is why it was late arriving”?

PART B
7. A construction worker drops a bolt while working on a high-rise building,

320 m above the ground. After t seconds, the bolt has fallen a distance of 
s metres, where 

a. Calculate the average velocity during the first, third, and eighth seconds.

b. Calculate the average velocity for the interval 

c. Calculate the velocity at t � 2.

3 � t � 8.

0 � t � 8.s1t 2 � 320 � 5t2,

B C
A D E

x

y = f(x)

y

lim
hS0

 �4 � h � 2
h .

lim
hS0

 
s 16 � h 2 � s 16 2

h

s 19 2 � s 12 2
7

v 1t 2 � t 1t � 4 22.

C
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8. The function describes the distance s, in kilometres, that a
car has travelled after a time t, in hours, for 

a. Calculate the average velocity of the car during the following intervals:

i. from to 

ii. from to 

iii. from to 

b. Use your results for part a to approximate the instantaneous velocity of the
car at 

c. Calculate the velocity at 

9. Suppose that a foreign-language student has learned vocabulary
terms after t hours of uninterrupted study, where 

a. How many terms are learned between time h and h?

b. What is the rate, in terms per hour, at which the student is learning at time
h?

10. A medicine is administered to a patient. The amount of medicine M, in
milligrams, in 1 mL of the patient’s blood, t hours after the injection, is

where 

a. Find the rate of change in the amount M, 2 h after the injection.

b. What is the significance of the fact that your answer is negative?

11. The time t, in seconds, taken by an object dropped from a height of s metres

to reach the ground is given by the formula . Determine the rate of
change in time with respect to height when the object is 125 m above the ground.

12. Suppose that the temperature T, in degrees Celsius, varies with the height h,

in kilometres, above Earth’s surface according to the equation 

Find the rate of change in temperature with respect to height at a height of 3 km.

13. A spaceship approaching touchdown on a distant planet has height h, in
metres, at time t, in seconds, given by When does
the spaceship land on the surface? With what speed does it land (assuming it
descends vertically)?

14. A manufacturer of soccer balls finds that the profit from the sale of x balls per
week is given by dollars.

a. Find the profit on the sale of 40 soccer balls per week.

b. Find the rate of change in profit at the production level of 40 balls per week.

c. Using a graphing calculator, graph the profit function and, from the graph,
determine for what sales levels of x the rate of change in profit is positive.

P1x 2 � 160x � x2

h � 25t2 � 100t � 100.

T1h 2 �
60

h � 2.

t � Vs
5

0 �  t � 3.M1t 2 � �
1
3t2 � t,

t � 2

t � 3t � 2

0 � t � 10.
N1t 2 � 20t � t2

t � 3.

t � 3.

t � 3.01t � 3

t � 3.1t � 3

t � 4t � 3

0 � t � 5.
s1t 2 � 8t 1t � 2 2

A

K
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15. Use the alternate definition to calculate the instantaneous rate 

of change of at the given point or value of x.

a.

b.

c.

16. The average annual salary of a professional baseball player can be modelled 
by the function , where S represents the
average annual salary, in thousands of dollars, and x is the number of years
since 1982. Determine the rate at which the average salary was changing in
2005.

17. The motion of an avalanche is described by where s is the distance,
in metres, travelled by the leading edge of the snow at t seconds.

a. Find the distance travelled from 0 s to 5 s.

b. Find the rate at which the avalanche is moving from 0 s to 10 s.

c. Find the rate at which the avalanche is moving at 10 s.

d. How long, to the nearest second, does the leading edge of the snow take to
move 600 m?

PART C
18. Let (a, b) be any point on the graph of Prove that the area of the

triangle formed by the tangent through (a, b) and the coordinate axes is 2.

19. MegaCorp’s total weekly cost to produce x pencils can be written as
where F, a constant, represents fixed costs such as rent and

utilities and represents variable costs, which depend on the production 
level x. Show that the rate of change in the weekly cost is independent of fixed
costs.

20. A circular oil spill on the surface of the ocean spreads outward. Find the
approximate rate of change in the area of the oil slick with respect to its radius
when the radius is 100 m.

21. Show that the rate of change in the volume of a cube with respect to its edge
length is equal to half the surface area of the cube.

22. Determine the instantaneous rate of change in

a. the surface area of a spherical balloon (as it is inflated) at the point in time
when the radius reaches 10 cm

b. the volume of a spherical balloon (as it is deflated) at the point in time when
the radius reaches 5 cm

V1x 2C1x 2 � F � V1x 2 ,
x � 0.y �

1
x,

s 1t 2 � 3t2,

S1x 2 � 246 � 64x � 8.9x2 � 0.95x3

x � 24f 1x 2 � Vx � 1,

x � 2f 1x 2 �
x

x � 1
,

1�2,�5 2f 1x 2 � �x2 � 2x � 3,

f 1x 2 lim 
xSa

f 1x 2 � f 1a 2
x � a

T
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Mid-Chapter Review

1. Calculate the product of each radical expression and its corresponding conjugate.

a. b. c. d.

2. Rationalize each denominator.

a. c. e.

b. d. f.

3. Rationalize each numerator.

a. c. e.

b. d. f.

4. Determine the equation of the line described by the given information.

a. slope passing through point 

b. passing through points and 

c. parallel to passing through point 

d. perpendicular to passing through point 

5. Find the slope of PQ, in simplified form, given P and
where .

6. Consider the function 

a. Copy and complete the following tables of values. P and Q are points on
the graph of f 1x 2 .

y � x2 � 2x � 2.

f 1x 2 � �x2Q11 � h, f 11 � h 22 , 11, �1 2 1�1, �2 2y � �5x � 3,

12, 6 2y � 4x � 6,

16, 11 212, 7 2 10, 6 2�
2
3,

2V3 � V7

5

2V3 � 5

3V2

V3

6 � V2

V3 � V7

4

V7 � 4

5

V2

5

3V2

2V3 � 5

2V3

V3 � 2

2V3 � 4

V3

5V3

2V3 � 4

5

V7 � 4

6 � V2

V3

3V5 � 2V109 � 2V53V5 � 2V2V5 � V2

P Q
Slope of
Line PQ1�1, 1 2 10,      21�1, 1 2 1�0.5,       21�1, 1 2 1�0.9,      21�1, 1 2 1�0.99,      21�1, 1 2 1�0.999,      2

P Q
Slope of
Line PQ1�1, 1 2 1�2, 6 2 �5
1

� �51�1, 1 2 1�1.5, 3.25 21�1, 1 2 1�1.1,      21�1, 1 2 1�1.01,      21�1, 1 2 1�1.001,      2
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b. Use your results for part a to approximate the slope of the tangent to the
graph of at point P.

c. Calculate the slope of the secant where the x-coordinate of Q is 

d. Use your results for part c to calculate the slope of the tangent to the graph
of at point P.

e. Compare your answers for parts b and d.

7. Calculate the slope of the tangent to each curve at the given point or value of x.

a. , c. ,

b. , d. ,

8. The function describes the distance (in kilometres) that a car
has travelled after a time (in hours), for 

a. Calculate the average velocity of the car during the following intervals.

i. from to 
ii. from to 

iii. from to 

b. Use your results for part a to approximate the instantaneous velocity of the
car when 

c. Find the average velocity of the car from to 

d. Use your results for part c to find the velocity when 

9. Calculate the instantaneous rate of change of with respect to x at the
given value of x.
a. b.

10. An oil tank is being drained for cleaning. After t minutes, there are V litres of
oil left in the tank, where 

a. Calculate the average rate of change in volume during the first 20 min.

b. Calculate the rate of change in volume at time 

11. Find the equation of the tangent at the given value of x.

a.

b.

c.

d.

12. Find the equation of the tangent to the graph of the function at the given value
of x.

a.

b. f 1x 2 �
2x � 5

5x � 1
, x � �1

f 1x 2 �
x

x � 3
, x � �5

x � 1f 1x 2 � 5x2 � 8x � 3,

x � �1f 1x 2 � 3x2 � 2x � 5,

x � �2y � 2x2 � 7,

x � 4y � x2 � x � 3,

t � 20.

0 � t � 30.V1t 2 � 50130 � t 22,

x �
1

2
f 1x 2 �

3
x

,x � 2f 1x 2 � 5 � x2,

f 1x 2 t � 2.

t � 2 � h.t � 2

t � 2.

t � 2.01t � 2
t � 2.1t � 2
t � 3t � 2

0 � t � 6.t
s 1t 2 � 6t 1t � 1 2 x � 5f 1x 2 � Vx � 4x �

1

3
y �

1
x

16, 1 2y �
4

x � 2
1�3,�5 2f 1x 2 � x2 � 3x � 5

f 1x 2
�1 � h.

f 1x 2
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Section 1.4—The Limit of a Function

The notation is read “the limit of as x approaches a equals L”

and means that the value of can be made arbitrarily close to L by choosing x
sufficiently close to a (but not equal to a). But exists if and only if the 

limiting value from the left equals the limiting value from the right. We shall use
this definition to evaluate some limits.

Note: This is an intuitive explanation of the limit of a function. A more precise
definition using inequalities is important for advanced work but is not necessary
for our purposes.

INVESTIGATION 1 Determine the limit of as x approaches 2.

A. Copy and complete the table of values.

B. As x approaches 2 from the left, starting at what is the approximate
value of y?

C. As x approaches 2 from the right, starting at what is the approximate
value of y?

D. Graph using graphing software or graph paper.

E. Using arrows, illustrate that, as we choose a value of x that is closer and closer
to the value of y gets closer and closer to a value of 3.

F. Explain why the limit of exists as x approaches 2, and give its
approximate value.

EXAMPLE 1 Determine by graphing.

Solution

On a graphing calculator, display the graph of , x � 1.f 1x 2 �
x2 � 1
x � 1

lim 
xS1

x2 � 1
x � 1

y � x2 � 1

x � 2,

y � x2 � 1

x � 3,

x � 1,

y � x2 � 1,

lim 
xSa

f 1x 2f 1x 2 f 1x 2lim 
xSa

f 1x 2 � L

x 1 1.5 1.9 1.99 1.999 2 2.001 2.01 2.1 2.5 3

y � x2 � 1
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The graph shown on your calculator is a line , whereas it should
be a line with point (1, 2) deleted The WINDOW used is

and similarly for Y. Use the TRACE function to
find and 

Click ; select 4:ZDecimal, . Now, the graph of 

is displayed as a straight line with point (1, 2) deleted. The WINDOW

has new values, too.

Use the TRACE function to find Y has no value given;
and 

We can estimate As x approaches 1 from the left, written as “ ”,

we observe that approaches the value 2 from below. As x approaches 1 from
the right, written as approaches the value 2 from above.

We say that the limit at exists only if the value approached from the left
is the same as the value approached from the right. From this investigation, we 

conclude that 

EXAMPLE 2 Selecting a table of values strategy to evaluate a limit

Determine by using a table.

Solution
We select sequences of numbers for and xS 1�.xS 1�

lim 
xS1

x2 � 1
x � 1

lim 
xS1

x2 � 1
x � 1 � 2.

x � 1

f 1x 2xS 1�,
f 1x 2 xS 1�lim 

xS1
f 1x 2 .

Y � 2.1.X � 1.1,
X � 1,Y � 1.9;X � 0.9,

f 1x 2 �
x2 � 1
x � 1

ENTERZOOM

Y � 2.0638298.X � 1.0638298,Y � 1.8510638X � 0.85106383,
Xscl � 1,Xmax � 10,Xmin � �10,

1 f 1x 2 � x � 1, x � 1 2 .1 f 1x 2 � x � 1 2
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This pattern of numbers suggests that as we found when graphing

in Example 1.

EXAMPLE 3 Selecting a graphing strategy to evaluate a limit

Sketch the graph of the piecewise function:

Determine .

Solution
The graph of the function f consists of the line for the point 
(1, 1) and the square root function for From the graph
of observe that the limit of as depends on whether or

As approaches the value of 0 from below. We write this as

Similarly, as approaches the value 2 from above. We write this as 

(This is the same when is substituted

into the expression ) These two limits are referred to as one-sided 2 � �x � 1.

x � 1lim
xS1�

f 1x 2 � lim
xS1�
Q2 � �x � 1R � 2.

f 1x 2xS 1�,

y = f(x)

x

y

2 3 51 4

2

1

–1

3

4

0

lim 
xS1�

f 1x 2 � lim 
xS1�
1x � 1 2 � 0.

f 1x 2xS 1�,x 7 1.
x 6 1xS 1f 1x 2f 1x 2 , x 7 1.y � 2 � �x � 1

x 6 1,y � x � 1

lim 
xS1

f 1x 2
f 1x 2 � • x � 1, if x 6 1

1, if x � 1

2 � �x � 1, if x 7 1

lim 
xS1

x2 � 1
x � 1 � 2,

x 0 0.5 0.9 0.99 0.999 1 1.001 1.01 1.1 1.5 2

x2 � 1
x � 1

1 1.5 1.9 1.99 1.999 undefined 2.001 2.01 2.1 2.5 3

x approaches 1 from the left x approaches 1 from the rightdS

approaches 2 from below approaches 2 from abovef1x 2 �
x2 � 1
x � 1dSf1x 2 �

x2 � 1
x � 1

For help graphing

piecewise functions on

a graphing calculator,

see Technology

Appendix p. 607.

Tech Support
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limits because, in each case, only values of x on one side of are considered.
How-ever, the one-sided limits are unequal— —or more 

briefly, This implies that does not approach a single value

as We say “the limit of as does not exist” and write “ does 

not exist.” This may be surprising, since the function was defined at ––
that is, We can now summarize the ideas introduced in these examples.f 11 2 � 1.

x � 1f 1x 2 lim
xS1 

f 1x 2xS 1f 1x 2xS 1.

f 1x 2lim
xS1�

f 1x 2 � lim
xS1�

f 1x 2 . lim 
xS1�

f 1x 2 � 0 � 2 � lim
xS1�

f 1x 2x � 1

IN SUMMARY

Key Idea

• The limit of a function at is written as which 

means that approaches the value L as x approaches the value a from
both the left and right side.

Need to Know

• may exist even if is not defined.

• can be equal to In this case, the graph of passes through

the point 

• If and then L is the limit of as x approaches 

a, that is lim 
xSa

f1x 2 � L.

f1x 2lim 
xSa�

f1x 2 � L,lim 
xSa�

f1x 2 � L

1a, f1a 22 . f1x 2f1a 2 .lim 
xSa

f1x 2 f1a 2lim 
xSa

f1x 2
f1x 2 lim 

xSa
f1x 2 � L,x � ay � f1x 2

Exercise 1.4

PART A
1. What do you think is the appropriate limit of each sequence?

a. 0.7, 0.72, 0.727, 0.7272, . . .

b. 3, 3.1, 3.14, 3.141, 3.1415, 3.141 59, 3.141 592, . . .

2. Explain a process for finding a limit.

3. Write a concise description of the meaning of the following:

a. a right-sided limit b. a left-sided limit c. a (two-sided) limit

C

Limits and Their Existence

We say that the number L is the limit of a function as x approaches

the value a, written as if Otherwise,

does not exist.lim
xSa 

f 1x 2 lim
xSa�

f 1x 2 � L � lim
xSa �

f 1x 2 .lim
xSa 

f 1x 2 � L,

y � f 1x 2
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4. Calculate each limit.

a. c. e.

b. d. f.

5. Determine where 

PART B
6. For the function in the graph below, determine the following:

a. b. c. d.

7. Use the graph to find the limit, if it exists.

a. b. c.

8. Evaluate each limit.
a. b. c.

9. Find , and illustrate your result with a graph indicating the 

limiting value.

10. Evaluate each limit. If the limit does not exist, explain why.

a. c. e.

b. d. f. lim 
xS3

1

x � 3
lim

xS1�

1

x � 3
lim

xS2�
1x2 � 4 2 lim

xS3�

1

x � 2
lim

xS3�
1x2 � 4 2lim

xS0�
x4

lim 
xS2
1x2 � 1 2 lim

xS5
�x � 1lim

xS0
 � x � 20

2x � 5
lim

xS�1
19 � x2 2

1

1

0
x

y

2 3 4

2

3

1

1

0
x

y

2 3 4

2

3

4

1

1

0
x

y

2 3 4

2

3

4

lim
xS3 

f 1x 2lim
xS2 

f 1x 2lim 
xS2

f 1x 2

y

x
(2, 2)

(2, –1)

(–2, 0)
2

–2

4

–2 4 6 82

f 12 2lim
xS2�   

f 1x 2lim
xS2�  

f 1x 2lim
xS�2�  

f 1x 2 f 1x 2
f 1x 2 � e 1, if  x � 4

�1, if  x � 4
 .lim

xS4 
f 1x 2 ,

lim
xS3 

2xlim
xS�2

14 � 3x2 2lim 
xS3
1x � 7 2 lim

xS1 
4lim

xS10 
x2 lim

xS�5
x

K
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11. For each function, sketch the graph of the function. Determine the indicated
limit if it exists.

a.

b.

c.

d.

12. Sketch the graph of any function that satisfies the given conditions.

a.

b.

c. if and 

d.

13. Let , where m and b are constants. If and 

find m and b.

PART C
14. Determine the real values of a, b, and c for the quadratic function

, that satisfy the conditions 
and 

15. The fish population, in thousands, in a lake at time t, in years, is modelled by
the following function:

This function describes a sudden change in the population at time due
to a chemical spill.

a. Sketch the graph of 

b. Evaluate and 

c. Determine how many fish were killed by the spill.

d. At what time did the population recover to the level before the spill?

lim
tS6�

p1t 2 .lim
tS6�

p1t 2 p1t 2 .
t � 6,

p1t 2 � µ 3 �
1

12
t2, if 0 � t � 6

2 �
1

18
t2, if 6 6 t � 12

lim
xS�2

f 1x 2 � 8.lim
xS1 

f 1x 2 � 5,
f 10 2 � 0,a � 0f 1x 2 � ax2 � bx � c,

lim
xS�1 

f 1x 2 � 4,

lim
xS1  

f 1x 2 � �2f 1x 2 � mx � b

lim
xS3�  

f 1x 2 � 0f 13 2 � 0,

lim
xS1�  

f 1x 2 � 2x 6 1f 1x 2 � 1,

lim
xS2  

f 1x 2 � 0f 12 2 � 1,

lim
xS1�  

f 1x 2 � 2lim 
xS1�  

f 1x 2 � 3,f 11 2 � 1,

f 1x 2 � e 1, if  x 6 �0.5

x2 � 0.25, if  x � �0.5
 ; lim

xS�0.5
f 1x 2

f 1x 2 � •4x, if  x � 1
2

1
x

, if  x 6 1
2

; lim
xS 1

2

f 1x 2
f 1x 2 � e �x � 4, if  x � 2

�2x � 6, if  x 7 2
 ; lim

xS2 
f 1x 2

f 1x 2 � e x � 2, if x 6 �1

�x � 2, if x � �1
;  lim

xS�1
f 1x 2

A

T
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Section 1.5—Properties of Limits

The statement says that the values of become closer and closer 

to the number L as x gets closer and closer to the number a (from either side of a),
such that This means that when finding the limit of as x approaches a,
there is no need to consider In fact, need not even be defined. The
only thing that matters is the behaviour of near 

EXAMPLE 1 Reasoning about the limit of a polynomial function

Find 

Solution
It seems clear that when x is close to 2, is close to 12, and is close to 8.
Therefore, it appears that 

In Example 1, the limit was arrived at intuitively. It is possible to evaluate limits
using the following properties of limits, which can be proved using the formal
definition of limits. This is left for more advanced courses.

Properties of Limits
For any real number a, suppose that f and g both have limits that exist at 

1. , for any constant k

2.

3.

4. , for any constant c

5.

6. , provided that 

7. for any rational number nlim
xSa 
3 f 1x 24n � 3 lim

xSa 
f 1x 24n,

lim
xSa 

g1x 2 � 0lim
xSa

 f 1x 2
g1x 2 �

lim
xSa 

f 1x 2
lim
xSa 

g1x 2
lim
xSa 
3 f 1x 2g1x 24 � 3 lim

xSa   
f 1x 24 3  lim

xSa 
g1x 24lim

xSa 
3cf 1x 24 � c 3 lim

xSa 
f 1x 2 4lim 3

xSa
f 1x 2   ;  g1x 2 4 � lim

xSa 
f 1x 2   ;  lim

xSa 
g1x 2lim

xSa 
x � a

lim
xSa 

k � k

x � a.

lim
xS2 
13x2 � 4x � 1 2 � 12 � 8 � 1 � 19.

4x3x2

lim
xS2 
13x2 � 4x � 1 2 .

x � a.f 1x 2f 1a 2x � a.
f 1x 2x � a.

f 1x 2lim
xSa

 f 1x 2 � L
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EXAMPLE 2 Using the limit properties to evaluate the limit of a polynomial function

Evaluate 

Solution

Note: If f is a polynomial function, then 

EXAMPLE 3 Using the limit properties to evaluate the limit of a rational function

Evaluate .

Solution

EXAMPLE 4 Using the limit properties to evaluate the limit of a root function

Evaluate 

Solution

 �
5

2

� � 25

4

 � �
lim
xS5

 x
2

lim
xS5

 1x � 1 2
 � lim

xS5
 

x2

x � 1� x2

x � 1
� lim

xS5

lim
xS5

 V x2

x � 1.

 � �2

 �
8

�4

 �
1�1 22 � 51�1 2 � 2

21�1 23 � 31�1 2 � 1

lim
xS�1

 
x2 � 5x � 2

2x3 � 3x � 1
 �

lim
xS�1  

1x2 � 5x � 2 2
lim

xS�1  
12x3 � 3x � 1 2

lim
xS�1

 x2 � 5x � 2

2x
3

� 3x � 1

lim
xSa 

f 1x 2 � f 1a 2 . � 19
 � 312 22 � 8 � 1

 � 3 3 lim
xS2 

x 42 � 412 2 � 1

 � 3 lim
xS2

 1x2 2  �  4 lim
xS2

 1x 2 � 1

 lim
xS2 
13x2 � 4x � 1 2 � lim

xS2 
13x2 2 � lim

xS2 
14x 2 � lim

xS2 
11 2

lim
xS2

 13x2 � 4x � 1 2 .
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Sometimes cannot be found by direct substitution. This is particularly lim
xSa  

f 1x 2
interesting when direct substitution results in an indeterminate form In such 
cases, we look for an equivalent function that agrees with f for all values except
at . Here are some examples.

EXAMPLE 5 Selecting a factoring strategy to evaluate a limit

Evaluate 

Solution
Substitution produces the indeterminate form The next step is to simplify the 
function by factoring and reducing to see if the limit of the reduced form can 
be evaluated.

The reduction is valid only if This is not a problem, since requires 

values as x approaches 3, not when Therefore,

EXAMPLE 6 Selecting a rationalizing strategy to evaluate a limit

Evaluate 

Solution
A useful technique for finding a limit is to rationalize either the numerator or the
denominator to obtain an algebraic form that is not indeterminate.

Substitution produces the indeterminate form so we will try rationalizing.

�
1

2

� lim
xS0

 1

�x � 1 � 1

� lim
xS0

 x

x1�x � 1 � 1 2
� lim

xS0
 x � 1 � 1

x1�x � 1 � 1 2
lim
xS0

 �x � 1 � 1
x

� lim
xS0

 �x � 1 � 1
x

�
�x � 1 � 1

�x � 1 � 1

0
0,

lim
xS0

 �x � 1 � 1
x .

lim
xS3

 x2 � 2x � 3
x � 3 � lim

xS3
 1x � 1 2 � 4.

x � 3.

lim
xS3

x � 3.

 lim
xS3

 x
2 � 2x � 3

x � 3
� lim

xS3
 1x � 1 2 1x � 3 2

x � 3
� lim

xS3 
1x � 1 2

0
0.

lim
xS3

 x
2 � 2x � 3

x � 3 .

x � a

Q00R.

(Rationalize

the numerator)

(Simplify)

(Evaluate)
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INVESTIGATION Here is an alternate technique for finding the value of a limit.

A. Find by rationalizing.

B. Let and rewrite in terms of u. We know ,

and . Therefore, as x approaches the value of 1, u approaches the value of 1.

Use this substitution to find by reducing the rational expression.

EXAMPLE 7 Selecting a substitution strategy to evaluate a limit

Evaluate 

Solution

1x � 8 2 13 � 2

x
.lim

xS0
 

lim
uS1

1u2 � 1 2
u � 1

u � 0

Vx � 0x � u2,lim
xS1

 
1x � 1 2
�x � 1

u � Vx,

lim
xS1

 
1x � 1 2
�x � 1

This quotient is indeterminate when Rationalizing the numerator 

is not so easy. However, the expression can be simplified by 

substitution. Let Then and . As x
approaches the value 0, u approaches the value 2. The given limit becomes

EXAMPLE 8 Evaluating a limit that involves absolute value

Evaluate Illustrate with a graph.

Solution
Consider the following:

� e 1,    if x 7 2

�1, if x 6 2

f 1x 2 �
0 x � 2 0
x � 2

� µ 1x � 2 2
x � 2

, if x 7 2

�1x � 2 2
x � 2

, if x 6 2

lim
xS2

 
0 x � 2 0
x � 2 .

�
1

12

� lim
uS2

 
1

u2 � 2u � 4

� lim
uS2

 
u � 21u � 2 2 1u2 � 2u � 4 2

lim
xS0

 
1x � 8 2 13 � 2

x
� lim

uS2
 
u � 2

u3 � 8

x � u3 � 8u3 � x � 8u � 1x � 8 2 13.1x � 8 2 13 � 2

x � 0.Q00R

(Factor)

(Simplify)

(Evaluate)
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Notice that is not defined. Also note and that we must consider left-hand and
right-hand limits.

Since the left-hand and right-hand limits are not the same, we conclude that

does not exist.

EXAMPLE 9 Reasoning about the existence of a limit

lim
xS2

 
0 x � 2 0
x � 2

 lim
xS2�

f 1x 2 � lim
xS2�
11 2 � 1

 lim
xS2�

f 1x 2 � lim
xS2�
1�1 2 � �1

f 12 2

y

x
2

4

–2
4

–4

0 2–4 –2

a. Evaluate 

b. Explain why the limit as x approaches cannot be determined.

c. What can you conclude about 

Solution
a. The graph of is the semicircle illustrated below.

From the graph, the left-hand limit at is 0. Therefore,

b. The function is not defined for .

c. does not exist because the function is not defined on both 

sides of 3.

lim
xS3
V9 � x2

x 7 3

lim
xS3�

V9 � x2 � 0.

xS 3

x

3

–3

3–3 0

y

f 1x 2 � V9 � x2

lim
xS3
V9 � x2?

3�

lim
xS3�

V9 � x2
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In this section, we learned the properties of limits and developed algebraic
methods for evaluating limits. The examples in this section complement the 
table of values and graphing techniques introduced in previous sections.

Exercise 1.5

PART A
1. Are there different answers for and 

2. How do you find the limit of a rational function?

3. Once you know and do you then know 

Give reasons for your answer.

4. Evaluate each limit.

a. d.

b. e.

c. f. lim
xS�3Å

x � 3

2x � 4
lim
xS9
aVx �

1

Vx
b 2

lim
xS0
1�3 � �1 � x 2lim

xS�1
1x4 � x3 � x2 2 lim

xS2p
1x3 � p2x � 5p3 2lim

xS2
 

3x

x2 � 2

lim
xSa

  f 1x 2?lim
xSa�

 f 1x 2 ,lim
xSa�  

f 1x 2
lim
xS2
1x � 3 2?lim

xS2 
3 � x,lim

xS2 
13 � x 2 ,

IN SUMMARY

Key Ideas
• If f is a polynomial function, then 

• Substituting into can yield the indeterminate form If this 

happens, you may be able to find an equivalent function that is the same as
the function f for all values except at Then, substitution can be used to
find the limit.

Need to Know

To evaluate a limit algebraically, you can use the following techniques:

• direct substitution

• factoring

• rationalizing

• one-sided limits

• change of variable

For any of these techniques, a graph or table of values can be used to check your
result.

x � a.

0
0.lim

xSa
f 1x 2x � a

lim
xSa

f 1x 2 � f 1a 2 .

C
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PART B
5. Use a graphing calculator to graph each function and estimate the limit. 

Then find the limit by substitution.

a. b.

6. Show that 

7. Evaluate the limit of each indeterminate quotient.

a. d.

b. e.

c. f.

8. Evaluate the limit by using a change of variable.

a. d.

b. e.

c. f.

9. Evaluate each limit, if it exists, using any appropriate technique.

a. d.

b. e.

c. f.

10. By using one-sided limits, determine whether each limit exists. Illustrate your
results geometrically by sketching the graph of the function.

a. c.

b. d. lim
xS�2

 
1x � 2 230 x � 2 0lim

xS 5
2

 
0 2x � 5 0 1x � 1 2

2x � 5

lim
xS2

 
x2 � x � 20 x � 2 0lim

xS5
 
0 x � 5 0
x � 5

lim
xS1
c a 1

x � 1
b a 1

x � 3
�

2

3x � 5
b dlim

xS�1
 
x2 � x

x � 1

lim
hS0

 
1x � h 22 � x2

h
lim
xS4

 
x2 � 16

x2 � 5x � 6

lim
xS0

 
Vx � 1 � 1

x
lim
xS4

 
16 � x2

x3 � 64

lim
xS0

 
1x � 8 2 13 � 2

x
lim
xS1

 
x

1
6 � 1

x � 1

lim
xS4

 
�x � 2

�x3 � 8
lim

xS27
 
27 � x

x
1
3 � 3

lim
xS1

 
x

1
6 � 1

x
1
3 � 1

lim
xS8

 
�3 x � 2

x � 8

lim
xS0

 
V7 � x � V7 � x

x
lim
xS3

 
x3 � 27

x � 3

lim
xS4

Vx � 2

x � 4
lim

xS�1

2x2 � 5x � 3

x � 1

lim
xS0

 
2 � V4 � x

x
lim
xS2

 
4 � x2

2 � x

lim
tS1

   t
3 � t2 � 5t

6 � t
2 � �1.

lim
xS1

 
2x

�x2 � 1
lim

xS�2
 

x3

x � 2

K
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11. Jacques Charles (1746–1823) discovered that the volume of a gas at a
constant pressure increases linearly with the temperature of the gas. To obtain
the data in the following table, one mole of hydrogen was held at a constant
pressure of one atmosphere. The volume V was measured in litres, and the
temperature T was measured in degrees Celsius.

a. Calculate first differences, and show that T and V are related by a linear
relation.

b. Find the linear equation for V in terms of T.

c. Solve for T in terms of V for the equation in part b.

d. Show that is approximately Note: This represents the 

approximate number of degrees on the Celsius scale for absolute zero 
on the Kelvin scale (0 K).

e. Using the information you found in parts b and d, draw a graph of 
V versus T.

12. Show, using the properties of limits, that if then 

13. If use the properties of limits to evaluate each limit.

a. b. c.

PART C

14. If and exists and is nonzero, then evaluate each limit.

a. b.

15. If and then evaluate each limit.

a. b.

16. Evaluate 

17. Does exist? Illustrate your answer by sketching a graph 

of the function.

lim
xS1

 
x2 � 0 x � 1 0 � 10 x � 1 0
lim
xS0

 �x � 1 � �2x � 1
�3x � 4 � �2x � 4

.

lim
xS0

f 1x 2
g1x 2lim

xS0
g1x 2

lim
xS0

 
g1x 2

x � 2,lim
xS0

 
f 1x 2

x � 1

lim
xS0

f 1x 2
g1x 2lim

xS0
f 1x 2 lim

xS0
g1x 2lim

xS0

f 1x 2
x � 1

lim
xS4
V3f 1x 2 � 2xlim

xS4
 
3 f 1x 2 42 � x 2

f 1x 2 � x
lim
xS4
3 f 1x 2 43lim

xS4
f 1x 2 � 3,

lim
xS5

 
x2 � 4

f 1x 2 � 7.lim
xS5

f 1x 2 � 3,

�273.15.lim
VS0�

T

T (˚C) �40 �20 0 20 40 60 80

V (L) 19.1482 20.7908 22.4334 24.0760 25.7186 27.3612 29.0038

A

T
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Section 1.6—Continuity

The idea of continuity may be thought of informally as the idea of being able to
draw a graph without lifting one’s pencil. The concept arose from the notion of a
graph “without breaks or jumps or gaps.”

When we talk about a function being continuous at a point, we mean that the
graph passes through the point without a break. A graph that is not continuous at a
point (sometimes referred to as being discontinuous at a point) has a break of
some type at the point. The following graphs illustrate these ideas:

A. Continuous for all values of the domain B. Discontinuous at 
(point discontinuity)

C. Discontinuous at D. Discontinuous at 
(jump discontinuity) (infinite discontinuity)

What conditions must be satisfied for a function f to be continuous at a? First,
must be defined. The curves in figure B and figure D above are not

continuous at because they are not defined at x � 1.x � 1
f 1a 2

y

x

4

2

6

8

10

–1 3
–2

210
vertical
asymptote

y

x

4

2

6

8

10

–2 6
–2

420

x � 1x � 1

y

x

4

2

6

8

10

–2 6
–2

42

hole

0

y

x

4

2

6

8

10

–2 6
–2

0 42

x � 1
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The geometrical meaning of f being continuous at can be stated as follows:
As the points on the graph of f converge at the point 
ensuring that the graph of f is unbroken at 

EXAMPLE 1 Reasoning about continuity at a point

a. Graph the following function:

b. Determine 

c. Determine 
d. Is f continuous at Explain.x � �1?

f 1�1 2 .lim 
xS�1

 f 1x 2f 1x 2 � e x2 � 3, if x � �1

 x � 1, if x 7 �1

1a, f 1a 22 . 1a, f 1a 22 ,1x, f 1x 22xS a,
x � a

Continuity at a Point

The function is continuous at if is defined and 
if 

Otherwise, is discontinuous at x � a.f 1x 2

lim 
xSa

f 1x 2 � f 1a 2 . f 1a 2x � af 1x 2
y

x
0

y = f (x)

x xa

f (x)

f (a)

f (x)
(a, f (a))

A second condition for continuity at a point is that the function makes no
jumps there. This means that, if “x is close to a,” then must be close to 
This condition is satisfied if Looking at the graph in figure C,

on the previous page, we see that does not exist, and the function is

therefore not continuous at 

We can now define the continuity of a function at a point.

x � 1.

lim 
xS1

f 1x 2lim
xSa 

f 1x 2 � f 1a 2 . f 1a 2 .f 1x 2x � a
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Solution
a.

b. From the graph, . Note: Both the left-hand and right-hand 

limits are equal.
c.
d. Therefore, is continuous at since 

EXAMPLE 2 Reasoning whether a function is continuous or discontinuous at a point

Test the continuity of each of the following functions at If a function is not
continuous at give a reason why it is not continuous.

a.

b.

c. if  and 

d.

e.

Solution
a. The function f is continuous at since 

(Polynomial functions are continuous at all real values of x.)
b. The function g is not continuous at because g is not defined at this value.

c.

Therefore, is continuous at x � 2.h1x 2 � h12 2� 3

� lim 
xS2
1x � 1 2lim 

xS2

x2 � x � 2

x � 2
� lim 

xS2

1x � 2 2 1x � 1 21x � 2 2 x � 2

f 12 2 � 6 � lim 
xS2

f 1x 2 .x � 2

G1x 2 � e4 � x2, if x 6 2

3, if x � 2

F 1x 2 �
11x � 2 22

h12 2 � 3x � 2h1x 2 �
x2 � x � 2

x � 2
,

g1x 2 �
x2 � x � 2

x � 2

 f 1x 2 � x3 � x

x � 2,
x � 2.

f 1�1 2 � lim 
xS�1

f 1x 2 .x � �1,f 1x 2f 1�1 2 � �2

lim 
xS�1

f 1x 2 � �2

y

x
2

4

–2
–4 4–2

–4

0 2

(–1, –2)

y = f(x)
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IN SUMMARY

Key Ideas

• A function f is continuous at if
• is defined

• exists

•

• A function that is not continuous has some type of break in its graph. This
break is the result of a hole, jump, or vertical asymptote.

Need to Know

• All polynomial functions are continuous for all real numbers.

• A rational function is continuous at if 

• A rational function in simplified form has a discontinuity at the zeros of the
denominator.

• When the one-sided limits are not equal to each other, then the limit at this
point does not exist and the function is not continuous at this point.

g1a 2 � 0.x � ah1x 2 �
f 1x 2
g1x 2

lim 
xSa

f 1x 2 � f 1a 2lim 
xSa

f 1x 2f 1a 2 x � a

d. The function F is not continuous at because is not defined.
e. and 

Therefore, since does not exist, the function is not continuous at 

INVESTIGATION To test the definition of continuity by graphing, investigate the following:

A. Draw the graph of each function in Example 2.

B. Which of the graphs are continuous, contain a hole or a jump, or have a 
vertical asymptote?

C. Given only the defining rule of a function such as 

explain why the graphing technique to test for continuity

on an interval may be less suitable.

D. Determine where is not defined and where it is continuous.f 1x 2 �
8x3 � 9x � 5

x2 � 300x

f 1x 2 �
8x3 � 9x � 5

x2 � 300x ,

y � f 1x 2 ,

x � 2.lim 
xS2

G1x 2 lim 
xS2�

G1x 2 � lim 
xS2�
13 2 � 3lim 

xS2�
G1x 2 � lim 

xS2�
14 � x2 2 � 0

F12 2x � 2

Exercise 1.6

PART A
1. How can looking at a graph of a function help you tell where the function 

is continuous?

2. What does it mean for a function to be continuous over a given domain?

C
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3. What are the basic types of discontinuity? Give an example of each.

4. Find the value(s) of x at which each function is discontinuous.

a. c. e.

b. d. f.

PART B
5. Determine all the values of x for which each function is continuous.

a. c. e.

b. d. f.

6. Examine the continuity of when 

7. Sketch a graph of the following function:

Determine if the function is continuous everywhere.

8. Sketch a graph of the following function:

Is the function continuous?

9. Recent postal rates for non-standard and oversized letter mail within Canada
are given in the following table. Maximum dimensions for this type of letter
mail are 380 mm by 270 mm by 20 mm.

Draw a graph of the cost, in dollars, to mail a non-standard envelope as a
function of its mass in grams. Where are the discontinuities of this function?

10. Determine whether is continuous at 

11. Examine the continuity of the following function:

f 1x 2 � • x, if  x � 1

1, if  1 6 x � 2

3, if  x 7 2

x � 3.f 1x 2 �
x2 � x � 6

x � 3

f 1x 2 � e x2, if  x 6 0

  3, if  x � 0

h1x 2 � e x � 1, if  x 6 3

5 � x, if  x � 3

x � 2.g1x 2 � x � 3

h1x 2 �
16

x2 � 65
f 1x 2 � Vx � 2g1x 2 � px2 � 4.2x � 7

g1x 2 � 10xh1x 2 �
x2 � 16

x2 � 5x
f 1x 2 � 3x5 � 2x3 � x

h1x 2 � e �x, if  x � 3

1 � x, if  x 7 3
f 1x 2 �

x � 4

x2 � 9
g1x 2 �

7x � 4
x

g1x 2 �
13x

x2 � x � 6
h1x 2 �

x2 � 1

x3f 1x 2 �
9 � x2

x � 3

100 g or Less
Between 100 g
and 200 g

Between 200 g
and 500 g

$1.10 $1.86 $2.55

K

A
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12.

Find k, if is continuous.

13. The signum function is defined as follows:

a. Sketch the graph of the signum function.

b. Find each limit, if it exists.

i. ii. iii.

c. Is f(x) continuous? Explain.

14. Examine the graph of f (x).

a. Find f(3).

b. Evaluate .

c. Is f (x) continuous on the interval
? Explain.

15. What must be true about A and B for the function

if the function is continuous at but discontinuous at ?

PART C

16. Find constants a and b, such that the function 

is continuous for 

17. Consider the following function:

a. Evaluate and , and then determine whether exists.

b. Sketch the graph of , and identify any points of discontinuity.g1x 2 lim 
xS1

g1x 2lim 
xS1�

g1x 2lim 
xS1�

g1x 2
g1x 2 � • x 0x � 1 0

x � 1 , if  x � 1

0, if  x � 1

�3 � x � 0.

f 1x 2 � • �x, if  �3 � x � �2

ax2 � b, if  �2 6 x 6 0

6, if  x � 0

x � 2x � 1

f 1x 2 � •     
Ax � B
x � 2 , if   x � 1

        3x, if  1 6 x 6 2

Bx2 � A, if  x � 2

�3 6 x 6 8

lim 
xS3�

f 1x 2

lim
xS0

f 1x 2lim 
xS0�

f 1x 2lim 
xS0�

f 1x 2
f 1x 2 � •�1, if  x 6 0

0, if  x � 0

1, if  x 7 0

g1x 2g1x 2 � e x � 3, if  x � 3

2 � �k, if  x � 3

y

x
2

–2

4

–2 4 6 82

y = f (x)
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Investigate and ApplyCAREER LINK WRAP-UP

CHAPTER 1: ASSESSING ATHLETIC PERFORMANCE

An Olympic coach has developed a 6 min fitness test for her team members that
sets target values for heart rates. The monitor they have available counts the
total number of heartbeats, starting from a rest position at “time zero.” The
results for one of the team members are given in the table below.

a. The coach has established that each athlete’s heart rate must not exceed
100 beats per minute at exactly 3 min. Using a graphical technique,
determine if this athlete meets the coach’s criterion.

b. The coach needs to know the instant in time when an athlete’s heart rate
actually exceeds 100 beats per minute. Explain how you would solve this
problem graphically. Is a graphical solution an efficient method? Explain.
How is this problem different from part a?

c. Build a mathematical model with the total number of heartbeats as a
function of time First determine the degree of the polynomial,
and then use a graphing calculator to obtain an algebraic model.

d. Solve part b algebraically by obtaining an expression for the instantaneous
rate of change in the number of heartbeats (heart rate) as a function of
time using the methods presented in the chapter. Compare the
accuracy and efficiency of solving this problem graphically and algebraically.

1r � g 1t 22
1n � f 1t 22 .

Time (min)
Number of
Heartbeats

0.0 0

1.0 55

2.0 120

3.0 195

4.0 280

5.0 375

6.0 480
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Key Concepts Review

We began our introduction to calculus by considering the slope of a tangent and
the related concept of rate of change. This led us to the study of limits and has
laid the groundwork for Chapter 2 and the concept of the derivative of a function.
Consider the following brief summary to confirm your understanding of the key
concepts covered in Chapter 1:

• slope of the tangent as the limit of the slope of the secant as Q approaches P
along the curve

• slope of a tangent at an arbitrary point

• average and instantaneous rates of change, average velocity, and
(instantaneous) velocity

• the limit of a function at a value of the independent variable, which exists
when the limiting value from the left equals the limiting value from the right

• properties of limits and the indeterminate form 

• continuity as a property of a graph “without breaks or jumps or gaps”

Formulas
• The slope of the tangent to the graph at point is 

•

• The (instantaneous) velocity of an object, represented by position function

at time is 

• If f is a polynomial function, then 

• The function is continuous at if is defined and if
lim 
xSa  

f 1x 2 � f 1a 2 . f 1a 2x � af 1x 2 lim 
xSa  

f 1x 2 � f 1a 2 .v1a 2 � lim
¢tS0

 ¢s
¢t � lim

hS0
  
s1a � h 2 � s1a 2

h .t � a,s1t 2 ,
Average velocity �

change in position
change in time

m � lim
xS0

 
¢y
¢x � lim 

hS0
 
f 1a � h 2 � f 1a 2

h .

P1a, f 1a 22y � f 1x 2
0
0
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Review Exercise

1. Consider the graph of the function 

a. Find the slope of the secant that joins the points on the graph given by
and 

b. Determine the average rate of change as x changes from to 4.

c. Find an equation for the line that is tangent to the graph of the function at

2. Calculate the slope of the tangent to the given function at the given point or
value of x.

a. c.

b. d.

3. Calculate the slope of the graph of at each of the 

following points:

a.

b.

4. The height, in metres, of an object that has fallen from a height of 180 m is
given by the position function where and t is in
seconds.

a. Find the average velocity during each of the first two seconds.

b. Find the velocity of the object when 

c. At what velocity will the object hit the ground?

5. After t minutes of growth, a certain bacterial culture has a mass, in grams, of

a. How much does the bacterial culture grow during the time 

b. What is its average rate of growth during the time interval 

c. What is its rate of growth when 

6. It is estimated that, t years from now, the amount of waste accumulated Q, in
tonnes, will be 

a. How much waste has been accumulated up to now?

b. What will be the average rate of change in this quantity over the next three
years?

0 � t � 10.Q1t 2 � 1041t2 � 15t � 70 2 ,
t � 3?

3 � t � 3.01?

3 � t � 3.01?

M1t 2 � t2.

t � 4.

t � 0s1t 2 � �5t2 � 180,

P12, 5 2P1�1, 3 2
f 1x 2 � e 4 � x2, if x � 1

2x � 1, if x 7 1

P a4, 
5

2
bf 1x 2 �

5

x � 2
,P1�1, 1 2g1x 2 � �x � 2,

P a4, 
2

3
bh1x 2 �

2

�x � 5
,P12, 1 2f 1x 2 �

3

x � 1
,

x � 1.

�1

x � 3.x � �2

f 1x 2 � 5x2 � 8x.
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c. What is the present rate of change in this quantity?

d. When will the rate of change reach per year?

7. The electrical power in kilowatts, being used by a household as a
function of time t, in hours, is modelled by a graph where corresponds
to 06:00. The graph indicates peak use at 08:00 and a power failure between
09:00 and 10:00.

a. Determine 

b. Determine and 

c. For what values of t is discontinuous?

8. Sketch a graph of any function that satisfies the given conditions.

a. f is discontinuous at 

b. if f is an increasing function when 

9. a. Sketch the graph of the following function:

b. Find all values at which the function is discontinuous.

c. Find the limits at those values, if they exist.

10. Determine whether is continuous at 

11. Consider the function 

a. For what values of x is f discontinuous?

b. At each point where f is discontinuous, determine the limit of if it exists.f 1x 2 ,
f 1x 2 �

2x � 2
x2 � x � 2.

x � �4.f 1x 2 �
x2 � 2x � 8

x � 4

f 1x 2 � • x � 1,    if x 6 �1

�x � 1, if �1 � x 6 1

x � 2,  if x 7 1

lim
xS3�

f 1x 2 � 1
x 7 3,x 6 3,f 1x 2 � �4

x � �1lim
xS�1

f 1x 2 � 0.5,

p1t 2limtS4�
p1t 2 .lim

tS4�
p1t 2lim

tS2
 p1t 2 .

p(t)

t

6

10

6
12:0006:00

0 432

t � 0
p1t 2 , 3.0 � 105
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12. Use a graphing calculator to graph each function and estimate the limits, if
they exist.
a.

b.

c. and 

13. Copy and complete each table, and use your results to estimate the limit. Use
a graphing calculator to graph the function to confirm your result.

a.

b.

14. Copy and complete the table, and use your results to estimate the limit. 

Then determine the limit using an algebraic technique, and compare your
answer with your estimate.

15. a. Copy and complete the table to approximate the limit of 
as 

b. Use a graphing calculator to graph f, and use the graph to approximate the
limit.

c. Use the technique of rationalizing the numerator to find lim
xS2

 �x � 2 � 2
x � 2 .

xS 2.
f 1x 2 �

�x � 2 � 2
x � 2

lim
xS0

 �x � 3 � �3
x

lim 
xS1

x � 1
x2 � 1

lim 
xS2

x � 2
x2 � x � 2

lim
xS�3

h1x 2lim
xS4 

h1x 2h1x 2 �
x3 � 27

x2 � 9
,

lim
xS0 

g1x 2g1x 2 � x1x � 5 2 ,lim 
xS0 

f 1x 2f 1x 2 �
1
x2,

x 1.9 1.99 1.999 2.001 2.01 2.1

x � 2
x2 � x � 2

x 0.9 0.99 0.999 1.001 1.01 1.1

x � 1
x2 � 1

x �0.1 �0.01 �0.001 0.001 0.01 0.1

�x � 3 � �3
x

x 2.1 2.01 2.001 2.0001

f (x) � �x � 2 � 2
x � 2
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16. Evaluate the limit of each difference quotient. Interpret the limit as the slope of
the tangent to a curve at a specific point.

a.

b.

c.

17. Evaluate each limit using one of the algebraic methods discussed in this
chapter, if the limit exists.

a. d.

b. e.

c. f.

18. Explain why the given limit does not exist.

a. d.

b. e.

c. f.

19. Determine the equation of the tangent to the curve of each function at the given
value of x.

a. where 

b. where 

c. where 

d. where 

20. The estimated population of a bacteria colony is 
where the population, P, is measured in thousands at t hours.

a. What is the estimated population of the colony at 8 h?

b. At what rate is the population changing at 8 h?

P1t 2 � 20 � 61t � 3t 2,

x � 3f 1x 2 � �2x4

x � �1f 1x 2 � 6x3 � 3

x � �2y � x2 � x � 1

x � 1y � �3x2 � 6x � 4

f 1x 2 � e 5x2, if x 6 �1

2x � 1, if x � �1
; lim
 xS�1 

f 1x 2; lim
xS1

f 1x 2f 1x 2 � e�5, if x 6 1

2, if x � 1

lim
xS0

 
�x�
x

lim
xS2

 
x2 � 4

x2 � 4x � 4

lim
xS2

 
1

�x � 2
lim
xS3

�x � 3

lim
xS0

 
1
x
a 1

2 � x
�

1

2
blim

xS0
 
�x � 5 � �5 � x

x

lim
xS4

 
4 � �12 � x

x � 4
lim
xSa

 
1x � 4a 22 � 25a2

x � a

lim
xS2

 
x2 � 4

x3 � 8
lim

xS�4

x2 � 12x � 32

x � 4

lim
hS0

 

114 � h 2 �
1

4

h

lim
hS0

 
�4 � h � 2

h

lim
hS0

 
15 � h 22 � 25

h
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CHAPTER 1 TEST

1. Explain why does not exist.

2. Consider the graph of the function Calculate the slope of
the secant that joins the points on the graph given by and 

3. For the function shown below, determine the following:

x � 1.x � �2
f 1x 2 � 5x2 � 8x.

lim
xS1

 1
x � 1

a.

b.

c.

d. values of x for which f is 
discontinuous

4. A weather balloon is rising vertically. After t hours, its distance above the
ground, measured in kilometres, is given by the formula 

a. Determine the average velocity of the weather balloon from h to
h.

b. Determine its velocity at h.

5. Determine the average rate of change in with respect to x
from to 

6. Determine the slope of the tangent at for 

7. Evaluate the following limits:

a. d.

b. e.

c. f.

8. Determine constants a and b such that is continuous for all values of x.

f 1x 2 � •         ax � 3,  if x 7 5

                  8,  if x � 5

x2 � bx � a, if x 6 5

f 1x 2limxS0
 
1x � 8 2 13 � 2

x
lim
xS5

 
x � 5

�x � 1 � 2

lim
xS3 
a 1

x � 3
�

6

x2 � 9
blim

xS2
 

2x2 � x � 6

3x2 � 7x � 2

lim
xS�1

 
x3 � 1

x4 � 1
lim
xS3

 
4x2 � 36

2x � 6

f 1x 2 �
x

x2 � 15.x � 4
x � 5 � h.x � 5

f 1x 2 � �x � 11

t � 3

t � 5
t � 2

s1t 2 � 8t � t2.

lim
xS4� 

f 1x 2  lim
xS2 

f 1x 2lim
xS1 

f 1x 2

1

1

0
x

y

2 3 4 5

2

3

4

y = f (x)



Chapter 2

DERIVATIVES

Imagine a driver speeding down a highway, at 140 km/h. He hears a police siren and
is quickly pulled over. The police officer tells him that he was speeding, but the
driver argues that because he has travelled 200 km from home in two hours, his
average speed is within the 100 km/h limit. The driver’s argument fails because
police officers charge speeders based on their instantaneous speed, not their
average speed.

There are many other situations in which the instantaneous rate of change is more
important than the average rate of change. In calculus, the derivative is a tool for
finding instantaneous rates of change. This chapter shows how the derivative can
be determined and applied in a great variety of situations.

CHAPTER EXPECTATIONS
In this chapter, you will 

• understand and determine derivatives of polynomial and simple rational
functions from first principles, Section 2.1

• identify examples of functions that are not differentiable, Section 2.1

• justify and use the rules for determining derivatives, Sections 2.2, 2.3, 2.4, 2.5

• identify composition as two functions applied in succession, Section 2.5

• determine the composition of two functions expressed in notation, and
decompose a given composite function into its parts, Section 2.5

• use the derivative to solve problems involving instantaneous rates of change,
Sections 2.2, 2.3, 2.4, 2.5

NEL
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Review of Prerequisite Skills

Before beginning your study of derivatives, it may be helpful to review the 
following concepts from previous courses and the previous chapter:
• Working with the properties of exponents
• Simplifying radical expressions
• Finding the slopes of parallel and perpendicular lines
• Simplifying rational expressions
• Expanding and factoring algebraic expressions
• Evaluating expressions
• Working with the difference quotient

Exercise

1. Use the exponent laws to simplify each of the following expressions. Express
your answers with positive exponents.

a. c. e.

b. d. f.

2. Simplify and write each expression in exponential form.

a. b. c.

3. Determine the slope of a line that is perpendicular to a line 
with each given slope.

a. b. c. d.

4. Determine the equation of each of the following lines:

a. passing through points and 

b. passing through point and parallel to the line 

c. perpendicular to the line and passing through point  A14, �3 2y �
3
4x � 6

3x � 2y � 5A1�2, �5 2 B19, �2 2A1�3, �4 2
�1

5

3
�

1

2

2

3

Va 3Va

Va
18x6 2 231x1

2 2 1x2
3 2

13a�4 2 32a31�b 23 4
12a5b21a4b�5 2 1a�6b�2 21�2a2 23

13e6 2 12e3 244p7 � 6p9

12p15a5 � a3



5. Expand, and collect like terms.

a. d.

b. e.

c. f.

6. Simplify each expression.

a. d.

b. e.

c. f.

7. Factor each expression completely.

a. c. e.

b. d. f.

8. Use the factor theorem to factor the following expressions:

a. b. c. d.

9. If evaluate

a. b. c. d.

10. Rationalize the denominator in each of the following expressions:

a. b. c. d.

11. a. If , determine the expression for the difference quotient

when Explain what this expression can be used for.

b. Evaluate the expression you found in part a. for a small value of h where

c. Explain what the value you determined in part b. represents.

h � 0.01.

a � 2.
f 1a � h 2 � f 1a 2

h

f 1x 2 � 3x2 � 2x

3V2 � 4V3

3V2 � 4V3

2 � 3V2

3 � 4V2

4 � V2

V3

3

V2

f 1�0.25 2f a 1

2
bf 1�1 2f 12 2f 1x 2 � �2x4 � 3x2 � 7 � 2x,

an � bna7 � b7a5 � b5a3 � b3

r 4 � 5r 2 � 4x4 � 1x2 � 4x � 32

x3 � y 33a2 � 4a � 74k2 � 9

x � 1

x � 2
�

x � 2

x � 3

41h � k 2 �
9

21h � k 2
x � 7

2x
�

5x

x � 1

y1y � 2 2 1y � 5 2 �
1y � 5 22

4y 3

1x � y 2 1x � y 2
51x � y 2 �

1x � y 23
10

3x1x � 2 2
x2 �

5x3

2x1x � 2 2
3x12x � y 22 � x15x � y 2 15x � y 216x � 3 2 12x � 7 2 12x � 3y 22 � 15x � y 221x � 2 2 1x2 � 3x � 4 2 21x � y 2 � 513x � 8y 21x � 3y 2 12x � y 2
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CHAPTER 2: THE ELASTICITY OF DEMAND

InvestigateCAREER LINK

Have you ever wondered how businesses set prices for their goods and services?
An important idea in marketing is elasticity of demand, or the response of
consumers to a change in price. Consumers respond differently to a change in
the price of a staple item, such as bread, than they do to a change in the price
of a luxury item, such as jewellery. A family would probably still buy the same
quantity of bread if the price increased by 20%. This is called inelastic demand.
If the price of a gold chain, however, increased by 20%, sales would likely
decrease 40% or more. This is called elastic demand. Mathematically, elasticity
is defined as the negative of the relative (percent) change in the number 

demanded divided by the relative (percent) change in the price 

For example, if a store increased the price of a CD from $17.99 to $19.99, and
the number sold per week went from 120 to 80, the elasticity would be

An elasticity of about 3 means that the change in demand is three times as
large, in percent terms, as the change in price. The CDs have an elastic
demand because a small change in price can cause a large change in demand.
In general, goods or services with elasticities greater than one are
considered elastic (e.g., new cars), and those with elasticities less than one

are considered inelastic (e.g., milk). In our example, we calculated
the average elasticity between two price levels, but, in reality, businesses want
to know the elasticity at a specific, or instantaneous, price level. In this chapter,
you will develop the rules of differentiation that will enable you to calculate
the instantaneous rate of change for several classes of functions.

Case Study—Marketer: Product Pricing 

In addition to developing advertising strategies, marketing departments also
conduct research into, and make decisions on, pricing. Suppose that the
demand–price relationship for weekly movie rentals at a convenience store 

is where is demand and p is price.

DISCUSSION QUESTIONS 

1. Generate two lists, each with at least five goods and services that you have
purchased recently, classifying each of the goods and services as having
elastic or inelastic demand.

2. Calculate and discuss the elasticity if a movie rental fee increases
from $1.99 to $2.99.

n1p 2n1p 2 �
500
p ,

1E 6 1 2 1E 7 1 2
E � � c a 80 � 120

120
b � a 19.99 � 17.99

17.99
b d � 3.00

E � � c a ¢n
n
b � a ¢p

p
b d Q¢p

p R:Q¢n
n R 
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Section 2.1—The Derivative Function

In this chapter, we will extend the concepts of the slope of a tangent and the rate of
change to introduce the derivative. We will examine the methods of differentiation,
which we can use to determine the derivatives of polynomial and rational functions.
These methods include the use of the power rule, sum and difference rules, and 
product and quotient rules, as well as the chain rule for the composition of functions.

The Derivative at a Point
In the previous chapter, we encountered limits of the form 

This limit has two interpretations: the slope of the tangent to the graph 
at the point and the instantaneous rate of change of with
respect to at Since this limit plays a central role in calculus, it is given a
name and a concise notation. It is called the derivative of f(x) at . It is
denoted by and is read as “f prime of ”a.f ¿ 1a 2 x � a

x � a.x
y � f 1x 21a, f 1a 22 , y � f 1x 2lim 

hS0

f 1a � h 2 � f 1a 2
h .

The derivative of f at the number a is given by 
provided that this limit exists.

f ¿ 1a 2 � lim 
hS0

f 1a � h 2 � f 1a 2
h ,

EXAMPLE 1 Selecting a limit strategy to determine the derivative at a number

Determine the derivative of at 

Solution
Using the definition, the derivative at is given by

Therefore, the derivative of at is �6.x � �3f 1x 2 � x2

� �6

� lim 
hS0
1�6 � h 2� lim 

hS0

h1�6 � h 2
h

� lim
hS0

 
9 � 6h � h2 � 9

h

� lim
hS0

 
1�3 � h 22 � 1�3 22

h

f ¿ 1�3 2 � lim 
hS0

f 1�3 � h 2 � f 1�3 2
h

x � �3

x � �3.f 1x 2 � x2

(Expand)

(Simplify and factor)
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In applications where we are required to find the value of the derivative for a
number of particular values of x, using the definition repeatedly for each value is
tedious.

The next example illustrates the efficiency of calculating the derivative of 
at an arbitrary value of x and using the result to determine the derivatives 
at a number of particular x-values.

EXAMPLE 2 Connecting the derivative of a function to an arbitrary value

a. Determine the derivative of at an arbitrary value of 
b. Determine the slopes of the tangents to the parabola at 0, and 1.

Solution

a. Using the definition,

The derivative of at an arbitrary value of x is 
b. The required slopes of the tangents to are obtained by evaluating the

derivative at the given x-values. We obtain the slopes by substituting
for x:

The slopes are 0, and 2, respectively.

In fact, knowing the x-coordinate of a point on the parabola we can easily
find the slope of the tangent at that point. For example, given the x-coordinates of
points on the curve, we can produce the following table.

y � x2,

�4,

 f ¿ 11 2 � 2 f ¿ 10 2 � 0 f ¿ 1�2 2 � �4

f ¿ 1x 2 � 2x
y � x2

f ¿ 1x 2 � 2x.f 1x 2 � x2

� 2x

� lim
hS0 
12x � h 2� lim

hS0
 
h12x � h 2

h

� lim
hS0

 
x2 � 2hx � h2 � x2

h

� lim
hS0

 
1x � h 22 � x2

h

f ¿ 1x 2 � lim
hS0

 
f 1x � h 2 � f 1x 2

h

x � �2,y � x2
x.f 1x 2 � x2

f 1x 2

NEL

An alternative way of writing the derivative of at the number is

.f ¿ 1a 2 � lim
xSa

 f 1x 2 � f 1a 2
x � a

af

(Expand)

(Simplify and factor)
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For the Parabola f1x 2 � x2

The graphs of and the derivative function are shown below. 
The tangents at and 1 are shown on the graph of 

Notice that the graph of the derivative function of the quadratic function (of degree
two) is a linear function (of degree one).

INVESTIGATION A. Determine the derivative with respect to x of each of the following functions:

a. b. c.

B. In Example 2, we showed that the derivative of is 
Referring to step 1, what pattern do you see developing?

C. Use the pattern from step 2 to predict the derivative of 

D. What do you think would be for where n is a positive integer?

The Derivative Function
The derivative of f at is a number If we let a be arbitrary and assume
a general value in the domain of f, the derivative is a function. For example, if

which is itself a function.f 1x 2 � x2, f ¿ 1x 2 � 2x,
f ¿

f ¿ 1a 2 .x � a

f 1x 2 � xn,f ¿ 1x 2 f 1x 2 � x39.

f ¿ 1x 2 � 2x.f 1x 2 � x2

f 1x 2 � x5f 1x 2 � x4f 1x 2 � x3

y

x
0

1

1–1–2–3
–1

2

3

2 3

–2

–3

(1, 2)

(–1, –2)

f 9(x) = 2x

y

x

20–2
–2

4–4

–4

2

4 f(x) = x2

f 1x 2 � x2.x � �2, 0,
f ¿ 1x 2 � 2xf 1x 2 � x2

The slope of the tangent to the curve 
at a point is given by the derivative

For each x-value, there is an
associated value 2x.
f ¿ 1x 2 � 2x.

P1x, y 2 f 1x 2 � x2 P(x, y) x-Coordinate of P Slope of Tangent at P1�2, 4 2 �2 21�2 2 � �41�1, 1 2 �1 �210, 0 2 0 011, 1 2 1 212, 4 2 2 41a, a2 2 a 2a
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The Definition of the Derivative Function 

The derivative of with respect to x is the function where

provided that this limit exists.f ¿ 1x 2 � lim 
hS0

f 1x � h 2 � f 1x 2
h ,

f ¿ 1x 2 ,f 1x 2

The notation for this limit was developed by Joseph Louis Lagrange
(1736–1813), a French mathematician. When you use this limit to determine the
derivative of a function, it is called determining the derivative from first principles.

In Chapter 1, we discussed velocity at a point. We can now define (instantaneous)
velocity as the derivative of position with respect to time. If the position of a
body at time t is then the velocity of the body at time t is

Likewise, the (instantaneous) rate of change of with respect to x is the 

function whose value is 

EXAMPLE 3 Determining the derivative from first principles

Determine the derivative of the function 

Solution

Using the definition,

�
1

2Vt
, for t 7 0

� lim 
hS0

1

Vt � h � Vt

� lim 
hS0

h

h1Vt � h � Vt 2
� lim 

hS0

1t � h 2 � t

h1Vt � h � Vt 2
� lim

hS0
 
Vt � h � Vt

h
 aVt � h � Vt

Vt � h � Vt
b

� lim
hS0

 
Vt � h � Vt

h

f ¿ 1t 2 � lim
hS0

 
f 1t � h 2 � f 1t 2

h

f 1t 2 � Vt, t �  0.f ¿ 1t 2
f ¿ 1x 2 � lim

hS0
 
f 1x � h 2 � f 1x 2

h .f ¿ 1x 2 , f 1x 2v1t 2 � s¿ 1t 2 � lim
hS0

 
s1t � h 2 � s 1t 2

h
.

s1t 2 ,

f ¿ 1x 2

(Rationalize the
numerator)
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Note that is defined for all instances of whereas its derivative

is defined only for instances when From this, we can see that

a function need not have a derivative throughout its entire domain.

EXAMPLE 4 Selecting a strategy involving the derivative to determine 
the equation of a tangent

Determine an equation of the tangent to the graph of at the point

where 

Solution

When The graph of the

point , and the tangent at the point are shown.

First find 

The slope of the tangent at is The equation of the tangent

is or, in standard form, x � 4y � 4 � 0.y �
1
2 � �

1
4 1x � 2 2 m � f ¿ 12 2 � �

1
4.x � 2

� �
1

x2

� lim 
hS0

�11x � h 2x
� lim 

hS0

x � 1x � h 2
h1x � h 2x  

� lim 
hS0

x

x1x � h 2 �
x � h

x1x � h 2
h

� lim 
hS0

1

x � h
�

1
x

h

f ¿ 1x 2 � lim 
hS0

f 1x � h 2 � f 1x 2
h

f ¿ 1x 2 .Q2, 
1
2R y �

1
x,x � 2, y �

1
2.

x � 2.

f 1x 2 �
1
x

t 7 0.f ¿ 1t 2 �
1

2Vt

t � 0,f 1t 2 � Vt

tangent
y = x

2, 2
1 

1

x

y

20–2
–2

4–4

–4

2

4

(Simplify the fraction)



EXAMPLE 5 Selecting a strategy involving the derivative to solve a problem

Determine an equation of the line that is perpendicular to the tangent to the graph

of and that intersects it at the point of tangency.

Solution
In Example 4, we found that the slope of the tangent at x = 2 is and

the point of tangency is The perpendicular line has slope 4, the negative

reciprocal of Therefore, the required equation is , or

The line whose equation we found in Example 5 has a name.

The Existence of Derivatives
A function f is said to be differentiable at a if exists. At points where f is
not differentiable, we say that the derivative does not exist. Three common ways
for a derivative to fail to exist are shown.

x

y

a

y

x
aa

y

x

f ¿ 1a 2

8x � 2y � 15 � 0.

y �
1
2 � 41x � 2 2�

1
4.

Q2, 
1
2R. f ¿ 12 2 � �

1
4,

f 1x 2 �
1
x at x � 2
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tangent

y = x
1

2, 2
1 

x

y

20–2
–2

4–4

–4

2

4
normal

The normal to the graph of f at point P is the line that is perpendicular to the
tangent at P.

Cusp Vertical Tangent Discontinuity



C H A P T E R  2 71NEL

EXAMPLE 6 Reasoning about differentiability at a point

Show that the absolute value function is not differentiable at 

Solution
The graph of is shown. Because the slope for is whereas the
slope for is the graph has a “corner” at which prevents a unique
tangent from being drawn there. We can show this using the definition of a
derivative.

Now, we will consider one-sided limits.

when and when 

Since the left-hand limit and the right-hand limit are not the same, the derivative
does not exist at .

From Example 6, we conclude that it is possible for a function to be continuous
at a point and yet not differentiable at this point. However, if a function is
differentiable at a point, then it is also continuous at this point.

x � 0

lim
hS0�

0h 0
h

� lim
hS0�

h

h
� lim

hS0�
11 2 � 1

lim
hS0�

0h 0
h

� lim
hS0�

�h

h
� lim

hS0�
1�1 2 � �1

h 6 0.0h 0 � �hh 7 00h 0 � h

� lim 
hS0

0h 0
h

� lim 
hS0

f 1h 2 � 0

h

f ¿ 10 2 � lim 
hS0

f 10 � h 2 � f 10 2
h

y

x
2

4

–2

–4

–4 0 4–2 2

y = |x|

10, 0 2 ,�1,x 7 0
�1,x 6 0f 1x 2 � �x�

x � 0.f 1x 2 � �x�



Other Notation for Derivatives
Symbols other than are often used to denote the derivative. If the

symbols and are used instead of The notation was originally used

by Leibniz and is read “dee y by dee x.” For example, if the derivative is

or, in Leibniz notation, Similarly, in Example 4, we showed

that if then . The Leibniz notation reminds us of the process by

which the derivative is obtained—namely, as the limit of a difference quotient:

By omitting y and f altogether, we can combine these notations and write

which is read “the derivative of with respect to x is 2x.” It is

important to note that is not a fraction.
dy
dx

x2d
dx 1x2 2 � 2x,

dy

dx
� lim
¢xS0

¢y

¢x

dy
dx � �

1
x2y �

1
x,

dy
dx � 2x.y¿ � 2x

y � x2,

dy
dxf ¿ 1x 2 .dy

dxy¿
y � f 1x 2 ,f ¿ 1x 2
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IN SUMMARY

Key Ideas

• The derivative of a function at a point is 

or if the limit exists.

• A function is said to be differentiable at if exists. A function is
differentiable on an interval if it is differentiable at every number in the interval.

• The derivative function for any function is given by 

if the limit exists.

Need to Know

• To find the derivative at a point you can use 

• The derivative can be interpreted as either

– the slope of the tangent at or

– the instantaneous rate of change of with respect to when 

• Other notations for the derivative of the function are 

and 

• The normal to the graph of a function at point P, is a line that is perpendicular
to the tangent line that passes through point P.

dy
dx.

f ¿ 1x 2 , y¿,y � f1x 2 x � a.xf1x 21a, f1a 22 ,f¿ 1a 2 lim
hS0

 
f1a � h 2 � f1a 2

h .x � a,

f ¿1x 2 � lim 
hS0 

f1x � h 2 � f1x 2
h ,

f1x 2
f ¿ 1a 2a

f ¿ 1a 2 � lim
xSa

 
f1x 2 � f1a 2

x � a

f ¿ 1a 2 � lim
hS0 

f1a � h 2 � f1a 2
h ,1a, f1a 2 2f
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Exercise 2.1

PART A
1. State the domain on which f is differentiable.

a. d.

b. e.

c. f.

2. Explain what the derivative of a function represents.

3. Illustrate two situations in which a function does not have a derivative 
at 

4. For each function, find and 

a. d.

b. e.

c. f. f 1x 2 � 4 � 2x � x2f 1x 2 � x3 � 4x � 1

f 1x 2 � �7x � 4f 1x 2 � x2 � 3x � 1

f 1x 2 � x2 � x � 6f 1x 2 � 5x � 2

f 1a � h 2 � f 1a 2 .f 1a � h 2x � 1.

y

x
2

4

–2

–4

–4 0 42–2

y = f(x)

y

x
2

4

–4

–4 0 42–2
–2

y = f(x)

y

x
2

4

–2

–4

–4 0 42–2

y = f(x)

y

x
2

4

–2

–4

–2–4 0 42

y = f(x)

y

x
2

4

–2

–4

–4 0 42–2

y = f(x)

y

x
2

4

–2

–4

–4 0 4–2 2

y = f(x)

C



PART B
5. For each function, find the value of the derivative for the given value 

of a.

a. c.

b. d.

6. Use the definition of the derivative to find for each function.

a. c.

b. d.

7. In each case, find the derivative from first principles.

a. b. c.

8. Determine the slope of the tangents to when and
Sketch the graph, showing these tangents.

9. a.  Sketch the graph of 

b. Calculate the slopes of the tangents to at points with 
x-coordinates 

c. Sketch the graph of the derivative function 

d. Compare the graphs of and 

10. An object moves in a straight line with its position at time t seconds given 
by where s is measured in metres. Find the velocity when

and 

11. Determine an equation of the line that is tangent to the graph of
and parallel to 

12. For each function, use the definition of the derivative to determine where
a, b, c, and m are constants.

a. c.

b. d.

13. Does the function ever have a negative slope? If so, where? Give
reasons for your answer.

14. A football is kicked up into the air. Its height, h, above the ground, in metres,
at t seconds can be modelled by 

a. Determine 

b. What does represent?h¿ 12 2h¿ 12 2 . h1t 2 � 18t � 4.9t2.

f 1x 2 � x3

y � ax2 � bx � cy � x

y � mx � by � c

dy
dx,

x � 6y � 4 � 0.f 1x 2 � Vx � 1

t � 6.t � 0, t � 4,
s1t 2 � �t2 � 8t,

f ¿ 1x 2 .f 1x 2 f ¿ 1x 2 .�2, �1, 0, 1, 2.
f 1x 2 � x3

f 1x 2 � x3.

x � 2.
x � 1,x � 0,y � 2x2 � 4x

y � 3x2y �
x � 1

x � 1
y � 6 � 7x

dy
dx

f 1x 2 � V3x � 2f 1x 2 � 2x2 � 4x

f 1x 2 � 6x3 � 7xf 1x 2 � �5x � 8

f ¿ 1x 2f 1x 2 �
5
x

, a � �1f 1x 2 � x2 � 3x � 1, a � 3

f 1x 2 � Vx � 1, a � 0f 1x 2 � x2, a � 1

f ¿ 1a 2
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15. Match each function in graphs a, b, and c with its corresponding derivative,
graphed in d, e, and f.

a. d.

b. e.

c. f.

PART C
16. For the function show that exists. What is the value?

17. If and find 

18. Give an example of a function that is continuous on but is not
differentiable at 

19. At what point on the graph of is the tangent parallel to

20. Determine the equations of both lines that are tangent to the graph of
and pass through point 11, �3 2 .f 1x 2 � x2

2x � y � 1?
y � x2 � 4x � 5

x � 3.
�q 6 x 6 q

lim
hS0

f 1a � h 2
2h .f ¿ 1a 2 � 6,f 1a 2 � 0

f ¿ 10 2f 1x 2 � x 0x 0 ,

y

x
2

4

–2

–4

–4 0 42–2

y

x
2

4

–2

–4

–4 42–2 0

y

x
2

4

–2

–4

–4 0 42–2

y

x
2

4

–2

–4

–4 0 42–2

y

x
2

4

–2

–4

–4 0 42–2

y

x
2

4

–2

–4

–4 0 4–2 2

T
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Section 2.2—The Derivatives of Polynomial
Functions

We have seen that derivatives of functions are of practical use because they 
represent instantaneous rates of change.

Computing derivatives from the limit definition, as we did in Section 2.1, is
tedious and time-consuming. In this section, we will develop some rules that 
simplify the process of differentiation.

We will begin developing the rules of differentiation by looking at the constant
function, Since the graph of any constant function is a horizontal
line with slope zero at each point, the derivative should be zero. For example,

if , then Alternatively, we can write 

y

x
2

4

–2
–4 4

(3, –4)

2

slope = 0

–2 0

–4
f(x) = –4

d
dx 1�4 2 � 0.f ¿ 13 2 � 0.f 1x 2 � �4

f 1x 2 � k.

The Constant Function Rule

If where k is a constant, then 

In Leibniz notation, d
dx 1k 2 � 0.

f ¿ 1x 2 � 0.f 1x 2 � k,

Proof:

(Since and for all h)

� 0

� lim
hS0

0

f 1x � h 2 � kf 1x 2 � k� lim
hS0

k � k

h

f ¿ 1x 2 � lim
hS0

f 1x � h 2 � f 1x 2
h
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EXAMPLE 1 Applying the constant function rule

a. If 

b. If 

A power function is a function of the form where n is a real number.

In the previous section, we observed that for for

g ; and for 

As well, we hypothesized that In fact, this is true and is called

the power rule.

d
dx

 1xn 2 � nxn�1.

h1x 2 �
1
x � x�1, h¿ 1x 2 � �x�2.g¿ 1x 2 �

1
2 x�1

2 �
1

2�x1x 2 � Vx � x
1
2,

f ¿ 1x 2 � 2x;f 1x 2 � x2,

f 1x 2 � xn,

y �
p

2
, 

dy

dx
� 0.

f 1x 2 � 5, f ¿ 1x 2 � 0.

The Power Rule

If where n is a real number, then 

In Leibniz notation, d
dx 1xn 2 � nxn�1.

f ¿ 1x 2 � nxn�1.f 1x 2 � xn,

Proof:
(Note: n is a positive integer.)
Using the definition of the derivative,

where 

(Factor)

(Since there are n terms)
� nxn�1
� xn�1 � xn�1 � p � xn�1 � xn�1

� xn�1 � xn�2 1x 2  � p � 1x 2xn�2 � xn�1

� lim
hS0
3 1x � h 2n�1 � 1x � h 2n�2 x � p � 1x � h 2xn�2 � xn�1 4

� 1x � h 2xn�2 � xn�1 4
h

� lim
hS0

1x � h � x 2 3 1x � h 2n�1 � 1x � h 2n�2 x � p
h

� lim
hS0

1x � h 2n � xn

h

f 1x 2 � xnf ¿ 1x 2 � lim
hS0

f 1x � h 2 � f 1x 2
h

,

(Divide out h)
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EXAMPLE 2 Applying the power rule

a. If then 

b. If then 

c. If 

d.
d

dx
 1x 2 � 1x1�1 � x0 � 1

s � t 
3
2, 

ds

dt
�

3

2
t 

1
2 �

3

2
Vt.

g¿ 1x 2 � �3x�3 � 1 � �3x�4 � �
3

x4.g1x 2 �
1

x3 � x�3,

f ¿ 1x 2 � 7x6.f 1x 2 � x7,

The Constant Multiple Rule

If where k is a constant, then 

In Leibniz notation, d
dx 1ky 2 � k

dy
dx.

f ¿ 1x 2 � kg¿ 1x 2 .f 1x 2 � kg1x 2 ,
Proof:
Let By the definition of the derivative,

(Factor)

(Property of limits)

EXAMPLE 3 Applying the constant multiple rule

Differentiate the following functions:
a. b.

Solution
a. b.

dy

dx
� 12

d

dx
1x4

3 2 � 12 a 4

3
x143 �12 b � 16x 

1
3f ¿ 1x 2 � 7

d

dx
1x3 2 � 713x2 2 � 21x2

y � 12x 
4
3f 1x 2 � 7x3

y � 12x 
4
3f 1x 2 � 7x3

� kg¿ 1x 2� k lim
hS0
c g1x � h 2 � g1x 2

h
d

� lim
hS0

k c g1x � h 2 � g1x 2
h

d
� lim

hS0

kg1x � h 2 � kg1x 2
h

f ¿ 1x 2 � lim
hS0

 
f 1x � h 2 � f 1x 2

h

f 1x 2 � kg1x 2 .
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The Sum Rule

If functions and are differentiable, and 
then 

In Leibniz notation, .d
dx 
1 f 1x 22 �

d
dx 
1p1x 22 �

d
dx 
1q1x 22f ¿ 1x 2 � p¿ 1x 2 � q¿ 1x 2 . f 1x 2 � p1x 2 � q1x 2 ,q1x 2p1x 2

The Difference Rule

If functions and are differentiable, and ,

then . 

In Leibniz notation, .d
dx 
1 f 1x 22 �

d
dx 
1p1x 22 �

d
dx 
1q1x 22f ¿ 1x 2 � p¿ 1x 2 � q¿ 1x 2 f 1x 2 � p1x 2 � q1x 2q1x 2p1x 2

Proof:
Let By the definition of the derivative,

� p¿ 1x 2 � q¿ 1x 2� lim
hS0
e 3p1x � h 2 � p1x 2 4

h
f � lim

hS0
e 3q1x � h 2 � q1x 2 4

h
f

� lim
hS0
e 3p1x � h 2 � p1x 2 4

h
�
3q1x � h 2 � q1x 2 4

h
f

� lim
hS0

3p1x � h 2 � q1x � h 2 4 � 3p1x 2 � q1x 2 4
h

f ¿ 1x 2 � lim
hS0

f 1x � h 2 � f 1x 2
h

f 1x 2 � p1x 2 � q1x 2 .

The proof for the difference rule is similar to the proof for the sum rule.

EXAMPLE 4 Selecting appropriate rules to determine the derivative

Differentiate the following functions:
a.
b. y � 13x � 2 22f 1x 2 � 3x2 � 5Vx

C H A P T E R  2

We conclude this section with the sum and difference rules.
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Solution
We apply the constant multiple, power, sum, and difference rules.
a.

, or 

EXAMPLE 5 Selecting a strategy to determine the equation of a tangent

Determine the equation of the tangent to the graph of 
at

Solution A – Using the derivative
The slope of the tangent to the graph of f at any point is given by the derivative 

For

Now,

The slope of the tangent at is 3 and the point of tangency is 

The equation of the tangent is or 

Solution B – Using the graphing calculator
Draw the graph of the function using the graphing 
calculator.

Draw the tangent at the point on the function 
where The calculator displays the 
equation of the tangent line.

The equation of the tangent line in this 
case is y � 3x � 3.

x � 1.

y � 3x � 3.y � 0 � 31x � 1 211, f 11 22 � 11, 0 2 . x � 1
� 3

� �3 �  6

f ¿11 2 � �311 22 � 611 2f ¿1x 2 � �3x2 � 6x

f 1x 2 � �x3 � 3x2 � 2

f ¿ 1x 2 .
x � 1.

f 1x 2 � �x3 � 3x2 � 2

6x �
5

2Vx
� 6x �

5

2
x 

�1
2

� 312x 2 � 5 a 1

2
x 

�1
2 b

� 3
d

dx
1x2 2 � 5

d

dx
1x 

1
2 2

f ¿ 1x 2 �
d

dx
13x2 2 �

d

dx
15x 

1
2 2f 1x 2 � 3x2 � 5Vx
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For help using the
graphing calculator
to graph functions
and draw tangent
lines See Technical
Appendices
p. 597 and p. 608.

Tech Support

b. We first expand 

� 18x � 12

dy

dx
� 912x 2 � 1211 2 � 0

y � 9x2 � 12x � 4

y � 13x � 2 22.
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IN SUMMARY

Key Ideas

The following table summarizes the derivative rules in this section.

Need to Know

• To determine the derivative of a simple rational function, such as ,
express the function as a power, then use the power rule.

If , then 

• If you have a radical function such as rewrite the function as

, then use the power rule.

If , then �
5
3 

3�x2g¿ 1x 2 �
5
3 x 

2
3g1x 2 � x 

5
3

g1x 2 � x 
5
3

g1x 2 � 3�x5,

� �24x�7f ¿ 1x 2 � 41�6 2x 1�6�12f1x 2 � 4x�6

f1x 2� 4
x6
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EXAMPLE 6 Connecting the derivative to horizontal tangents

Determine points on the graph in Example 5 where the tangents are horizontal.

Solution
Horizontal lines have slope zero. We need to find the values of x that satisfy

The graph of has horizontal tangents at and 12, 2 2 .10, –2 2f 1x 2 � �x3 � 3x2 � 2
x � 0 or x � 2
�3x1x � 2 2 � 0
�3x2 � 6x � 0
f ¿ 1x 2 � 0.

Rule Function Notation Leibniz Notation

Constant Function
Rule

If , where k is a 
constant, then f ¿ 1x 2 � 0.

f1x 2 � k d
dx
1k 2 � 0

Power Rule If where n is a
real number, then
f ¿ 1x 2 � nxn�1.

f1x 2 � xn, d
dx
1xn 2 � nxn�1

Constant Multiple
Rule

If then
f ¿ 1x 2 � kg¿ 1x 2 .f1x 2 � kg1x 2 , d

dx
1ky 2 � k

dy

dx

Sum Rule If then
f ¿ 1x 2 � p¿ 1x 2 � q¿ 1x 2 .f1x 2 � p1x 2 � q1x 2 , d

dx
1f1x 22 �

d
dx
1p1x 22 �

d
dx
1q1x 22

Difference Rule If then
f ¿ 1x 2 � p¿ 1x 2 � q¿ 1x 2 .f1x 2 � p1x 2 � q1x 2 , d

dx
1f1x 22 �

d
dx
1p1x 22 �

d
dx
1q1x 22
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Exercise 2.2

PART A
1. What rules do you know for calculating derivatives? Give examples 

of each rule.

2. Determine for each of the following functions:

a. c. e.

b. d. f.

3. Differentiate each function. Use either Leibniz notation or prime notation,
depending on which is appropriate.

a. d.

b. e.

c. f.

4. Apply the differentiation rules you learned in this section to find 
the derivatives of the following functions:

a. c. e.

b. d. f.

PART B
5. Let s represent the position of a moving object at time t. Find the velocity

at time t.

a. b. c.

6. Determine for the given function at the given value of a.

a. b.

7. Determine the slope of the tangent to each of the curves at the given point.

a. , c. ,

b. , d. , 14, 32 2y � V16x31�1, �1 2y �
1

x�5

1�2, �1 2y �
2
x

11, 3 2y � 3x4

f 1x 2 � 7 � 6Vx � 5x 
2
3, a � 64f 1x 2 � x3 � Vx, a � 4

f 1x 2f ¿ 1a 2 s � 1t � 3 22s � 18 � 5t �
1

3
t3s � �2t2 � 7t

v �
ds
dt

y �
1 � Vx

x
y � 9x�2 � 3Vxy � 4x�1

2 �
6
x

y � Vx � 6Vx3 � V2y �
6

x3 �
2

x2 � 3y � 3x 
5
3

s1t 2 �
t5 � 3t2

2t
, t 7 0s � t21t2 � 2t 2 g1x 2 � 51x2 24f 1x 2 � 2x3 � 5x2 � 4x � 3.75

y �
1

5
x5 �

1

3
x3 �

1

2
x2 � 1h1x 2 � 12x � 3 2 1x � 4 2

f 1x 2 � x�3f 1x 2 �
3Vxf 1x 2 � x3 � x2

f 1x 2 � a x

2
b4

f 1x 2 � �x2 � 5x � 8f 1x 2 � 4x � 7

f ¿ 1x 2

K
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8. Determine the slope of the tangent to the graph of each function at the point
with the given x-coordinate.

a. c.

b. d.

9. Write an equation of the tangent to each curve at the given point.

a. d.

b. e.

c. f.

10. What is a normal to the graph of a function? Determine the equation of the
normal to the graph of the function in question 9, part b., at the given point. 

11. Determine the values of x so that the tangent to the function is parallel 
to the line 

12. Do the functions and ever have the same slope? If so, where?

13. Tangents are drawn to the parabola at and . Prove that
these lines are perpendicular. Illustrate with a sketch.

14. Determine the point on the parabola where the slope of
the tangent is 5. Illustrate your answer with a sketch.

15. Determine the coordinates of the points on the graph of at which
the slope of the tangent is 12.

16. Show that there are two tangents to the curve that have
a slope of 6.

17. Determine the equations of the tangents to the curve that pass
through the following points:

a. point b. point 

18. Determine the value of a, given that the line is tangent to 

the graph of at 

19. It can be shown that, from a height of h metres, a person can see a distance 
of d kilometres to the horizon, where 

a. When the elevator of the CN Tower passes the 200 m height, how far can
the passengers in the elevator see across Lake Ontario?

b. Find the rate of change of this distance with respect to height when the
height of the elevator is 200 m.

d � 3.53Vh.

x � �2.y �
a
x2

ax � 4y � 21 � 0

12, �7 212, 3 2
y � 2x2 � 3

y �
1
5 x5 � 10x

y � x3 � 2

y � �x2 � 3x � 4

Q�1
8, 1

64R12, 4 2y � x2

y � x3y �
1
x

x � 16y � 3 � 0.
y �

3
3Vx

y �
Vx � 2

3Vx
, P11, �1 2y � V3x3, P13, 9 2

y � 1Vx � 2 2 13Vx � 8 2 , P14, 0 2y �
3

x2 �
4

x3, P1�1, 7 2
y � 

1
x
a x2 �  

1
x
b , P11, 2 2y � 2x �

1
x

, P10.5, �1 2
y � x�31x�1 � 1 2 , x � 1y � 2Vx � 5, x � 4

y �
16

x2 , x � �2y � 2x3 � 3x, x � 1

C

T

A
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20. An object drops from a cliff that is 150 m high. The distance, d, in metres,
that the object has dropped at t seconds in modelled by 

a. Find the average rate of change of distance with respect to time 
from 2 s to 5 s.

b. Find the instantaneous rate of change of distance with respect to time at 4 s.

c. Find the rate at which the object hits the ground to the nearest tenth.

21. A subway train travels from one station to the next in 2 min. Its distance, in

kilometres, from the first station after t minutes is At what

times will the train have a velocity of 

22. While working on a high-rise building, a construction worker drops a bolt
from 320 m above the ground. After t seconds, the bolt has fallen a distance
of s metres, where The function that gives the height 
of the bolt above ground at time t is Use this function to
determine the velocity of the bolt at 

23. Tangents are drawn from the point to the parabola Find the
coordinates of the points at which these tangents touch the curve. Illustrate
your answer with a sketch.

24. The tangent to the cubic function that is defined by at
point intersects the curve at another point, B. Find the coordinates
of point B. Illustrate with a sketch.

25. a. Find the coordinates of the points, if any, where each function has 
a horizontal tangent line.

i. 

ii. 

iii. 

b. Suggest a graphical interpretation for each of these points.

PART C
26. Let be a point on the curve Show that the slope 

of the tangent at P is .

27. For the power function find the x-intercept of the tangent to its
graph at point What happens to the x-intercept as n increases without
bound ? Explain the result geometrically.

28. For each function, sketch the graph of and find an expression for
Indicate any points at which does not exist.

a. b. c. f 1x 2 � 0 0 x 0 � 1 0f 1x 2 � 03x2 � 6 0f 1x 2 � e x2, x 6 3

x � 6, x � 3

f ¿ 1x 2f ¿ 1x 2 . y � f 1x 21nS � q 211, 1 2 . f 1x 2 � xn,

�Å
b
a

Vx � Vy � 1.P1a, b 2
f 1x 2 � x3 � 8x2 � 5x � 3

f 1x 2 � 4x2 � 2x � 3

f 1x 2 � 2x � 5x2

A13, �3 2 y � x3 � 6x2 � 8x

y � �3x2.10, 3 2t � 2.
R1t 2 � 320 � 5t2.

s1t 2 � 5t2, 0 � t � 8.

0.5 km>min?

s1t 2 � t2 �
1
3t3.

d1t 2 � 4.9t2.
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Section 2.3—The Product Rule

In this section, we will develop a rule for differentiating the product of two 
functions, such as and 
without first expanding the expressions.

You might suspect that the derivative of a product of two functions is simply the
product of the separate derivatives. An example shows that this is not so.

EXAMPLE 1 Reasoning about the derivative of a product of two functions

Let where and 

Show that 

Solution
The expression can be simplified.

and so 

Since is not the derivative of we have shown that 

The correct method for differentiating a product of two functions uses the 
following rule.

p¿ 1x 2 � f ¿ 1x 2g¿ 1x 2 .p1x 2 ,2x

f ¿ 1x 2g¿ 1x 2 � 12x 2 11 2 � 2x.g¿ 1x 2 � 1,f ¿ 1x 2 � 2x

� 3x2 � 10x � 2p¿ 1x 2 � x3 � 5x2 � 2x � 10

p1x 2 � 1x2 � 2 2 1x � 5 2p1x 2
p¿ 1x 2 � f ¿ 1x 2g¿ 1x 2 . g1x 2 � 1x � 5 2 .f 1x 2 � 1x2 � 2 2p1x 2 � f 1x 2g1x 2 ,

g1x 2 � 1x � 3 231x � 2 22,f 1x 2 � 13x2 � 1 2 1x3 � 8 2

The Product Rule

If then 

If and are functions of x, d
dx 1uv 2 �

du
dx v � u dv

dx.vu

p¿ 1x 2 � f ¿ 1x 2g1x 2 � f 1x 2g¿ 1x 2 .p1x 2 � f 1x 2g1x 2 ,
In words, the product rule says, “the derivative of the product of two functions is
equal to the derivative of the first function times the second function plus the first
function times the derivative of the second function.”

Proof:
so using the definition of the derivative,

p¿ 1x 2 � lim
hS0

f 1x � h 2g1x � h 2 � f 1x 2g1x 2
h

.

p1x 2 � f 1x 2g1x 2 ,
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To evaluate we subtract and add the same term in the numerator.

Now,

EXAMPLE 2 Applying the product rule

Differentiate using the product rule.

Solution

Using the product rule, we get

We can, of course, differentiate the function after we first expand. The product
rule will be essential, however, when we work with products of polynomials such
as or non-polynomial functions such as

It is not necessary to simplify an expression when you are asked to calculate the
derivative at a particular value of Because many expressions obtained using
differentiation rules are cumbersome, it is easier to substitute, then evaluate the
derivative expression.

The next example could be solved by finding the product of the two polynomials
and then calculating the derivative of the resulting polynomial at Instead,
we will apply the product rule.

x � �1.

x.

f 1x 2 � 1x2 � 9 2Vx3 � 5.
f 1x 2 � 1x2 � 9 2 1x3 � 5 24

� 7x6 � 18x5 � 4x � 6

� 2x6 � 3x5 � 4x � 6 � 5x6 � 15x5

� 12x � 3 2 1x5 � 2 2 � 1x2 � 3x 2 15x4 2h¿ 1x 2 �
d

dx
3x2 � 3x 4 � 1x5 � 2 2 � 1x2 � 3x 2  d

dx
3x5 � 2 4

h1x 2 � 1x2 � 3x 2 1x5 � 2 2
h1x 2 � 1x2 � 3x 2 1x5 � 2 2

� f ¿ 1x 2g1x 2 � f 1x 2g¿ 1x 2 � lim
hS0

f 1x2 lim
hS0
c g1x � h 2 � g1x2

h
d� lim

hS0
c f 1x � h2 � f 1x2

h
d lim

hS0
g 1x � h 2

� lim
hS0
e c f 1x � h 2 � f 1x 2

h
dg1x � h 2 � f 1x 2 c g1x � h 2 � g1x 2

h
d f

p¿ 1x 2 � lim
hS0

f 1x � h 2g1x � h 2 � f 1x 2g1x � h 2 � f 1x 2g1x � h 2 � f 1x 2g1x 2
h

p¿ 1x 2 ,



NEL C H A P T E R  2 87

EXAMPLE 3 Selecting an efficient strategy to determine the value 
of the derivative

Find the value for the function 

Solution

Using the product rule, we get

The following example illustrates the extension of the product rule to more than
two functions.

EXAMPLE 4 Connecting the product rule to a more complex function

Find an expression for if 

Solution
We temporarily regard as a single function.

By the product rule,

A second application of the product rule yields

This expression gives us the extended product rule for the derivative of a
product of three functions. Its symmetrical form makes it easy to extend to 
a product of four or more functions.

The Power of a Function Rule for Positive Integers
Suppose that we now wish to differentiate functions such as or
y � 1x2 � 3x � 5 26.

y � 1x2 � 3 24

� f ¿ 1x 2g1x 2h1x 2 � f 1x 2g¿ 1x 2h1x 2 � f 1x 2g1x 2h¿ 1x 2p¿ 1x 2 � 3 f ¿ 1x 2g1x 2 � f 1x 2g¿ 1x 2 4h1x 2 � f 1x 2g1x 2h¿ 1x 2
p¿ 1x 2 � 3 f 1x 2g1x 2 4 ¿h1x 2 � 3 f 1x 2g1x 2 4h¿ 1x 2
p1x 2 � 3 f 1x 2g1x 2 4h1x 2 f 1x 2g1x 2

p1x 2 � f 1x 2g1x 2h1x 2 .p¿ 1x 2

� �8

� 11 2 17 2 � 15 2 1�3 2� 351�1 23 � 71�1 22 � 3 4 341�1 2 � 1 4h¿1�1 2 � 3151�1 22 � 141�1 2 4 321�1 22 � 1�1 2 � 6 4h¿ 1x 2 � 115x2 � 14x 2 12x2 � x � 6 2 � 15x3 � 7x2 � 3 2 14x � 1 2
h1x 2 � 15x3 � 7x2 � 3 2 12x2 � x � 6 2

h1x 2 � 15x3 � 7x2 � 3 2 12x2 � x � 6 2 .h¿ 1�1 2
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These functions are of the form where is a positive integer and 
is a function whose derivative we can find. Using the product rule, we can develop
an efficient method for differentiating such functions.

For  

Using the product rule,

Similarly, for we can use the extended product rule.

Thus,

These results suggest a generalization of the power rule.

The power of a function rule is a special case of the chain rule, which we will
discuss later in this chapter. We are now able to differentiate any polynomial, such
as or without multiplying out

the brackets. We can also differentiate rational functions, such as 

EXAMPLE 5 Applying the power of a function rule

For find 

Solution
Here has the form , where the “inner” function is

By the power of a function rule, we get h¿ 1x 2 � 61x2 � 3x � 5 2512x � 3 2 .g1x 2 � x2 � 3x � 5.

h1x 2 � 3g1x 2 46h1x 2
h¿ 1x 2 .h1x 2 � 1x2 � 3x � 5 26,

f 1x 2 �
2x � 5
3x�1.

h1x 2 � 11 � x2 2412x � 6 23,h1x 2 � 1x2 � 3x � 5 26

� 3 3g1x 2 42g¿ 1x 2h¿ 1x 2 � g¿ 1x 2g1x 2g1x 2 � g1x 2g¿ 1x 2g1x 2 � g1x 2g1x 2g¿ 1x 2� g1x 2g1x 2g1x 2h1x 2 � 3g1x 2 43n � 3,

� 2g¿ 1x 2g1x 2h¿ 1x 2 � g¿ 1x 2g1x 2 � g1x 2g¿ 1x 2
h1x 2 � g1x 2g1x 2h1x 2 � 3g1x 2 42n � 2,

u � g1x 2ny � un,

The Power of a Function Rule for Integers

If is a function of and is an integer, then 

In function notation, if then f ¿ 1x 2 � n 3g1x 2 4n�1g¿ 1x 2 .f 1x 2 � 3g1x 2 4n,

d
dx 1un 2 � nun�1du

dx.nx,u
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EXAMPLE 6 Selecting a strategy to determine the derivative of a rational function

Differentiate the rational function by first expressing it 

as a product and then using the product rule.

Solution

(Express f as a product)

(Product rule)

(Power of a function rule)

(Simplify)

EXAMPLE 7 Using the derivative to solve a problem

The position s, in centimetres, of an object moving in a straight line is given by
where is the time in seconds. Determine the object’s

velocity at 

Solution
The velocity of the object at any time is 

(Product rule)

(Power of a function rule)

At 

We conclude that the object is at rest at t � 2 s.

� 0

v � 0 � 12 2 3410 2 1�3 2 4t � 2,

� 16 � 3t 24 � 1t 2 3416 � 3t 231�3 2 4� 11 2 16 � 3t 24 � 1t 2 d
dt
3 16 � 3t 24 4v �

d

dt
3 t16 � 3t 24 4 v �

ds
dt.t � 0

t � 2.
ts � t16 � 3t 24, t � 0,

�
�1713x � 1 22

�
6x � 2 � 6x � 1513x � 1 22

�
213x � 1 213x � 1 22 �

6x � 1513x � 1 22
�

213x � 1 2 �
312x � 5 213x � 1 22

� 213x � 1 2�1 � 312x � 5 2 13x � 1 2�2

� 213x � 1 2�1 � 12x � 5 2 1�1 2 13x � 1 2�2 
d

dx
 13x � 1 2f ¿ 1x 2 �

d

dx
 312x � 5 24 13x � 1 2�1 � 12x � 5 2 d

dx
 � 13x � 1 2�1�

� 12x � 5 2 13x � 1 2�1

f 1x 2 �
2x � 5

3x � 1

f 1x 2 �
2x � 5
3x � 1
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Exercise 2.3

PART A
1. Use the product rule to differentiate each function. Simplify your answers.

a. d.

b. e.

c. f.

2. Use the product rule and the power of a function rule to differentiate 
the following functions. Do not simplify.

a. c.

b. d.

3. When is it not appropriate to use the product rule? Give examples.

4. Let Express in terms of and c1x 2 .b1x 2F�1x 2F1x 2 � 3b1x 2 4 3c1x 2 4 .
y � 1x2 � 9 2412x � 1 23y � 13x2 � 4 2 13 � x3 25 y � 11 � x2 2412x � 6 23y � 15x � 1 231x � 4 2
f 1x 2 �

x � 3

x � 3
h1x 2 � 13x � 2 2 12x � 7 2 s1t 2 � 1t2 � 1 2 13 � 2t2 2h1x 2 � x212x � 1 2 h1x 2 � 15x7 � 1 2 1x2 � 2x 2h1x 2 � x1x � 4 2

IN SUMMARY

Key Ideas

• The derivative of a product of differentiable functions is not the product
of their derivatives.

• The product rule for differentiation:

If then 

• The power of a function rule for integers:

If then 

Need to Know

• In some cases, it is easier to expand and simplify the product before
differentiating, rather than using the product rule.

If 

• If the derivative is needed at a particular value of the independent variable,
it is not necessary to simplify before substituting.

f¿ 1x 2 � 105x6 � 84x3
� 15x7 � 21x4

f 1x 2 � 3x415x3 � 7 2

f¿ 1x 2 � n 3g1x 2 4n�1g¿ 1x 2 .f 1x 2 � 3g1x 2 4n,

h¿ 1x 2 � f¿ 1x 2g1x 2 � f 1x 2g¿ 1x 2 .h1x 2 � f 1x 2g1x 2 ,

K
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PART B
5. Determine the value of for the given value of 

a.

b.

c.

d.

e.

f.

6. Determine the equation of the tangent to the curve
at the point 

7. Determine the point(s) where the tangent to the curve is horizontal.

a. b.

8. Use the extended product rule to differentiate the following functions. 
Do not simplify.

a. b.

9. A 75 L gas tank has a leak. After hours, the remaining volume, , in litres is

Use the product rule to determine how

quickly the gas is leaking from the tank when the tank is 60% full of gas.

10. Determine the slope of the tangent to 
at Explain how to find the equation of the normal at 

PART C
11. a. Determine an expression for if 

b. If find 

12. Determine a quadratic function if its graph passes
through the point and it has a horizontal tangent at 

13. Sketch the graph of 

a. For what values of is not differentiable?

b. Find a formula for and sketch the graph of 

c. Find (x) at 0, and 3.

14. Show that the line is tangent to the curve y �
16

x 
2 � 1.4x � y � 11 � 0

x � �2,f ¿
f ¿.f ¿,

fx

f 1x 2 � 0 x2 � 1 0 . 1�1, �8 2 .12, 19 2 f 1x 2 � ax2 � bx � c

f ¿ 10 2 .f 1x 2 � 11 � x 2 11 � 2x 2 11 � 3x 2 p 11 � nx 2 ,f 1x 2 � g11x 2g21x 2g31x 2 p gn�11x 2gn1x 2 .f ¿ 1x 2
x � �2.x � �2.

h1x 2 � 2x1x � 1 231x2 � 2x � 1 22
V1t 2 � 75 a1 �

t

24
b 2

, 0 � t � 24.

Vt

y � x213x2 � 4 2213 � x3 24y � 1x � 1 231x � 4 2 1x � 3 22
y � 1x2 � 2x � 1 2 1x2 � 2x � 1 2y � 21x � 29 2 1x � 1 2
11, �2 2 .y � 1x3 � 5x � 2 2 13x2 � 2x 2

x � 3y � x15x � 2 2 15x � 2 2 , x � �1y � 12x � 1 2513x � 2 24,

x � �2y � x313x � 7 22,

x � �2y � 13 � 2x � x2 2 1x2 � x � 2 2 ,x �
1

2
y � 11 � 2x 2 11 � 2x 2 ,x � 2y � 12 � 7x 2 1x � 3 2 , x.

dy
dx

T

C

A
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Mid-Chapter Review

1. a. Sketch the graph of 

b. Calculate the slopes of the tangents to at points with 
-coordinates 0, 1, 2, ..., 5.

c. Sketch the graph of the derivative function 
d. Compare the graphs of and 

2. Use the definition of the derivative to find for each function.

a. c.

b. d.

3. a. Determine the equation of the tangent to the curve 
at 

b. Sketch the graph of the function and the tangent.

4. Differentiate each of the following functions:

a. c. e.

b. d. f.

5. Determine the equation of the tangent to the graph of 
that has slope 1.

6. Determine for each of the following functions:
a. d.
b. e.

c. f.

7. Determine the equation of the tangent to the graph of each function.
a. when 
b. when 
c. when 

8. Determine the derivative using the product rule.

a. c.

b. d. y � 13 � 2x3 23f 1t 2 � 1�3t2 � 7t � 8 2 14t � 1 2 y � 13x2 � 4x � 6 2 12x2 � 9 2f 1x 2 � 14x2 � 9x 2 13x2 � 5 2
x � 3f 1x 2 � �2x4 � 4x3 � 2x2 � 8x � 9

x � 9y � 3 � 2Vx
x � 1y � �3x2 � 6x � 4

f 1x 2 � �4x�1 � 5x � 1f 1x 2 �
5

x2 �
3

x3

f 1x 2 � 7x�2 � 3Vxf 1x 2 � �2x3 � 4x2 � 5x � 6
f 1x 2 � Vx �

3Vxf 1x 2 � 4x2 � 7x � 8
f ¿ 1x 2

f 1x 2 � 2x4

y �
x � 1

x
y � 5x �

3

x2y � 10x
1
2

y � 111t � 1 22g1x 2 �
2

x3y � 6x4

x � 1.
y � x2 � 4x � 3

f 1x 2 � Vx � 2f 1x 2 � 2x2 � 4

f 1x 2 �
5

x � 5
f 1x 2 � 6x � 15

f ¿ 1x 2f ¿ 1x 2 .f 1x 2 f ¿ 1x 2 .x
f 1x 2 � x2 � 5x

f 1x 2 � x2 � 5x.
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9. Determine the equation of the tangent to
at .

10. Determine the point(s) where the tangent to the curve 
is horizontal.

11. If , determine from first principles.

12. A tank holds 500 L of liquid, which takes 90 min to drain from a hole in the
bottom of the tank. The volume, V, remaining in the tank after t minutes is

a. How much liquid remains in the tank at 1 h?

b. What is the average rate of change of volume with respect to time 
from 0 min to 60 min?

c. How fast is the liquid draining at 30 min?

13. The volume of a sphere is given by .

a. Determine the average rate of change of volume with respect to radius as
the radius changes from 10 cm to 15 cm.

b. Determine the rate of change of volume when the radius is 8 cm.

14. A classmate says, “The derivative of a cubic polynomial function is a 
quadratic polynomial function.” Is the statement always true, sometimes true,
or never true? Defend your choice in words, and provide two examples to 
support your argument.

15. Show that and a and b are integers.

16. a. Determine where 

b. Give two interpretations of the meaning of 

17. The population, P, of a bacteria colony at t hours can be modelled by 

a. What is the initial population of the bacteria colony?

b. What is the population of the colony at 5 h?

c. What is the growth rate of the colony at 5 h?

18. The relative percent of carbon dioxide, , in a carbonated soft drink 

at minutes can be modelled by where Determine 
and interpret the results at 5 min, 50 min, and 100 min. Explain what 
is happening.

C¿ 1t 2t 7 2.C1t 2 �
100

t ,t

C

P1t 2 � 100 � 120t � 10t2 � 2t3

f ¿ 13 2 .f 1x 2 � �6x3 � 4x � 5x2 � 10.f ¿ 13 2 ,dy
dx � 1a � 4b 2xa�4b�1 if y �

x2a�3b

xa�b

V1r 2 �
4
3pr3

V1t 2 � 500 a 1 �
t

90
b 2

, where 0 � t � 90

dy
dxy � 5x2 � 8x � 4

y � 21x � 1 2 15 � x 211, 48 2y � 15x2 � 9x � 2 2 1�x2 � 2x � 3 2
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Section 2.4—The Quotient Rule

In the previous section, we found that the derivative of the product of two functions
is not the product of their derivatives. The quotient rule gives the derivative of a
function that is the quotient of two functions. It is derived from the product rule.

Proof:
We want to find , given that 

We rewrite this as a product:
Using the product rule,

Solving for , we get 

The quotient rule provides us with an alternative approach to differentiate rational
functions, in addition to what we learned last section.

Memory Aid for the Product and Quotient Rules
It is worth noting that the quotient rule is similar to the product rule in that both
have For the product rule, we put an addition sign
between the terms. For the quotient rule, we put a subtraction sign between the
terms and then divide the result by the square of the original denominator.

Take note that in the quotient rule the term must come first. This isn't
the case with the product rule.

f ¿1x 2g1x 2
f ¿ 1x 2g1x 2  and f 1x 2g¿ 1x 2 .

 �
f ¿ 1x 2g1x 2 � f 1x 2g¿ 1x 23g1x 2 42

 �

f ¿ 1x 2 �
f 1x 2
g1x 2g¿ 1x 2

g1x 2
 h¿ 1x 2 �

f ¿ 1x 2 � h1x 2g¿ 1x 2
g1x 2h¿ 1x 2 h¿ 1x 2g1x 2 � h1x 2g¿ 1x 2 � f ¿ ˛1x 2 .h1x 2g1x 2 � f 1x 2 .h1x 2 �

f 1x 2
g1x 2 ,  g1x 2 � 0.h¿ 1x 2

The Quotient Rule

If then 

In Leibniz notation,
d
dx QuvR �

du
dx v � u 

dv
dx

v2 .

g1x 2 � 0.h¿ 1x 2 �
f ¿ 1x 2g1x 2 � f 1x 2g¿ 1x 23g1x 2 4 2 ,h1x 2� f 1x 2

g1x 2 ,
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EXAMPLE 1 Applying the quotient rule 

Determine the derivative of 

Solution
Since where and use the quotient

rule to find .

Using the quotient rule, we get 

EXAMPLE 2 Selecting a strategy to determine the equation of a line tangent 
to a rational function

Determine the equation of the tangent to at .

Solution A – Using the derivative
The slope of the tangent to the graph of f at any point is given by the derivative 

By the quotient rule,

At 

The slope of the tangent at is 2 and the point of 
tangency is The equation of the tangent is 

Solution B – Using the graphing calculator
Draw the graph of the function using the graphing calculator.

Draw the tangent at the point on the function where 
The calculator displays the equation of the tangent line.

The equation of the tangent line in this case is y � 2x.

x � 0.

y � 2x.10, 0 2 . x � 0

dy

dx
�
12 2 10 � 1 2 � 10 2 10 210 � 1 22 � 2

x � 0,

dy

dx
�
12 2 1x2 � 1 2 � 12x 2 12x 21x2 � 1 22

dy
dx.

x � 0y �
2x

x2 � 1

�
�3x2 � 8x � 151x2 � 5 22

�
3x2 � 15 � 6x2 � 8x1x2 � 5 22

�
13 2 1x2 � 5 2 � 13x � 4 2 12x 21x2 � 5 22

h¿ 1x 2 �
f ¿ 1x 2g1x 2 � f 1x 2g¿ 1x 23g1x 2 4 2h¿ 1x 2 g1x 2 � x2 � 5,f 1x 2 � 3x � 4h1x 2 �

f 1x 2
g1x 2 ,

h1x 2 �
3x � 4
x2 � 5.

For help using the
graphing calculator
to graph functions
and draw tangent
lines see Technical
Appendices
p. 597 and p. 608.

Tech Support

C H A P T E R  2
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IN SUMMARY

Key Ideas

• The derivative of a quotient of two differentiable functions is not the quotient
of their derivatives.

• The quotient rule for differentiation:

If then 

Need to Know

• To find the derivative of a rational function, you can use two methods:

Leave the function in fraction form, OR Express the function as a product,
and use the quotient rule. and use the product and power 

of a function rules.

f1x 2 � 1x � 2 2 11 � x 2�1f1x 2 �
x � 2
1 � x

h¿ 1x 2 �
f ¿ 1x 2g1x 2 � f 1x 2g¿ 1x 23g1x 2 4 2 , g1x 2 � 0.h1x 2 �

f1x 2
g1x 2 ,

EXAMPLE 3 Using the quotient rule to solve a problem 

Determine the coordinates of each point on the graph of 
where the tangent is horizontal.

Solution
The slope of the tangent at any point on the graph is given by 
Using the quotient rule,

The tangent will be horizontal when ; that is, when The point on
the graph where the tangent is horizontal is 14, 8 2 . x � 4.f ¿ 1x 2 � 0

 �
x � 4

xVx

 �

   
2x � x � 4

�x
   

x

 �

2x

Vx
�

x � 4

Vx
x

 �

2Vx �
2x � 8

2Vx
x

 f ¿ 1x 2 �

12 2 1Vx 2 � 12x � 8 2 a 1

2
x�

1
2 b1Vx 22

f ¿ 1x 2 .
f1x 2 �

2x � 8

Vx
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Exercise 2.4

PART A
1. What are the exponent rules? Give examples of each rule.

2. Copy the table, and complete it without using the quotient rule.

Function Rewrite Differentiate and Simplify, if Necessary

f1x 2 �
x2 � 3x

x
, x � 0

g1x 2 �
3x 

5
3

x
, x � 0

h1x 2 �
1

10x5
, x � 0

y �
8x3 � 6x

2x
, x � 0

s �
t2 � 9
t � 3

, t � 3
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3. What are the different ways to find the derivative of a rational function? 
Give examples.

PART B
4. Use the quotient rule to differentiate each function. Simplify your answers.

a. c. e.

b. d. f.

5. Determine at the given value of x.

a. c.

b. d.

6. Determine the slope of the tangent to the curve at point .

7. Determine the points on the graph of where the slope of the

tangent is 

8. Show that there are no tangents to the graph of that have 
a negative slope.

f 1x 2 �
5x � 2
x � 2

�
12
25.

y �
3x

x � 4

13, 9 2y �
x3

x2 � 6

y �
1x � 1 2 1x � 2 21x � 1 2 1x � 2 2 , x � 4y �

x3

x2 � 9
, x � 1

y �
x2 � 25

x2 � 25
, x � 2y �

3x � 2

x � 5
, x � �3

dy
dx

y �
x2 � x � 1

x2 � 3
h1x 2 �

1

x2 � 3
h1t 2 �

2t � 3

t � 5

y �
x 13x � 5 2

1 � x2h1x 2 �
x3

2x2 � 1
h1x 2 �

x

x � 1

C

K

T
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9. Find the point(s) at which the tangent to the curve is horizontal.

a. b.

10. An initial population, p, of 1000 bacteria grows in number according to the

equation where t is in hours. Find the rate at

which the population is growing after 1 h and after 2 h.

11. Determine the equation of the tangent to the curve at 

12. A motorboat coasts toward a dock with its engine off. Its distance s,
in metres, from the dock t seconds after the engine is turned off is

for 

a. How far is the boat from the dock initially?

b. Find the velocity of the boat when it bumps into the dock.

13. a. The radius of a circular juice blot on a piece of paper towel t seconds after it

was first seen is modelled by where r is measured in 
centimetres. Calculate

i. the radius of the blot when it was first observed

ii. the time at which the radius of the blot was 1.5 cm

iii. the rate of increase of the area of the blot when the radius was 1.5 cm

b. According to this model, will the radius of the blot ever reach 2 cm?
Explain your answer.

14. The graph of has a horizontal tangent line at 

Find a and b. Check using a graphing calculator.

15. The concentration, c, of a drug in the blood t hours after the drug is taken

orally is given by . When does the concentration reach its 

maximum value?
16. The position from its starting point, s, of an object that moves in a straight 

line at time t seconds is given by Determine when the object
changes direction.

PART C

17. Consider the function where and are

nonzero constants. What condition on and d ensures that each tangent
to the graph of has a positive slope?f

a, b, c,

da, b, c,f 1x 2 �
ax � b
cx � d, x � �

d
c,

s1t 2 �
t

t2 � 8.

5t

2t2 � 7
c1t 2 �

12, �1 2 .f 1x 2 �
ax � b1x � 1 2 1x � 4 2

r1t 2 �
1 � 2t
1 � t ,

0 � t � 6.s1t 2 �
10 16 � t 2

t � 3

x � 2.y �
x2 � 1

3x

p1t 2 � 1000Q1 �
4t

t 2 � 50R,
y �

x2 � 1

x2 � x � 2
y �

2x2

x � 4

A
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Section 2.5—The Derivatives of Composite
Functions

Recall that one way of combining functions is through a process called
composition. We start with a number x in the domain of g, find its image and
then take the value of f at provided that is in the domain of f. The result
is the new function which is called the composite function of
f and g, and is denoted .

EXAMPLE 1 Reflecting on the process of composition

If and find each of the following values:

a. b. c. d.

Solution
a. Since we have 

b. Since we have Note: .

c.

d. Note: .

The chain rule states how to compute the derivative of the composite function
in terms of the derivatives of f and g.h1x 2 � f 1g1x 22

f 1g1x 22 � g1 f 1x 22g1 f 1x 22 � g1Vx 2 � Vx � 5

f 1g1x 22 � f 1x � 5 2 �Vx � 5

f 1g14 22 � g 1 f 14 22g1 f 14 22 � g12 2 � 7.f 14 2 � 2,

f 1g14 22 � f 19 2 � 3.g14 2 � 9,

g1 f 1x 22f 1g1x 22g1 f 14 22f 1g14 22 g1x 2 � x � 5,f 1x 2 � Vx

1 f � g 2h1x 2 � f 1g1x 22 , g1x 2g1x 2 , g1x 2 ,

Definition of a composite function

Given two functions f and g, the composite function is defined by1 f � g 2 1x 2 � f 1g1x 22 . 1 f � g 2

The Chain Rule

If f and g are functions that have derivatives, then the composite function 
has a derivative given by h¿ 1x 2 � f ¿ 1g1x 22g¿ 1x 2 .h1x 2 � f 1g1x 22

C H A P T E R  2 99

In words, the chain rule says, “the derivative of a composite function is the 
product of the derivative of the outer function evaluated at the inner function and
the derivative of the inner function.”
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The Chain Rule in Leibniz Notation

If y is a function of u and u is a function of x (so that y is a composite 

function), then provided that and exist.du
dx

dy
du

dy
dx �

dy
du

du
dx,

Proof:

By the definition of the derivative,

Assuming that we can write

(Property of
limits)

Since 

Therefore,

This proof is not valid for all circumstances. When dividing by 
we assume that A proof that covers all cases can be found
in advanced calculus textbooks.

EXAMPLE 2 Applying the chain rule

Differentiate 

Solution
The inner function is , and the outer function is 

The derivative of the inner function is 

The derivative of the outer function is 

The derivative of the outer function evaluated at the inner function is 

By the chain rule, h¿ 1x 2 �
3
2 1x2 � x 2 12 12x � 1 2 .f ¿ 1x2 � x 2 �

3
2 1x2 � x 2 12. g1x 2f ¿ 1x 2 �

3
2x

1
2.

g¿ 1x 2 � 2x � 1.

f 1x 2 � x
3
2.g1x 2 � x2 � x

h1x 2 � 1x2 � x 2 32.
g1x � h 2 � g1x 2 � 0.

g1x � h 2 � g1x 2 ,3 f 1g1x 22 4 ¿ � f ¿ 1g1x 22g¿ 1x 2 .3 f 1g1x 22 4 ¿ � lim
kS0
c f 1g1x 2 � k 2 � f 1g1x 22

k
d lim 

hS0
cg1x � h 2 � g1x 2

h
das hS 0. We obtain

lim
hS0
3g1x � h 2 � g1x 2 4 � 0, let g1x � h 2 � g1x 2 � k and kS 0

 � lim
hS0
c f 1g1x � h 22 � f 1g1x 22

g1x � h 2 � g1x 2 d lim c
hS0

g1x � h 2 � g1x 2
h

d
 3 f 1g1x 22 4 ¿ � lim

hS0
c a f 1g1x � h 22 � f 1g1x 22

g1x � h 2 � g1x 2 b a g1x � h 2 � g1x 2
h

b dg1x � h 2 � g1x 2 � 0,

3 f 1g1x 22 4 ¿ � lim
hS0

f 1g1x � h 22 � f 1g1x 22
h .

If we interpret derivatives as rates of change, the chain rule states that if y is a
function of x through the intermediate variable u, then the rate of change of y
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with respect to x is equal to the product of the rate of change of y with respect to u
and the rate of change of u with respect to x.

EXAMPLE 3 Applying the chain rule using Leibniz notation

Solution
Using the chain rule,

It is not necessary to write the derivative entirely in terms of x.

When and 

EXAMPLE 4 Selecting a strategy involving the chain rule to solve a problem

An environmental study of a certain suburban community suggests that the average
daily level of carbon monoxide in the air can be modelled by the 
function where is in parts per million and population p
is expressed in thousands. It is estimated that t years from now, the population of
the community will be thousand. At what rate will the carbon
monoxide level be changing with respect to time three years from now?

Solution
We are asked to find the value of when 

We can find the rate of change by using the chain rule.

Therefore,

When 

So,

Since the sign of is positive, the carbon monoxide level will be increasing 

at the rate of 0.24 parts per million per year three years from now.

dC
dt

� 0.24

dC

dt
� c 1

2
10.514 22 � 17 2�1

2 10.5 2 1214 22 d 10.213 22p13 2 � 3.1 � 0.113 22 � 4.t � 3,

� c 1
2
10.5p2 � 17 2�1

2 10.5 2 12p 2 d 10.2t 2
� 

d10.5p2 � 17 2 12
dp

 
d13.1 � 0.1t2 2

dt

dC
dt �

dC
dp

dp
dt

t � 3.dC
dt ,

p1t 2 � 3.1 � 0.1t2

C1p 2C1p 2 � V0.5p2 � 17,

dy
dx � 3314 22 � 2 4 Q 1

�4
R � 146 2 Q12R � 23.x � 4, u � 2V4 � 4

 � 13u2 � 2 2 a 1

Vx
b

 
dy

dx
�

dy

du
 
du

dx
� 13u2 � 2 2 c2 a 1

2
x�1

2 b d
If y � u3 � 2u � 1, where u � 2Vx, find dy

dx
 at x � 4.
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EXAMPLE 6 Connecting the derivative to the slope of a tangent

Using a graphing calculator, sketch the graph of the function 

Find the equation of the tangent at the point on the graph.

Solution
Using a graphing calculator, the graph is

The slope of the tangent at point is given by 
We first write the function as 

By the power of a function rule,

The slope at is 

The equation of the tangent is y � 1 � �
1
2 1x � 2 2 , or x � 2y � 4 � 0.

 � �0.5

 � �
3218 22

 f ¿ 12 2 � �814 � 4 2�214 212, 1 2 f ¿ 1x 2 � �81x2 � 4 2�212x 2 .f 1x 2 � 81x2 � 4 2�1.
f ¿ 12 2 .12, 1 2

12, 1 2 f 1x 2 �
8

x2 � 4.

EXAMPLE 5 Using the chain rule to differentiate a power of a function

If 

Solution
The inner function is and the outer function is 
By the chain rule,

Example 5 is a special case of the chain rule in which the outer function is a power 

function of the form This leads to a generalization of the power rule
seen earlier.

y � 3g1x 2 4n.

� 14x1x2 � 5 26dy

dx
� 71x2 � 5 2612x 2

f 1x 2 � x7.g1x 2 � x2 � 5,

y � 1x2 � 5 27, find dy
dx.

Power of a Function Rule

If n is a real number and then ,

or d
dx 3g1x 2 4n � n 3g1x 2 4n�1g¿ 1x 2 .

d
dx 1un 2 � nun�1 

du
dxu � g1x 2 ,

For help using the
graphing calculator
to graph functions
and draw tangent
lines see Technical
Appendices
p. 597 and p. 608.

Tech Support
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EXAMPLE 7 Combining derivative rules to differentiate a complex product

Differentiate Express your answer 
in a simplified factored form.

Solution
Here we use the product rule and the chain rule.

(Product rule)

(Chain rule)

(Simplify)

(Factor)

EXAMPLE 8 Combining derivative rules to differentiate a complex quotient

Determine the derivative of 

Solution A – Using the product and chain rule
There are several approaches to this problem. You could keep the function as it 
is and use the chain rule and the quotient rule. You could also decompose the 

function and express it as and then apply the quotient rule 

and the chain rule. Here we will express the function as the product
and apply the product rule and the chain rule.

(Simplify)

(Factor)

(Rewrite using positive exponents)

Solution B – Using the chain and quotient rule
In this solution, we will use the chain rule and the quotient rule, where 

is the inner function and is the outer function.

g¿ 1x 2 �
dg

du
 
du

dx

u10u �
1 � x2

1 � x2

�
40x11 � x2 2911 � x2 211

� 20x11 � x2 2911 � x2 2�1112 2� 20x11 � x2 2911 � x2 2�11 3 11 � x2 2 � 11 � x2 2 4� 20x11 � x2 2911 � x2 2�10 � 120x 2 11 � x2 21011 � x2 2�11

� 1011 � x2 2912x 2 11 � x2 2�10 � 11 � x2 2101�10 2 11 � x2 2�111�2x 2g¿ 1x 2 �
d

dx
c 11 � x2 210d 11 � x2 2�10 � 11 � x2 210 d

dx
c 11 � x2 2�10dg1x 2 � 11 � x2 21011 � x2 2�10

g1x 2 �
11 � x2 21011 � x2210,

g1x 2 � Q1 � x2

1 � x2R10
.

� 41x2 � 3 2314x � 5 22111x2 � 10x � 9 2� 41x2 � 3 2314x � 5 22 32x14x � 5 2 � 31x2 � 3 2 4� 8x1x2 � 3 23 14x � 5 23 � 1214x � 5 221x2 � 3 24� 341x2 � 3 2312x 2 4 � 14x � 5 23 � 3314x � 5 2214 2 4 � 1x2 � 3 24h¿ 1x 2 �
d

dx
3 1x2 � 3 24 4 � 14x � 5 23 �

d

dx
3 14x � 5 23 4 � 1x2 � 3 24

h1x 2 � 1x2 � 3 2414x � 5 23.
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(Chain rule and quotient rule)

(Expand)

(Simplify)

�
40x11 � x2 2911 � x2 211

�
1011 � x2 2911 � x2 29  

4x11 � x2 22
� 10 a 1 � x2

1 � x2 b 9 c 4x11 � x2 22 d
� 10 a 1 � x2

1 � x2 b 9 c 2x � 2x3 � 2x � 2x311 � x2 22 d
� 10 a 1 � x2

1 � x2 b 9 c 2x11 � x2 2 � 1�2x 2 11 � x2 211 � x2 22 d
� 10 a 1 � x2

1 � x2 b 9 d

dx
a 1 � x2

1 � x2 b
g¿ 1x 2 �

d 3 11 � x2

1 � x2 210 4
d11 � x2

1 � x2 2  
d

dx
a 1 � x2

1 � x2 b

IN SUMMARY

Key Idea

• The chain rule:
If y is a function of u, and u is a function of x (i.e., y is a composite function),

then provided that and exist.

Therefore, if then

(Function notation)

or (Leibniz notation)

Need to Know

• When the outer function is a power function of the form we
have a special case of the chain rule, called the power of a function rule:

� n 3g1x 2 4n�1 � g¿ 1x 2
d
dx
3g1x 2 4n �

d 3g1x 2 4n
d 3g1x 2 4 �

d 3g1x 2 4
dx

y � 3g1x 2 4n,

d 3h1x 2 4
dx

�
d 3 f 1g1x 22 4

d 3g1x 2 4 �
d 3g1x 2 4

dx

h¿ 1x 2 � f ¿ 1g1x 22 � g¿ 1x 2h1x 2 � 1f � g 2 1x 2 , du
dx

dy
du

dy
dx �

dy
du �

du
dx,
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Exercise 2.5

PART A
1. Given and find the following value:

a. c. e.
b. d. f.

2. For each of the following pairs of functions, find the composite functions
and . What is the domain of each composite function? Are the

composite functions equal?

a. b. c.

3. What is the rule for calculating the derivative of the composition of two
differentiable functions? Give examples, and show how the derivative
is determined.

4. Differentiate each function. Do not expand any expression before differentiating.
a. d.

b. e.

c. f.

PART B
5. Rewrite each of the following in the form or and then 

differentiate.

a. c. e.

b. d. f.

6. Given where f and g are 
continuous functions, use the 
information in the table to evaluate 

and 

7. Given determine h�1x 2 .f 1x 2 � 1x � 3 22, g1x 2 �
1
x, and h1x 2 � f 1g1x 22 ,

h�1�1 2 .h1�1 2
h � g � f,

y �
11x2 � x � 1 24y �

3

9 � x2y �
1

x � 1

y �
1

5x2 � x
y �

1

x2 � 4
y � �

2

x3

y � kun,y � un

f 1x 2 �
11x2 � 16 25h1x 2 � 12x2 � 3x � 5 24 y � Vx2 � 3g1x 2 � 1x2 � 4 23 f 1x 2 � 1p2 � x2 23f 1x 2 � 12x � 3 24

g1x 2 � Vx � 2g1x 2 � x2 � 1g1x 2 � Vx

f 1x 2 �
1
x

f 1x 2 �
1
x

f 1x 2 � x2

1g � f 21 f � g 2
g1 f 1x 22f 1g1�4 22g1 f 11 22 f 1g1x 22g1 f 10 22f 1g11 22 g1x 2 � x2 � 1,f 1x 2 � Vx

K
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C

x f (x) g(x) f ’(x) g’(x)

�1 1 18 5� 15�

0 2� 5 1� 11�

1 1� 4� 3 7�

2 4 9� 7 3�

3 13 10� 11 1
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8. Differentiate each function. Express your answer in a simplified factored form.
a. d.

b. e.

c. f.

9. Find the rate of change of each function at the given value of t. Leave your
answers as rational numbers, or in terms of roots and the number .

a. b. s(t) = 

10. For what values of x do the curves and have 
the same slope?

11. Find the slope of the tangent to the curve at 

12. Find the equation of the tangent to the curve at 

13. Use the chain rule, in Leibniz notation, to find at the given value of x.

a.

b.

c.

d.

14. Find , given and 

15. A 50 000 L tank can be drained in 30 min. The volume of water remaining in 

the tank after t minutes is At what rate,
to the nearest whole number, is the water flowing out of the tank when ?

16. The function represents the displacement s, in
metres, of a particle moving along a straight line after t seconds. Determine
the velocity when .

PART C
17. a. Write an expression for if 

b. If find 

18. Show that the tangent to the curve at the point 
is also the tangent to the curve at another point.

19. Differentiate y �
x211 � x3 211 � x 2 3 .

11, 3 2y � 1x2 � x � 2 23 � 3

h¿ 1�3 2 .h1x 2 � x12x � 7 241x � 1 22,

h1x 2 � p1x 2q1x 2r 1x 2 .h¿ 1x 2
t � 3

s1t 2 � 1t3 � t2 2 12, t � 0,

t � 10
V1t 2 � 50 000 Q1 �

t
30R 2

, 0 � t � 30.

g¿ 12 2 � �1.h1x 2 � f 1g1x 22 , f 1u 2 � u2 � 1, g12 2 � 3,h¿ 12 2y � u3 � 51u3 � 7u 22, u � Vx, x � 4

y � u1u2 � 3 23, u � 1x � 3 22, x � �2

y � 2u3 � 3u2, u � x � x
1
2, x � 1

y � 3u2 � 5u � 2, u � x2 � 1, x � 2

dy
dx

x � 2.y � 1x3 � 7 25 Q2, 
1
4R.y � 13x � x2 2�2

y � 2x6y � 11 � x3 22 t � 2pa t � p

t � 6p
b 1

3

,s1t 2 � t
1
3 14t � 5 2 2

3, t � 8

p

y � a x2 � 3

x2 � 3
b 4

y �
3x2 � 2x

x2 � 1

y � x411 � 4x2 23y � 1x2 � 3 231x3 � 3 22 h1x 2 � x313x � 5 22f 1x 2 � 1x � 4 231x � 3 26

A

T
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Technology Extension:
Derivatives on Graphing Calculators

Numerical derivatives can be approximated on a TI-83/84 Plus using nDeriv(.

To approximate for follow these steps:

Press , and scroll down to 8:nDeriv( under the MATH menu.

Press , and the display on the screen will be nDeriv(.

To find the derivative, key in the expression, the variable, the value at which we
want the derivative, and a value for .

For this example, the display will be nDeriv 2X X2 1 , X, 0, 0.01 .

Press , and the value 1.99980002 will be returned.

Therefore, is approximately 1.999 800 02.

A better approximation can be found by using a smaller value for , such as
The default value for is 0.001.

Try These:

a. Use the nDeriv( function on a graphing calculator to determine the value of
the derivative of each of the following functions at the given point.

i. ,

ii. ,

iii. ,

iv. ,

v. ,

vi. ,

b. Determine the actual value of each derivative at the given point using the rules
of differentiation.

The TI-89, TI-92, an TI-Nspire can find exact symbolic and numerical derivatives.

If you have access to either model, try some of the functions above and compare

your answers with those found using a TI-83/84 Plus. For example, on the TI-89

press under the CALCULATE menu, key and

press .ENTER

d12x> 1x2 � 1 2 , x 2 0 x � 0

x � �1f 1x 2 �
x2 � 1

x2 � x � 2

x � 4f 1x 2 � x2 �
16
x

� 4Vx

x � 0f 1x 2 � 1x2 � 1 2 12x � 1 24x � �2f 1x 2 � x3 � 6x

x � 2f 1x 2 � x4

x � �1f 1x 2 � x3

ee � 0.0001.
e

f ¿ 10 2ENTER

22�> 11e

ENTER

MATH

f 1x 2 �
2x

x2 � 1f ¿ 10 2
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Investigate and ApplyCAREER LINK WRAP-UP

CHAPTER 2: THE ELASTICITY OF DEMAND

An electronics retailing chain has established the monthly price –demand 
relationship for an electronic game as

They are trying to set a price level that will provide maximum revenue (R). They
know that when demand is elastic a drop in price will result in higher
overall revenues and that when demand is inelastic an
increase in price will result in higher overall revenues. To complete the questions
in this task, you will have to use the elasticity definition

converted into differential notation.

a. Determine the elasticity of demand at $20 and $80, classifying these price
points as having elastic or inelastic demand. What does this say about where
the optimum price is in terms of generating the maximum revenue? Explain.
Also calculate the revenue at the $20 and $80 price points.

b. Approximate the demand curve as a linear function (tangent) at a price point
of $50. Plot the demand function and its linear approximation on the
graphing calculator. What do you notice? Explain this by looking at the
demand function.

c. Use your linear approximation to determine the price point that will generate
the maximum revenue. (Hint: Think about the specific value of E where you
will not want to increase or decrease the price to generate higher revenues.)
What revenue is generated at this price point?

d. A second game has a price–demand relationship of

The price is currently set at $50. Should the company increase or decrease
the price? Explain.

n 1 p 2 �
12 500
p � 25

Q¢n
¢p �

dn
dpR

E � � c a ¢n
n
b � a ¢p

p
b d

1E 6 1 2 ,1R � np 2 , 1E 7 1 2 ,
n1p 2 � 1000 � 10 

1p � 1 2 43
3�p

1n 21p 2
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Key Concepts Review

Now that you have completed your study of derivatives in Chapter 2, you should
be familiar with such concepts as derivatives of polynomial functions, the product
rule, the quotient rule, the power rule for rational exponents, and the chain rule.
Consider the following summary to confirm your understanding of the key 
concepts.

• The derivative of f at a is given by or, alternatively,

by .

• The derivative function of f(x) with respect to x is .

• The derivative of a function at a point can be interpreted as

– the slope of the tangent line at this point
– the instantaneous rate of change at this point

Summary of Differentiation Techniques

1a, f 1a 22 f ¿ 1x 2 � lim
hS0

f 1x � h 2 � f 1x 2
h

f ¿ 1a 2 � lim
xSa

f 1x 2 � f 1a 2
x � a

f ¿ 1a 2 � lim
hS0

f 1a � h 2 � f 1a 2
h

Rule Function Notation Leibniz Notation

Constant f 1x 2 � k, f ¿ 1x 2 � 0 d
dx

 1k 2 � 0

Linear f 1x 2 � x, f ¿ 1x 2 � 1 d
dx

 1x 2 � 1

Power f ¿ 1x 2 � nxn�1f 1x 2 � xn,
d
dx

 1xn 2 � nxn�1

Constant Multiple f 1x 2 � kg1x 2 , f ¿ 1x 2 � kg¿ 1x 2 d
dx

 1ǩy 2� k 
dy

dx

Sum or Difference
 f ¿ 1x 2 � p¿ 1x 2  ; q’1x 2 f 1x 2 � p1x 2  ; q1x 2 , d

dx
 3 f 1x 2  ; g 1x 2 4 � d

dx
 f 1x 2  ; 

d
dx

 g 1x 2
Product

 h¿ 1x 2 � f ¿ 1x 2g1x 2 � f 1x 2g¿ 1x 2 h1x 2 � f 1x 2g1x 2 d
dx
3 f 1x 2g 1x 2 4� c d

dx
f 1x 2 dg1x 2 � f 1x 2 c d

dx
g 1x 2 d

Quotient

 h¿ 1x 2 �
f ¿ 1x 2g1x 2 � f 1x 2g¿ 1x 23g1x 2 42

 h1x 2 �
f 1x 2
g1x 2

d
dx
c f 1x 2
g1x 2 d �

c d
dx

f 1x 2 dg1x 2 � f 1x 2 c d
dx

g 1x 2 d3g1x 2 42
Chain h1x 2 � f 1g1x 2 2 , h¿ 1x 2 � f ¿ 1g1x 2 2g¿ 1x 2 where u is a function of x 

dy

dx
�

dy

du
 #  du

dx
,

Power of a Function f 1x 2 � 3g 1x 2 4n, f ¿ 1x 2 � n 3g 1x 2 4n�1g ¿ 1x 2 where u is a function of xy � un, 
dy

dx
� nun�1du

dx
,
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Review Exercise

1. Describe the process of finding a derivative using the definition of 

2. Use the definition of the derivative to find for each of the following
functions:

a. b. c.

3. Differentiate each of the following functions:

a. c. e.

b. d. f.

4. Determine the derivative of the given function. In some cases, it will save
time if you rearrange the function before differentiating.

a. d.

b. e.

c. f.

5. Determine the derivative, and give your answer in a simplified form.

a. d.

b. e.

c. f.

6. If f is a differentiable function, find an expression for the derivative 
of each of the following functions:

a. b.

7. a. If and find when 

b. If and find when 

c. If and find when 

8. Determine the slope of the tangent at point on the graph 
of f 1x 2 � 19 � x2 2 23. 11, 4 2 x � 4.

dy

dx
f ¿ 15 2 � �2,y � f 1Vx2 � 9 2

x � 4.
dy

dx
u �

Vx � x

10
,y �

u � 4

u � 4

x � 2.
dy

dx
u �

18

x2 � 5
,y � 5u2 � 3u � 1

h1x 2 � 2xf 1x 2g1x 2 � f 1x2 2
y � 11 � x2 2 316 � 2x 2�3y �

12x � 5 2 41x � 1 2 3
y � 1x � 2 2 31x2 � 9 2 4y � xVx2 � 1

y � a 10x � 1

3x � 5
b6

y � x412x � 5 2 6
y �

x2 � 5x � 4

x � 4
y �

x

3x � 5

f 1x 2 � 1Vx � 2 2�2
3g1x 2 � �x 1x3 � x 2

y � Vx � 11x � 1 2f 1x 2 �
2x3 � 1

x2

y � V7x2 � 4x � 1y �
1

x2 � 5
f 1x 2 � x

3
4

y �
313 � x2 22y �

7

3x4
y � x2 � 5x � 4

y �
x

4 � x
y � Vx � 6y � 2x2 � 5x

f ¿ 1x 2 f ¿ 1x 2 .

R E V I E W  E X E R C I S E
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9. For what values of x does the curve have a slope of 
For what values of x does the curve have a slope of 
Use a graphing calculator to graph the function and confirm your results.

10. a. Determine the values of x where the graph of each function has a horizontal
tangent.

i. ii.

b. Use a graphing calculator to graph each function and its tangent at the
values you found from part a. to confirm your result.

11. Determine the equation of the tangent to each function at the given point.

a. , b. ,

12. A tangent to the parabola is perpendicular to
Determine the equation of the tangent.

13. The line is tangent to the curve Determine 
the point of tangency and the value of b.

14. a. Using a graphing calculator, graph the function .
b. Using the draw function or an equivalent function on your calculator or

graphing software, find the equations of the tangents where the slope is zero.

c. Setting find the coordinates of the points where the slope is zero.

d. Determine the slope of the tangent to the graph at Use the graph
to verify that your answer is reasonable.

15. Consider the function 

a. Determine the slope of the tangent at the point where the graph crosses
the x-axis.

b. Determine the value of a shown in the graph of given below.

16. A rested student is able to memorize M words after t minutes, where 

a. How many words are memorized in the first 10 min? How many words 
are memorized in the first 15 min?

b. What is the memory rate at What is the memory rate at t � 15?t � 10?

M � 0.1t2 � 0.001t3, 0 � t �
200
3  .

y

0
x

(a, f (a))

f 1x 2
f 1x 2 � 2x

5
3 � 5x

2
3.

12, ˛ˇ�4 2 .f ¿ 1x 2 � 0,

f 1x 2 �
x3

x2 � 6

y � 2x2.y � 8x � b

x � 5y � 10 � 0.
y � 3x2 � 7x � 5

11, 1 2y � 13x�2 � 2x3 2510, 16 2y � 1x2 � 5x � 2 24
y � 1x3 � x 22y � 1x2 � 4 25

�15?y � �x3 � 6x2
�12?y � �x3 � 6x2
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17. A grocery store determines that, after t hours on the job, a new cashier can 

scan items per minute.

a. Find the rate at which the cashier’s productivity is changing.

b. According to this model, does the cashier ever stop improving? Why?

18. An athletic-equipment supplier experiences weekly costs of 

in producing x baseball gloves per week.

a. Find the marginal cost,

b. Find the production level x at which the marginal cost is $76 per glove.

19. A manufacturer of kitchen appliances experiences revenue of 

dollars from the sale of x refrigerators per month.

a. Find the marginal revenue,

b. Find the marginal revenue when 10 refrigerators per month are sold.

20. An economist has found that the demand function for a particular new 

product is given by Find the slope of the demand 

curve at the point 
21. Kathy has diabetes. Her blood sugar level, B, one hour after an insulin

injection, depends on the amount of insulin, x, in milligrams injected.

a. Find and 

b. Find and 

c. Interpret your results.

d. Consider the values of and Comment on the significance of
these values. Why are restrictions given for the original function?

22. Determine which functions are differentiable at Give reasons 
for your choices.

a. c.

b. d.

23. At what x-values is each function not differentiable? Explain.

a. b. c. f 1x 2 � Vx2 � 7x � 6f 1x 2 �
x2 � x � 6

x2 � 9
f 1x 2 �

3

4x2 � x

m1x 2 � �3x � 3� � 1g1x 2 �
x � 1

x2 � 5x � 6

h1x 2 �
3V1x � 2 22f 1x 2 �

3x

1 � x2

x � 1.

B150 2 .B¿ 150 2
B¿ 130 2 .B¿ 10 2 B130 2 .B10 2 B1x 2 � �0.2x2 � 500, 0 � x � 40

15, 10 2 .D1p 2 �
20

Vp � 1
, p 7 1.

R¿ 1x 2 .R1x 2 � 750x �
x2

6 �
2
3x3

C¿ 1x 2 .C1x 2 �
1
3x3 � 40x � 700

N¿ 1t 2 ,N1t 2 � 20 �
30

V9 � t2
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24. At a manufacturing plant, productivity is measured by the number of items, p,
produced per employee per day over the previous 10 years. Productivity is 

modelled by where t is the number of years measured from 

10 years ago. Determine the rate of change of p with respect to t.

25. Choose a simple polynomial function in the form Use the 

quotient rule to find the derivative of the reciprocal function Repeat 

for other polynomial functions, and devise a rule for finding the derivative 

of Confirm your rule using first principles.

26. Given 

a. Express f as the composition of two simpler functions.

b. Use this composition to determine .

27. Given 

a. Express g as the composition of two simpler functions.

b. Use this composition to determine .

28. Determine the derivative of each function.

a. e.

b. f.

c. g.

d. h.

29. Find numbers a, b, and c so that the graph of has 
x-intercepts at and and a tangent with slope 16 where 

30. An ant colony was treated with an insecticide and the number of survivors, A,
in hundreds at t hours is 

a. Find 

b. Find the rate of change of the number of living ants in the colony at 5 h.

c. How many ants were in the colony before it was treated with the insecticide?

d. How many hours after the insecticide was applied were no ants remaining
in the colony?

A¿ 1t 2 . A1t 2 � �t3 � 5t � 750.

x � 2.18, 0 2 ,10, 0 2 f 1x 2 � ax2 � bx � c

y � c 114x � x2 23 d 3h1x 2 �
6x � 113x � 5 24

g1x 2 � a 2x � 5

6 � x2 b 4

y � 15 � x 2214 � 7x3 26
f 1x 2 �

�3x4

V4x � 8
g1x 2 � 18x3 2 14x2 � 2x � 3 25

y �
12x2 � 5 231x � 8 22f 1x 2 � 12x � 5 2313x2 � 4 25

g¿ 1x 2
g1x 2 � �2x � 3 � 512x � 3 2 ,f ¿ 1x 2
f 1x 2 �

12x � 3 2 2 � 5
2x � 3 ,

1
f 1x 2 .

1
ax � b.

f 1x 2 � ax � b.

p1t 2 �
25t

t � 1,

C H A P T E R  2
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1. Explain when you need to use the chain rule.

2. The graphs of a function and its derivative are shown at the left. Label
the graphs f and , and write a short paragraph stating the criteria you used 
to make your selection.

3. Use the definition of the derivative to find 

4. Determine for each of the following functions:

a.

b.

c.

d. (Leave your answer in a simplified factored form.)

e. (Simplify your answer.)

f. (Simplify your answer.)

5. Determine the slope of the tangent to the graph of 
at 

6. Determine at for and 

7. Determine the equation of the tangent to at (1, 1).

8. The amount of pollution in a certain lake is where t is
measured in years and P is measured in parts per million (ppm). At what rate
is the amount of pollution changing after 16 years?

9. At what point on the curve does the normal have a slope of 16?

10. Determine the points on the curve where the tangent 
is horizontal.

11. For what values of a and b will the parabola be tangent
to the curve at point 11, 1 2?y � x3

y � x2 � ax � b

y � x3 � x2 � x � 1

y � x4

P1t 2 � 1t 1
4 � 3 23,

y � 13x�2 � 2x3 25u � Vx2 � 5.y � 3u2 � 2ux � �2
dy
dx

11, 8 2 . y � 1x2 � 3x � 2 2 17 � 3x 2y �
4x5 � 5x4 � 6x � 2

x4

y � x2 3V6x2 � 7

y � a x2 � 6

3x � 4
b 5

y �
2

Vx
�

x

V3
� 6 3Vx

y � 612x � 9 25y �
1

3
x3 � 3x�5 � 4p

dy
dx

d
dx 1x � x2 2 .

f ¿
y

x
2

4

–2
2–2 0

Chapter 2 Test

C H A P T E R  2  T E S T



Chapter 3

DERIVATIVES AND THEIR APPLICATIONS

We live in a world that is always in flux. Sir Isaac Newton’s name for calculus was
“the method of fluxions.” He recognized in the seventeenth century, as you
probably recognize today, that understanding change is important. Newton was
what we might call a “mathematical physicist.” He developed his method of fluxions
to gain a better understanding of the natural world, including motion and gravity.
But change is not limited to the natural world, and, since Newton’s time, the use of
calculus has spread to include applications in the social sciences. Psychology, business,
and economics are just a few of the areas in which calculus continues to be an
effective problem-solving tool. As we shall see in this chapter, anywhere functions 
can be used as models, the derivative is certain to be meaningful and useful.

CHAPTER EXPECTATIONS
In this chapter, you will 

• make connections between the concept of motion and the concept of
derivatives, Section 3.1

• solve problems involving rates of change, Section 3.1

• determine second derivatives, Section 3.1

• determine the extreme values of a function, Section 3.2

• solve problems by applying mathematical models and their derivatives to
determine, interpret, and communicate the mathematical results, Section 3.3

• solve problems by determining the maximum and minimum values of a
mathematical model, Career Link, Sections 3.3, 3.4

NEL



Review of Prerequisite Skills

In Chapter 2, we developed an understanding of derivatives and differentiation. In
this chapter, we will consider a variety of applications of derivatives. The following
skills will be helpful:
• graphing polynomial and simple rational functions
• working with circles in standard position
• solving polynomial equations
• finding the equations of tangents and normals
• using the following formulas:

circle: circumference: area:
right circular cylinder: surface area: volume:

Exercise

1. Sketch the graph of each function.

a. d.

b. e.

c. f.

2. Solve each equation, where x,

a.

b.

c.

d.

e.

f.

g.

h.

i.

3. Solve each inequality, where 

a. b. c. �x2 � 4x 7 0x1x � 3 2 7 03x � 2 7 7

x�R.

4t4 � 13t2 � 9 � 0

4t3 � 12t2 � t � 3 � 0

x3 � 8x2 � 16x � 0

x3 � 2x2 � 3x � 0

6
t

�
t

2
� 4

2t2 � 5t � 3 � 0

t2 � 4t � 3 � 0

1

3
 1x � 2 2 �

2

5
 1x � 3 2 �

x � 5

2

31x � 2 2 � 21x � 1 2 � 6 � 0

t�R.

y � �x2 � 9y � Vx

y � x2 � 43x � 4y � 12

y � Vx � 22x � 3y � 6 � 0

V � pr2hSA � 2prh � 2pr2,
A � pr2C � 2pr,
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4. Determine the area of each figure. Leave your answers in terms of , where
applicable.

a. square: perimeter 20 cm

b. rectangle: length 8 cm, width 6 cm

c. circle: radius 7 cm

d. circle: circumference cm

5. Two measures of each right circular cylinder are given. Calculate the two
remaining measures.

6. Calculate total surface area and volume for cubes with the following 
side lengths:

a. 3 cm c. cm

b. cm d. 2k cm

7. Express each set of numbers using interval notation.

a. d.

b. e.

c. f.

8. Express each interval using set notation, where 

a. d.

b. e.

c. f.

9. Use graphing technology to graph each function and determine its maximum
and/or minimum values.

a. d.

b. e.

c. f. f 1x 2 � �2 cos 2x � 5f 1x 2 � 3x2 � 30x � 82

f 1x 2 � 3 sin x � 2f 1x 2 � �x2 � 10x

f 1x 2 � �x� � 1f 1x 2 � x2 � 5

32, 20 21�q, q 2 1�1, 3 21�q, 1 4 3�10, 12 415, q 2 x�R.

5x�R � �4 6 x 6 465x�R � x 6 06 5x�R � �2 6 x � 865x�R � x � �26 5x�R � x � �565x�R � x 7 36
V5

2V3

12p

p

Radius, r Height, h Surface Area,
S � 2prh � 2pr2

Volume,
V � pr2h

a. 4 cm 3 cm

b. 4 cm 96p cm3

c. 6 cm 216p cm3

d. 5 cm 120p cm2

C H A P T E R  3 117
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CHAPTER 3: MAXIMIZING PROFITS

InvestigateCAREER LINK

We live in a world that demands we determine the best, the worst, the
maximum, and the minimum. Through mathematical modelling, calculus can be
used to establish optimum operating conditions for processes that seem to have
competing variables. For example, minimizing transportation costs for a delivery
vehicle would seem to require the driver to travel as fast as possible to reduce
hourly wages. Higher rates of speed, however, increase gas consumption. With
calculus, an optimal speed can be established to minimize the total cost of
driving the delivery vehicle, considering both gas consumption and hourly
wages. In this chapter, calculus tools will be used in realistic contexts to solve
optimization problems—from business applications (such as minimizing cost) to
psychology (such as maximizing learning).

Case Study—Entrepreneurship

In the last 10 years, the Canadian economy has seen a dramatic increase in the
number of small businesses. An ability to use graphs to interpret the marginal
profit (a calculus concept) will help an entrepreneur make good business
decisions.

A person with an old family recipe for gourmet chocolates decides to open her
own business. Her weekly total revenue (TR) and total cost (TC ) curves are
plotted on the set of axes shown.

DISCUSSION QUESTIONS

Make a rough sketch of the graph in your notes, and
answer the following questions:

1. What sales interval would keep the company
profitable? What do we call these values?

2. Superimpose the total profit (TP) curve over the TR and
TC curves. What would the sales level have to be to
obtain maximum profits? Estimate the slopes on the TR
and TC curves at this level of sales. Should they be the
same? Why or why not?

3. On a separate set of axes, sketch the marginal profit
(the extra profit earned by selling one more box of

chocolates), . What can you say about the
marginal profit as the level of sales progresses from just
less than the maximum to the maximum, and then to
just above the maximum? Does this make sense?
Explain.

MP �
dTP
dx  

1800

2400 ($)

Boxes Sold/Week

TR
, T

C
, T

P,
 ($

)

0

TR

20 40 60 80 100

1200

600

TC

x
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Section 3.1—Higher-Order Derivatives,
Velocity, and Acceleration

Derivatives arise in the study of motion. The velocity of a car is the rate of
change of displacement at a specific point in time. We have already developed the
rules of differentiation and learned how to interpret the derivative at a point on a
curve. We can now extend the applications of differentiation to higher-order
derivatives. This will allow us to discuss the applications of the first and second
derivatives to rates of change as an object moves in a straight line, either vertically
or horizontally, such as a space shuttle taking off into space or a car moving
along a straight section of road.

Higher-Order Derivatives
The function has a first derivative The second derivative of

is the derivative of 

The derivative of with respect to x is If we differentiate
we obtain This new function is called the second

derivative of and is denoted .

For the first derivative is and the second 

derivative is 

Note the appearance of the superscripts in the second derivative. The reason for
this choice of notation is that the second derivative is the derivative of the first

derivative. That is, we write .

Other notations that are used to represent first and second derivatives of are

and 

EXAMPLE 1 Selecting a strategy to determine the second derivative 
of a rational function

Determine the second derivative of when 

Solution
Write as a product, and differentiate.

 �
1

x � 1
�

x1x � 1 22
f ¿ 1x 2 � 11 2 1x � 1 2�1 � 1x 2 1�1 2 1x � 1 2�211 2 f 1x 2 � x1x � 1 2�1

f 1x 2 �
x

1 � x

x � 1.f 1x 2 �
x

1 � x

d2y
dx2 � f – 1x 2 � y–.dy

dx
� f ¿ 1x 2 � y¿

y � f 1x 2
d
dx Qdy

dxR �
d2y
dx2

d2y
dx2 � 12x � 10.

dy
dx

� 6x2 � 10xy � 2x3 � 5x2,

f – 1x 2f 1x 2 � 10x4,
f – 1x 2 � 120x2.f ¿ 1x 2 � 40x3,

f ¿ 1x 2 � 40x3.f 1x 2 � 10x4

y � f ¿ 1x 2 .y � f 1x 2 y � f ¿ 1x 2 .y � f 1x 2

(Product and power of a 
function rule)
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(Simplify)

(Rewrite as a power function)

Differentiating again to determine the second derivative,
(Power of a function rule)

When (Evaluate)

Velocity and Acceleration—Motion on a Straight Line
One reason for introducing the derivative is the need to calculate rates of change.
Consider the motion of an object along a straight line. Examples are a car moving
along a straight section of road, a ball dropped from the top of a building, and a
rocket in the early stages of flight.

When studying motion along a line, we assume that the object is moving along a
number line, which gives us an origin of reference, as well as positive and negative
directions. The position of the object on the line relative to the origin is a function
of time, t, and is commonly denoted by

The rate of change of with respect to time is the object’s velocity, and the
rate of change of the velocity with respect to time is its acceleration, The
absolute value of the velocity is called speed.

a1t 2 .v1t 2 ,s1t 2 s1t 2 .

� �
1

4

�
�2

8

 f – 11 2 �
�211 � 1 23x � 1,

 �
�211 � x 23

 f – 1x 2 � �211 � x 2�311 2
 � 11 � x 2�2

 �
111 � x 22

 �
x � 1 � x1x � 1 22

 �
11x � 1 21x � 1 22 �

x1x � 1 22

120 3 . 1 H I G H E R - O R D E R  D E R I VAT I V E S, V E L O C I T Y, A N D  AC C E L E R AT I O N
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Motion on a Straight Line

An object that moves along a straight line with its position determined by 
a function of time, has a velocity of and an acceleration of

at time t.
In Leibniz notation,

and .

The speed of the object is 0v1t 2 0 .a �
dv
dt

�
d2s

dt2v �
ds
dt

a1t 2 � v¿ 1t 2 � s– 1t 2 v1t 2 � s¿ 1t 2s1t 2 ,

The units of velocity are displacement divided by time. The most common units
are m s.

The units of acceleration are displacement divided by The most common
units are metres per second per second, or metres per second squared, or m s2.

Since we are assuming that the motion is along the number line, it follows that
when the object is moving to the right at time t, and when the object is
moving to the left at time t, If the object is stationary at time t.

The object is accelerating when and are both positive or both negative.
That is, the product of and is positive.

The object is decelerating when is positive and is negative, or when is
negative and is positive. This happens when the product of and is negative.

EXAMPLE 2 Reasoning about the motion of an object along a straight line

An object is moving along a straight line. Its position, to the right of a fixed
point is given by the graph shown. When is the object moving to the right, when
is it moving to the left, and when is it at rest?

Solution
The object is moving to the right whenever is increasing, or 

From the graph, is increasing for and for 

For the value of is decreasing, or so the object is 
moving to the left.

At the direction of motion of the object changes from right to left,
so the object is stationary at 

At the direction of motion of the object changes from left to right,
so the object is stationary at t � 6.v1t 2 � 0,

t � 6,

t � 2.v1t 2 � 0,
t � 2,

v1t 2 6 0,s1t 22 6 t 6 6,

t 7 6.0 6 t 6 2s1t 2 v1t 2 7 0.s1t 2
s1t 2 ,

v1t 2a1t 2v1t 2 a1t 2v1t 2a1t 2v1t 2a1t 2 v1t 2a1t 2 v1t 2 � 0,v1t 2 6 0.
v1t 2 7 0

>1time 22.

>

s(t)

t

1 2 3 4 5 6

C H A P T E R  3 121
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The motion of the object can be illustrated by the following position diagram.

EXAMPLE 3 Connecting motion to displacement, velocity, and acceleration

The position of an object moving on a line is given by 
where s is in metres and t is in seconds.
a. Determine the velocity and acceleration of the object at 
b. At what time(s) is the object at rest?
c. In which direction is the object moving at 
d. When is the object moving in a positive direction?
e. When does the object return to its initial position?

Solution
a. The velocity at time t is 

At 

The acceleration at time t is 

At 

At the velocity is 12 m s and the acceleration is 0 m s2.

We note that at the object is moving at a constant velocity, since the
acceleration is 0 m s2. The object is neither speeding up nor slowing down.

b. The object is at rest when the velocity is 0—that is, when 

or 

The object is at rest at s and at s.

c. To determine the direction of motion, we use the velocity at time 

The object is moving in a negative direction at t � 5.

� �15

v15 2 � 1215 2 � 315 22 t � 5.

t � 4t � 0

t � 4t � 0

 3t14 � t 2 � 0

 12t � 3t2 � 0

v1t 2 � 0.

>t � 2,

>>t � 2,

a12 2 � 12 � 612 2 � 0.t � 2,

a1t 2 � v¿ 1t 2 � s– 1t 2 � 12 � 6t.

v12 2 � 1212 2 � 312 22 � 12.t � 2,

v1t 2 � s¿ 1t 2 � 12t � 3t2.

t � 5?

t � 2.

t � 0,s1t 2 � 6t2 � t3,

s = 0
t = 0 s = 6

s

t = 2
s = 0
t = 6

3 410 2 7 85 6
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d. The object moves in a positive direction when 

(Divide by )

(Factor)

There are two cases to consider since a product is negative when the first factor 
is positive and the second is negative, and vice versa.

 t1t � 4 2 6 0

 t2 � 4t 6 0

�3 12t � 3t2 7 0

v1t 2 7 0.

123C H A P T E R  3

Case 1 Case 2

and t � 4 6 0t 7 0 and t � 4 7 0t 6 0

so and t 6 4t 7 0 so and t 7 4t 6 0

0 6 t 6 4 no solution

Therefore,

The graph of the velocity function is a parabola opening downward, as shown.

From the graph and the algebraic solution above, we conclude that 
for 

The object is moving to the right during the interval 

e. At Therefore, the object’s initial position is at 0.

To find other times when the object is at this point, we solve 

(Factor)

(Solve)

or 

The object returns to its initial position after 6 s.

t � 6t � 0

 t216 � t 2 � 0

 6t2 � t3 � 0

s1t 2 � 0.

s10 2 � 0.t � 0,

0 6 t 6 4.

0 6 t 6 4.
v1t 2 7 0

v(t)

t

1 2 3 4

12

0

0 6 t 6 4.
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EXAMPLE 4 Analyzing motion along a horizontal line

Discuss the motion of an object moving on a horizontal line if its position is given
by where s is in metres and t is in seconds. Include
the initial velocity, final velocity, and any acceleration in your discussion.

Solution
The initial position of the object occurs at time Since the object
starts at the origin.

The velocity at time t is 

The object is at rest when 

So the object is at rest after 

for therefore the object is moving to the right during this
time interval.

for therefore the object is moving to the left during this time
interval.

The initial velocity is So initially, the object is moving 10 m s to the
left.

At 

So the final velocity is 14 m s to the right. The velocity graph is shown.

The acceleration at time t is The acceleration is always 
2 m s2. This means that the object is constantly increasing its velocity at a rate 
of 2 metres per second per second.

In conclusion, the object moves to the left for and to the right for
The initial velocity is m s and the final velocity is 14 m s. 

To draw a diagram of the motion, determine the object’s position at and
(The actual path of the object is back and forth on a line.)

t = 5
s = –25

t = 12
s = 24

s(5) = 52 – 10(5) = –25
s(12) = 122 – 10(12) = 24

t = 0
s = 0

–25 –20 –15 –10 –5 0 5 10 15 20 25

t � 12.
t � 5

>>�105 6 t � 12.
0 � t 6 5

> a1t 2 � v¿ 1t 2 � s– 1t 2 � 2.

>v112 2 � 2112 2 � 10 � 14.t � 12,

>v10 2 � �10.

0 � t 6 5,v1t 2 6 0

5 6 t � 12,v1t 2 7 0

t � 5 s.

 t � 5

 21t � 5 2 � 0

v1t 2 � 0.

v1t 2 � s¿ 1t 2 � 2t � 10 � 21t � 5 2 .
s10 2 � 0,t � 0.

0 � t � 12,s1t 2 � t2 � 10t,

v(t)

t
0

12

8 12

4

8

–4

–12

–8

16

v(t) = 2t – 10

4
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EXAMPLE 5 Analyzing motion under gravity near the surface of Earth

A baseball is hit vertically upward. The position function in metres, of the 
ball above the ground is , where t is in seconds.
a. Determine the maximum height reached by the ball.
b. Determine the velocity of the ball when it is caught 1 m above the ground.

Solution
a. The maximum height occurs when the velocity of the ball is zero—that is,

when the slope of the tangent to the graph is zero. 

The velocity function is 

Solving we obtain This is the moment when the ball changes
direction from up to down.

Therefore, the maximum height reached by the ball is 46 m.

b. When the ball is caught, To find the time at which this occurs, solve

or 

Since is the time at which the ball leaves the bat, the time at which the ball
is caught is 

The velocity of the ball when it is caught is m s.

This negative value is reasonable, since the ball is falling (moving in a negative
direction) when it is caught.

Note, however, that the graph of does not represent the path of the ball. 
We think of the ball as moving in a straight line along a vertical s-axis, with the

direction of motion reversing when 

To see this, note that the ball is at the same
height at time when and at
time when s15 2 � 26.t � 5,

s11 2 � 26,t � 1,

s � 46.

s1t 2
>v16 2 � �1016 2 � 30 � �30

t � 6.
t � 0

t � 6t � 0

 0 � �5t1t � 6 2 1 � �5t2 � 30t � 1

s1t 2 � 1.

 � 46

 s13 2 � �513 22 � 3013 2 � 1

t � 3.v1t 2 � 0,

v1t 2 � s¿ 1t 2 � �10t � 30.

s1t 2 � �5t2 � 30t � 1
s1t 2 ,
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s(t)

t
0

24

1 2 3

8

16

32

40

4 5 6

Position of
ball when

t = 1 and t = 5

ground
level

(3, 46)
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IN SUMMARY

Key Ideas

• The derivative of the derivative function is called the second derivative.

• If the position of an object, is a function of time, t, then the first
derivative of this function represents the velocity of the object at time t.

• Acceleration, is the instantaneous rate of change of velocity with respect
to time. Acceleration is the first derivative of the velocity function and the
second derivative of the position function.

or 

Need to Know

• Negative velocity, or indicates that an object is moving in
a negative direction (left or down) at time t.

• Positive velocity, or indicates that an object is moving in a
positive direction (right or up) at time t.

• Zero velocity, or indicates that an object is stationary and
that a possible change in direction may occur at time t.

• Notations for the second derivative are or of a

function ”.

• Negative acceleration, or indicates that the velocity is
decreasing.

• Positive acceleration, or indicates that the velocity is
increasing.

• Zero acceleration, or indicates that the velocity is constant
and the object is neither accelerating nor decelerating.

• An object is accelerating (speeding up) when its velocity and acceleration
have the same signs.

• An object is decelerating (slowing down) when its velocity and acceleration
have opposite signs.

• The speed of an object is the magnitude of its velocity at time t. 
speed = 0v1t 2 0 � 0s¿ 1t 2 0 .

v¿ 1t 2 � 0,a1t 2 � 0

v¿ 1t 2 7 0,a1t 2 7 0

v¿ 1t 2 6 0,a1t 2 6 0

y � f 1x 2 y–d2

dx2
3 f 1x 2 4 ,d2y

dx2,f – 1x 2 ,
s¿ 1t 2 � 0,v1t 2 � 0

s¿ 1t 2 7 0,v1t 2 7 0

s¿ 1t 2 6 0,v1t 2 6 0

a1t 2 �
dv
dt �

d2s
dt2a1t 2 � v¿ 1t 2 � s– 1t 2 ,

a1t 2 ,v1t 2 � s¿ 1t 2 �
ds
dt

s1t 2 ,
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Exercise 3.1

PART A
1. Explain and discuss the difference in velocity at times and for

2. Determine the second derivative of each of the following:

a. f.

b. g.

c. h.

d. i.

e. j.

3. Each of the following position functions describes the motion of an object
along a straight line. Find the velocity and acceleration as functions of 
t,

a. d.

b. e.

c. f.

4. Answer the following questions for each position versus time graph below:

i. When is the velocity zero?

ii. When is the object moving in a positive direction?

iii. When is the object moving in a negative direction?

a. b. s

t
2

4

6

8

0 2 64 8

s

t
2

4

6

8

0 2 64 8

s1t 2 �
9t

t � 3
s1t 2 � t � 8 �

6
t

s1t 2 � �t � 1s1t 2 � 2t3 � 36t � 10

s1t 2 � 1t � 3 22s1t 2 � 5t2 � 3t � 15

t � 0.

h1x 2 � �3 x5y � 4x
3
2 � x�2

y � 12x � 4 23h1x 2 � 3x4 � 4x3 � 3x2 � 5

g1x 2 � �3x � 6y � 11 � x 22 y � x2 �
1

x2f 1x 2 � �x

f 1x 2 �
2x

x � 1
y � x10 � 3x6

v1t 2 � 2t � t2.
t � 5t � 1
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5. A particle moves along a straight line with the equation of motion

a. Determine the particle’s velocity and acceleration at any time t.

b. When does the motion of the particle change direction?

c. When does the particle return to its initial position?

PART B
6. Each function describes the position of an object that moves along a straight

line. Determine whether the object is moving in a positive or negative
direction at time and at time 

a. b. c.

7. Starting at a particle moves along a line so that its position after 
t seconds is where s is in metres.

a. What is its velocity at time t? b. When is its velocity zero?

8. When an object is launched vertically from ground level with an initial
velocity of 40 m s, its position after t seconds is metres
above ground level.

a. When does the object stop rising? b. What is its maximum height?

9. An object moves in a straight line, and its position, s, in metres after t seconds
is 

a. Determine the velocity when 

b. Determine the acceleration when 

10. The position function of a moving object is in metres,
at time t, in seconds.

a. Calculate the object’s velocity and acceleration at any time t.

b. After how many seconds does the object stop?

c. When does the motion of the object change direction?

d. When is its acceleration positive?

e. When does the object return to its original position?

11. A ball is thrown upward, and its height, h, in metres above the ground after 
t seconds is given by 

a. Calculate the ball’s initial velocity.

b. Calculate its maximum height.

c. When does the ball strike the ground, and what is its velocity at this time?

t � 0.h1t 2 � �5t2 � 25t,

t � 0,s1t 2 � t
5
2 17 � t 2 ,t � 5.

t � 5

s1t 2 � 8 � 7t � t2.

s1t 2 � 40t � 5t2>
s1t 2 � t2 � 6t � 8,

t � 0,

s1t 2 � t3 � 7t2 � 10ts1t 2 � t1t � 3 22s1t 2 � �
1

3
t2 � t � 4

t � 4.t � 1

t � 0.s �
1
3t3 � 2t2 � 3t,

A
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12. A dragster races down a 400 m strip in 8 s. Its distance, in metres, from the
starting line after t seconds is 

a. Determine the dragster’s velocity and acceleration as it crosses the finish line.

b. How fast was it moving 60 m down the strip?

13. For each of the following position functions, discuss the motion of an object
moving on a horizontal line, where s is in metres and t is in seconds. Make a
graph similar to that in Example 4, showing the motion for Find the
velocity and acceleration, and determine the extreme positions (farthest left
and right) for 

a. b.

14. If the position function of an object is at what time, t, in
seconds, will the acceleration be zero? Is the object moving toward or away
from the origin at this instant?

15. The position–time relationship for a moving object is given by
where k is a non-zero constant.

a. Show that the acceleration is constant.

b. Find the time at which the velocity is zero, and determine the position of
the object when this occurs.

PART C
16. An elevator is designed to start from a resting position without a jerk. It can

do this if the acceleration function is continuous.

a. Show that the acceleration is continuous at for the following 
position function

b. What happens to the velocity and acceleration for very large values of t?

17. An object moves so that its velocity, v, is related to its position, s, according
to where b and g are constants. Show that the acceleration
of the object is constant.

18. Newton’s law of motion for a particle of mass m moving in a straight line
says that where F is the force acting on the particle and a is the
acceleration of the particle. In relativistic mechanics, this law is replaced by

where is the mass of the particle measured at rest, is 

the velocity of the particle and c is the speed of light. Show that 

F �
m0aQ1 � QvcR 2R 3

2

.

vm0F �
m0 d

dt v

�1 � QvcR2 ,

F � ma,

v � �b2 � 2gs,

s1t 2 � •     
0, if t 6 0

t3

t2 � 1
, if t � 0

t � 0

s1t 2 � kt2 � 16k2 � 10k 2 t � 2k,

s1t 2 � t5 � 10t2,

s1t 2 � t3 � 12t � 9s1t 2 � 10 � 6t � t2

t � 0.

t � 0.

s1t 2 � 6t2 � 2t.

T
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Section 3.2—Maximum and Minimum on an
Interval (Extreme Values)

INVESTIGATION The purpose of this investigation is to determine how the derivative can be used to
determine the maximum (largest) value or the minimum (smallest) value of a
function on a given interval. Together, these are called the absolute extrema on
an interval.

A. For each of the following functions, determine, by completing the square, the
value of x that produces a maximum or minimum function value on the given
interval.

i.

ii.

iii.

B. For each function in part A, determine the value of c such that 

C. Compare the values obtained in parts A and B for each function. Why 
does it make sense to say that the pattern you discovered is not merely a 
coincidence?

D. Using a graphing calculator, graph each of the following functions and 
determine all the values of x that produce a maximum or minimum value on
the given interval.

i.

ii.

iii.

iv.

v.

E. For each function in part D, determine all the values of c such that 

F. Compare the values obtained in parts D and E for each function. What do you
notice?

G. From your comparisons in parts C and F, state a method for using the
derivative of a function to determine values of the variable that give 
maximum or minimum values of the function.

f ¿1c 2 � 0.

�4 � x � 3f 1x 2 � �x3 � 2x2 � 15x � 23,

�2 � x � 2f 1x 2 � �2x3 � 12x � 7,

0 � x � 4f 1x 2 � 3x3 � 15x2 � 9x � 23,

�3 � x � 3f 1x 2 � x3 � 12x � 5,

�2 � x � 4f 1x 2 � x3 � 3x2 � 8x � 10,

f ¿ 1c 2 � 0.

�1 � x � 4f 1x 2 � 4x2 � 12x � 7,

�3 � x � 4f 1x 2 � �x2 � 2x � 11,

0 � x � 5f 1x 2 � �x2 � 6x � 3,
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H. Repeat part D for the following functions, using the given intervals.

i.

ii.

iii.

iv.

v.

I. In parts C and F, you saw that a maximum or minimum can occur at points
, where From your observations in part H, state other values

of the variable that can produce a maximum or minimum in a given interval.

Checkpoint: Check Your Understanding
The maximum value of a function that has a derivative at all points in an interval
occurs at a “peak” or at an endpoint of the interval. The minimum
value occurs at a “valley” or at an endpoint. This is true no matter
how many peaks and valleys the graph has in the interval.

In the following three graphs, the derivative equals zero at two points:

maximum

minimum

y

x

maximum

minimum

y

x

y

x
0

minimum

maximum

1 f ¿ 1c 2 � 0 21 f ¿ 1c 2 � 0 2
f ¿1c 2 � 0.1c, f 1c 22

�2 � x � 5f 1x 2 � x3 � 5x2 � 3x � 7,

0 � x � 5f 1x 2 � x3 � 12x � 5,

�2 � x � 6f 1x 2 � x3 � 3x2 � 9x � 10,

2 � x � 6f 1x 2 � 4x2 � 12x � 7,

4 � x � 8f 1x 2 � �x2 � 6x � 3,

Algorithm for Finding Maximum or Minimum (Extreme) Values

If a function has a derivative at every point in the interval 
calculate at

• all points in the interval , where 
• the endpoints and 

The maximum value of on the interval is the largest of these 
values, and the minimum value of on the interval is the smallest of these values.f 1x 2 a � x � bf 1x 2x � bx � a

f ¿1x 2 � 0a � x � b

f 1x 2 a � x � b,f 1x 2

When using the algorithm above it is important to consider the function f(x) on a
finite interval—that is, an interval that includes its endpoints. Otherwise, the function
may not attain a maximum or minimum value.
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EXAMPLE 1 Selecting a strategy to determine absolute extrema

Find the extreme values of the function on the interval

Solution
The derivative is 

If we set we obtain so or 

Both values lie in the given interval,

We can then evaluate for these values and at the endpoints and 
to obtain

Therefore, the maximum value of on the interval
is and the minimum value 

is 

Graphing the function on this interval verifies our 
analysis.

EXAMPLE 2 Solving a problem involving absolute extrema

The amount of current, in amperes (A), in an electrical system is given by the
function where t is the time in seconds and 
Determine the times at which the current is at its maximum and minimum, and
determine the amount of current in the system at these times.

Solution
The derivative is 

If we set we obtain

(Multiply by )

(Factor)

(Solve)

Therefore, or t � 3.t � �
7
3

 13t � 7 2 1t � 3 2 � 0

 3t2 � 2t � 21 � 0

�1 �3t2 � 2t � 21 � 0

dC
dt � 0,

dC
dt � �3t2 � 2t � 21.

0 � t � 5.C1t 2 � �t3 � t2 � 21t,

f 15 2 � �21.
f 13 2 � 31,�1 � x � 5

f 1x 2 f 15 2 � �21

 f 13 2 � 31

 f 10 2 � 4

 f 1�1 2 � 15

x � 5
x � �1f 1x 2 3�1, 5 4 . x � 3.x � 0�6x 1x � 3 2 � 0,f ¿1x 2 � 0,

f ¿1x 2 � �6x2 � 18x.

x� 3�1, 5 4 . f 1x 2 � �2x3 � 9x2 � 4
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Only is in the given interval, so we evaluate at and 
as follows:

The maximum is 45 A at time s, and the 
minimum is 0 A at time s.

Graphing the function on this interval verifies our
analysis.

EXAMPLE 3 Selecting a strategy to determine the absolute minimum

The amount of light intensity on a point is given by the function

where t is the time in seconds and Determine the

time of minimal intensity.

Solution
Note that the function is not defined for Since this value is not in the
given interval, we need not worry about it.

The derivative is

(Quotient rule)

(Expand and simplify)

If we set we only need to consider when the numerator is 0.

(Factor)

(Solve)

t � �6 or t � 2

 1t � 6 2 1t � 2 2 � 0

 t2 � 4t � 12 � 0

I¿ 1t 2 � 0,

 �
t2 � 4t � 121t � 2 22

 �
2t2 � 6t � 4 � t2 � 2t � 161t � 2 22

 I¿ 1t 2 �
12t � 2 2 1t � 2 2 � 1t2 � 2t � 16 2 11 21t � 2 22

t � �2.

t� 30, 14 4 .I1t 2 �
t2 � 2t � 16

t � 2 ,

t � 0
t � 3

C15 2 � �53 � 52 � 2115 2 � 5

C13 2 � �33 � 32 � 2113 2 � 45

C10 2 � 0

t � 5t � 3,t � 0,C1t 2t � 3

C H A P T E R  3
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Only is in the given interval, so we evaluate for 2, and 14.

Note that the calculation can be simplified by rewriting the intensity 
function as shown.

Then 

Setting gives

As before, or 
The evaluations are also simplified.

Either way, the minimum amount of light intensity occurs at s on the given
time interval.

t � 2

 I114 2 � 14 �
16

16
� 15

 I12 2 � 2 �
16

4
� 6

 I10 2 � 0 �
16

2
� 8

t � 2.t � �6

 t2 � 4t � 12 � 0

 t2 � 4t � 4 � 16

 1 �
161t � 2 22

I¿ 1t 2 � 0

� 1 �
161t � 2 22

I¿ 1t 2 � 1 � 161t � 2 2�2

 � t � 161t � 2 2�1

 I1t 2 �
t2 � 2t

t � 2
�

16

t � 2

 I114 2 �
142 � 2114 2 � 16

16
� 15

 I12 2 �
4 � 4 � 16

4
� 6

 I10 2 � 8

t � 0,I1t 2t � 2
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IN SUMMARY

Key Ideas

• The maximum and minimum values of a function on an interval are also
called extreme values, or absolute extrema.

• The maximum value of a function that has a derivative at all points in an
interval occurs at a “peak” or at an endpoint of the interval, [a, b],

• The minimum value occurs at a “valley” or at an endpoint of 
the interval, [a, b].

Need to Know

• Algorithm for Finding Extreme Values:

For a function that has a derivative at every point in an interval [a, b], the
maximum or minimum values can be found by using the following procedure:

1. Determine Find all points in the interval , where 

2. Evaluate at the endpoints a and b, and at points where 

3. Compare all the values found in step 2.
• The largest of these values is the maximum value of on the interval

• The smallest of these values is the minimum value of on the interval
a � x � b.

f1x 2a � x � b.
f1x 2

f ¿ 1x 2 � 0.f1x 2 f ¿ 1x 2 � 0.a � x � bf ¿ 1x 2 .
f1x 2

1 f ¿ 1c 2 � 0 21 f ¿ 1c 2 � 0 2

Exercise 3.2

PART A
1. State, with reasons, why the maximum minimum algorithm can or cannot be

used to determine the maximum and minimum values of the following 
functions:

a.

b.

c.

d. x� 3�2, 3 4y �
x2 � 1

x � 3
,

x� 30, 5 4y �
x

x2 � 4
,

�1 � x � 3y �
3x

x � 2
,

�5 � x � 5y � x3 � 5x2 � 10,

>C
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2. State the absolute maximum value and the absolute minimum value of each
function, if the function is defined on the interval shown.

a. c.

b. d.

3. Determine the absolute extrema of each function on the given interval.
Illustrate your results by sketching the graph of each function.

a.

b.

c.

d.

e.

f. x� 30, 4 4f 1x 2 �
1

3
x3 �

5

2
x2 � 6x,

x� 3�2, 0 4f 1x 2 � 2x3 � 3x2 � 12x � 1,

x� 3�2, 1 4f 1x 2 � x3 � 3x2,

�1 � x � 3f 1x 2 � x3 � 3x2,

0 � x � 2f 1x 2 � 1x � 2 22,

0 � x � 3f 1x 2 � x2 � 4x � 3,

h(x)

x
0

30

2

10

20

–10

–30

–20

–2

g(x)

x
0

30

2 4 6

10

20

–10

–30

–20

–2–4–6

f(t)

t
0 10 20 30

100

–100

–10–20–30

y

x
0

12

2 4 6

4

8

–4

–12

–8

–2–4–6

K
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PART B
4. Using the algorithm for finding maximum or minimum values, determine the

absolute extreme values of each function on the given interval.

a.

b.

c.

d.

e.

f.

5. a. An object moves in a straight line. Its velocity, in m s, at time is 

Determine the maximum and minimum velocities

over the time interval 

b. Repeat part a., if 

6. A swimming pool is treated periodically to control the growth of bacteria.
Suppose that days after a treatment, the number of bacteria per cubic 
centimetre is Determine the lowest number of
bacteria during the first week after the treatment.

7. The fuel efficiency, E, in litres per 100 kilometres, for a car driven at speed 

v, in km h, is 

a. If the speed limit is 100 km h, determine the legal speed that will 
maximize the fuel efficiency.

b. Repeat part a., using a speed limit of 50 km h.

c. Determine the speed intervals, within the legal speed limit of 0 km/h to
100 km/h, in which the fuel efficiency is increasing.

d. Determine the speed intervals, within the legal speed limit of 0 km/h to
100 km/h, in which the fuel efficiency is decreasing.

8. The concentration , in milligrams per cubic centimetre, of a certain

medicine in a patient’s bloodstream is given by where t is 

the number of hours after the medicine is taken. Determine the maximum and
minimum concentrations between the first and sixth hours after the medicine
is taken.

C1t 2 �
0.1t1t � 3 2 2,

C1t 2

>
>E1v 2 �

1600v
v2 � 6400

.>
N1t 2 � 30t2 � 240t � 500.
t

t � 0.v1t 2 �
4t2

1 � t2,

1 � t � 4.

t � 0.v1t 2 �
4t2

4 � t3,

t>
x� 32, 4 4f 1x 2 �

4x

x2 � 1
,

�2 � x � 4f 1x 2 �
4x

x2 � 1
,

x� 3�3, 4 4f 1x 2 � 3x4 � 4x3 � 36x2 � 20,

0 � x � 2f 1x 2 �
1

x2 � 2x � 2
,

x� 32, 9 4f 1x 2 � 4Vx � x,

1 � x � 10f 1x 2 � x �
4
x

,

A

T
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9. Technicians working for the Ministry of Natural Resources found that the
amount of a pollutant in a certain river can be represented by

where t is the time, in years, since a 

cleanup campaign started. At what time was the pollution at its lowest level?

10. A truck travelling at x km h, where uses gasoline at the rate of

L 100 km, where . If fuel costs $1.15 L, what speed

will result in the lowest fuel cost for a trip of 200 km? What is the lowest
total cost for the trip?

11. The polynomial function 
models the shape of a roller-coaster track, where f is the vertical displacement
of the track and x is the horizontal displacement of the track. Both 
displacements are in metres. Determine the absolute maximum and minimum
heights along this stretch of track.

12. a. Graph the cubic function with an absolute minimum at a local
maximum at a local minimum at and an absolute maximum
at Note: local maximum and minimum values occur at peaks and
valleys of a graph and do not have to be absolute extrema. 

b. What is the domain of this function?

c. Where is the function increasing? Where is it decreasing?

13. What points on an interval must you consider to determine the absolute 
maximum or minimum value on the interval? Why?

PART C
14. In a certain manufacturing process, when the level of production is x units, the

cost of production, in dollars, is 

What level of production, x, will minimize the unit cost, Keep in

mind that the production level must be an integer.

15. Repeat question 14. If the cost of production is 
1 � x � 300.

C1x 2 � 6000 � 9x � 0.05x2,

U1x 2 �
C1x 2

x ?

1 � x � 300.C1x 2 � 3000 � 9x � 0.05x2,

14, 9 2 . 12, �1 2 ,10, 3 2 , 1�2, �12 2 ,

0 � x � 75,f 1x 2 � 0.001x3 � 0.12x2 � 3.6x � 10,

>r1x 2 �
1
4 Q4900

x � xR>r 1x 2 30 � x � 120,>
0 � t � 1,P1t 2 � 2t �

11162t � 1 2 ,

T
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Mid-Chapter Review

1. Determine the second derivative of each of the following functions:

a. c.

b. d.

2. The displacement of an object in motion is described by
where the horizontal displacement, s, is measured in metres at t seconds.
a. Calculate the displacement at 3 s.

b. Calculate the velocity at 5 s.

c. Calculate the acceleration at 4 s.

3. A ball is thrown upward. Its motion can be described by 
where the height, h, is measured in metres at t seconds.

a. Determine the initial velocity.

b. When does the ball reach its maximum height?

c. When does the ball hit the ground?

d. What is the velocity of the ball when it hits the ground?

e. What is the acceleration of the ball on the way up? What is its 
acceleration on the way down?

4. An object is moving horizontally. The object’s displacement, s, in metres 
at t seconds is described by 

a. Determine the velocity and acceleration at 

b. When is the object stationary? Describe the motion immediately before
and after these times.

c. At what time, to the nearest tenth of a second, is the acceleration equal 
to 0? Describe the motion at this time.

5. Determine the absolute extreme values of each function on the given interval,
using the algorithm for finding maximum and minimum values.

a.

b.

c.

6. The volume, V, of 1 kg of H2O at temperature t between and can
be modelled by 
Volume is measured in cubic centimetres. Determine the temperature at
which the volume of water is the greatest in the given interval.

V1t 2 � �0.000  067t3 � 0.008 504 3t2 � 0.064 26t � 999.87.
30 °C0 °C

x� 31, 5 4f 1x 2 �
1
x

�
1

x3  ,

�3 � x � 3f 1x 2 � 1x � 2 22,

�2 � x � 2f 1x 2 � x3 � 3x2 � 1 ,

t � 2.

s1t 2 � 4t � 7t2 � 2t3.

h1t 2 � �4.9t2 � 6t � 2,

s1t 2 � t3 � 21t2 � 90t,

g1x 2 � �x2 � 1f 1x 2 � 12x � 5 23 y �
15

x � 3
h1x 2 � 3x4 � 4x3 � 3x2 � 5
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7. Evaluate each of the following:

a. if 

b. if 

c. if 

d. if 

e. if 

f. if 

g. if 

h. if 

8. On the surface of the Moon, an astronaut can jump higher because the force 
of gravity is less than it is on Earth. When a certain astronaut jumps, his height,

in metres above the Moon’s surface, can be modelled by 

where t is measured in seconds. What is the acceleration due to gravity on the
Moon?

9. The forward motion of a space shuttle, t seconds after touchdown, is described
by where s is measured in metres.

a. What is the velocity of the shuttle at touchdown?

b. How much time is required for the shuttle to stop completely?

c. How far does the shuttle travel from touchdown to a complete stop?

d. What is the deceleration 8 s after touchdown?

10. In a curling game, one team's skip slides a stone toward the rings at the opposite
end of the ice. The stone’s position, s, in metres at t seconds, can be modelled
by How far does the stone travel before it stops? How long is
it moving?

11. After a football is punted, its height, h, in metres above the ground at 
t seconds, can be modelled by 

a. Determine the restricted domain of this model.

b. When does the ball reach its maximum height?

c. What is the ball’s maximum height?

h1t 2 � �4.9t2 � 21t � 0.45.

s1t 2 � 12t � 4t
3
2.

s1t 2 � 189t � t
7
3,

s1t 2 � tQ�5
6t � 1R,

f 1x 2 � �3x3 � 7x2 � 4x � 11f ¿ a 3

4
b

f 1x 2 � �2x5 � 2x � 6 � 3x3f – a 1

3
b f 1x 2 � x4 � x5 � x3f – 14 2 f 1x 2 � 14x2 � 3x � 6f ¿ 10 2 f 1x 2 � 4x3 � 3x2 � 2x � 6f – 1�3 2 f 1x 2 � �3x2 � 5x � 7f – 11 2 f 1x 2 � 2x3 � 4x2 � 5x � 8f ¿ 1�2 2 f 1x 2 � x4 � 3xf ¿ 13 2

M I D - C H A P T E R  R E V I E W140
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Section 3.3—Optimization Problems

We frequently encounter situations in which we are asked to do the best we can.
Such a request is vague unless we are given some conditions. Asking us to
minimize the cost of making tables and chairs is not clear. Asking us to make the
maximum number of tables and chairs possible, with a given amount of material,
so that the costs of production are minimized allows us to construct a function
that describes the situation. We can then determine the minimum (or maximum)
of the function.

Such a procedure is called optimization. To optimize a situation is to realize the
best possible outcome, subject to a set of restrictions. Because of these restrictions,
the domain of the function is usually restricted. As you have seen earlier, in such
situations, the maximum or minimum can be identified through the use of calculus,
but might also occur at the ends of the restricted domain.

EXAMPLE 1 Solving a problem involving optimal area

A farmer has 800 m of fencing and wishes to enclose a rectangular field. One side
of the field is against a country road that is already fenced, so the farmer needs to
fence only the remaining three sides of the field. The farmer wants to enclose the
maximum possible area and to use all the fencing. How does the farmer determine
the dimensions to achieve this goal?

Solution
The farmer can achieve this goal by determining a function that describes the area,
subject to the condition that the amount of fencing used is to be exactly 800 m, and
by finding the maximum of the function. To do so, the farmer proceeds as follows:

Let the width of the enclosed area be x metres.

Then the length of the rectangular field is m. The area of the field can
be represented by the function , where

The domain of the function is since the amount of fencing is 800 m.
To find the minimum and maximum values, determine 
Setting we obtain so x � 200.800 � 4x � 0,A¿ 1x 2 � 0,

A¿ 1x 2 � 800 � 4x.A¿ 1x 2 : 

0 6 x 6 400,

 � 800x � 2x2

 A1x 2 � x 1800 � 2x 2 A1x 2 1800 � 2x 2road

x x
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The minimum and maximum values can occur at or at the ends of the
domain, and Evaluating the area function at each of these gives

Sometimes, the ends of the domain produce results that are either not possible or
unrealistic. In this case, produces the maximum. The ends of the domain
do not result in possible dimensions of a rectangle.

The maximum area that the farmer can enclose is 80 000 m2, within a field 200 m
by 400 m.

EXAMPLE 2 Solving a problem involving optimal volume

A piece of sheet metal, 60 cm by 30 cm, is to be used to make a rectangular box with
an open top. Determine the dimensions that will give the box with the largest volume.

Solution
From the diagram, making the box requires the four corner squares to be cut out
and discarded. Folding up the sides creates the box. Let each side of the squares
be x centimetres.

Therefore,

Since all dimensions are positive,

The volume of the box is the product of its dimensions and is given by the function
where

 � 4x3 � 180x2 � 1800x

 V1x 2 � x160 � 2x 2 130 � 2x 2V1x 2 ,

0 6 x 6 15.

 width � 30 � 2x

 length � 60 � 2x

 height � x

x � 200

 � 0

 A1400 2 � 4001800 � 800 2 � 80 000

 A1200 2 � 2001800 � 400 2 A10 2 � 0

x � 400.x � 0
x � 200

60 cm

30 cm

x x
x

x

x

x
x x

60 – 2x
30 – 2xx
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For extreme values, set 

Setting we obtain Solving for x using the
quadratic formula results in

or 

Since This is the only place within the
interval where the derivative is 0.

To find the largest volume, substitute in 

Notice that the endpoints of the domain did not have to be tested since it is
impossible to make a box using the values or 

The maximum volume is obtained by cutting out corner squares of side length 
6.3 cm. The length of the box is cm, the width is about

cm, and the height is about 6.3 cm.

EXAMPLE 3 Solving a problem that minimizes distance

Ian and Ada are both training for a marathon. Ian’s house is located 20 km north
of Ada’s house. At 9:00 a.m. one Saturday, Ian leaves his house and jogs south at
8 km h. At the same time, Ada leaves her house and jogs east at 6 km h. When
are Ian and Ada closest together, given that they both run for 2.5 h?

Solution
If Ian starts at point I, he reaches point J after time t hours. Then km, and

km.

If Ada starts at point A, she reaches point B after t hours, and km.
Now the distance they are apart is and s can be expressed as a function 
of t by

 � 1100t2 � 320t � 400 2 12 � �100t2 � 320t � 400

 � �120 � 8t 22 � 16t 22 s1t 2 � �JA2 � AB2

s � JB,
AB � 6t

JA � 120 � 8t 2 IJ � 8t

>>

30 � 2 � 6.3 � 17.4
60 � 2 � 6.3 � 47.4

x � 15.x � 0

 � 5196

 V16.3 2 � 416.3 23 � 18016.3 22 � 180016.3 2 V1x 2 � 4x3 � 180x2 � 1800x.x � 6.3

x � 15 � 5�3 � 6.3.0 6 x 6 15,

x � 6.3x � 23.7

 � 15 ; 5�3

 x �
30 ; �300

2

x2 � 30x � 150 � 0.V ¿ 1x 2 � 0,

 � 121x2 � 30x � 150 2 V ¿ 1x 2 � 12x2 � 360x � 1800

V ¿ 1x 2 � 0.

20

A

J

I

B

s
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The domain for t is 

To obtain a minimum or maximum value, let 

Using the algorithm for finding extreme values,

Therefore, the minimum value of is 12 km, which occurs at time 10:36 a.m.s1t 2 s12.5 2 � �225 � 15

 s11.6 2 � �10011.6 22 � 32011.6 2 � 400 � 12

 s10 2 � �400 � 20

 t � 1.6

 100t � 160 � 0

 
100t � 160

�100t2 � 320t � 400
� 0

s¿ 1t 2 � 0.

 �
100t � 160

�100t2 � 320t � 400

 s¿ 1t 2 �
1

2
 1100t2 � 320t � 400 2�1

2   1200t � 320 20 � t � 2.5.

IN SUMMARY

Key Ideas

• In an optimization problem, you must determine the maximum or minimum
value of a quantity.

• An optimization problem can be solved using a mathematical model that is
developed using information given in the problem. The numerical solution
represents the extreme value of the model.

Need to Know

• Algorithm for Solving Optimization Problems:

1. Understand the problem, and identify quantities that can vary. Determine a
function in one variable that represents the quantity to be optimized.

2. Whenever possible, draw a diagram, labelling the given and required
quantities.

3. Determine the domain of the function to be optimized, using the
information given in the problem.

4. Use the algorithm for extreme values to find the absolute maximum or
minimum value in the domain.

5. Use your result for step 4 to answer the original problem.
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Exercise 3.3

PART A
1. A piece of wire, 100 cm long, needs to be bent to form a rectangle. Determine

the dimensions of a rectangle with the maximum area.

2. Discuss the result of maximizing the area of a rectangle, given a fixed
perimeter.

3. A farmer has 600 m of fence and wants to enclose a rectangular field beside a
river. Determine the dimensions of the fenced field in which the maximum
area is enclosed. (Fencing is required on only three sides: those that aren't
next to the river.)

4. A rectangular piece of cardboard, 100 cm by 40 cm, is going to be used to
make a rectangular box with an open top by cutting congruent squares from
the corners. Calculate the dimensions (to one decimal place) for a box with
the largest volume.

5. A rectangle has a perimeter of 440 cm. What dimensions will maximize the
area of the rectangle?

6. What are the dimensions of a rectangle with an area of and the smallest
possible perimeter?

7. A rancher has 1000 m of fencing to enclose two rectangular corrals. The
corrals have the same dimensions and one side in common. What dimensions
will maximize the enclosed area?

8. A net enclosure for practising golf shots is open at one end, as shown. Find
the dimensions that will minimize the amount of netting needed and give a
volume of . (Netting is required only on the sides, the top, and the 
far end.)

y
x

x

144 m2

x x

y

64 m2

C
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PART B
9. The volume of a square-based rectangular cardboard box needs to be 1000 cm3.

Determine the dimensions that require the minimum amount of material to
manufacture all six faces. Assume that there will be no waste material. The
machinery available cannot fabricate material smaller than 2 cm in length.

10. Determine the area of the largest rectangle that can be inscribed inside a
semicircle with a radius of 10 units. Place the length of the rectangle along
the diameter.

11. A cylindrical-shaped tin can must have a capacity of 1000 cm3.

a. Determine the dimensions that require the minimum amount of tin for the
can. (Assume no waste material.) According to the marketing department, the
smallest can that the market will accept has a diameter of 6 cm and a height
of 4 cm.

b. Express your answer for part a. as a ratio of height to diameter. Does this
ratio meet the requirements outlined by the marketing department?

12. a. Determine the area of the largest rectangle that can be inscribed in a right
triangle if the legs adjacent to the right angle are 5 cm and 12 cm long. 
The two sides of the rectangle lie along the legs.

b. Repeat part a. for a right triangle that has sides 8 cm and 15 cm.

c. Hypothesize a conclusion for any right triangle.

13. a. An isosceles trapezoidal drainage gutter is to be made so that the angles at A
and B in the cross-section ABCD are each . If the 5 m long sheet of metal
that has to be bent to form the open-topped gutter and the width of the sheet
of metal is 60 cm, then determine the dimensions so that the cross-sectional
area will be a maximum.

b. Calculate the maximum volume of water that can be held by this gutter.

14. The 6 segments of the window frame shown in the diagram are to be constructed
from a piece of window framing material 6m in length. A carpenter wants to
build a frame for a rural gothic style window, where is equilateral. 
The window must fit inside a space that is 1 m wide and 3 m high.

^  ABC

A B

CD

5 
m

120°
T

A

B C

A
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a. Determine the dimensions that should be used for the six pieces so that the
maximum amount of light will be admitted. Assume no waste material for
corner cuts and so on.

b. Would the carpenter get more light if the window was built in the shape of
an equilateral triangle only? Explain.

15. A train leaves the station at 10:00 a.m. and travels due south at a speed of 
60 km h. Another train has been heading due west at 45 km h and reaches the
same station at 11:00 a.m. At what time were the two trains closest together?

16. A north–south highway intersects an east–west highway at point P. A vehicle
crosses P at 1:00 p.m., travelling east at a constant speed of 60 km h. At the
same instant, another vehicle is 5 km north of P, travelling south at 80 km h.
Find the time when the two vehicles are closest to each other and the distance
between them at this time.

PART C
17. In question 12, part c., you looked at two specific right triangles and observed

that a rectangle with the maximum area that can be inscribed inside the
triangle had dimensions equal to half the lengths of the sides adjacent to the
rectangle. Prove that this is true for any right triangle.

18. Prove that any cylindrical can of volume k cubic units that is to be made using
a minimum amount of material must have the height equal to the diameter.

19. A piece of wire, 100 cm long, is cut into two pieces. One piece is bent to
form a square, and the other piece is bent to form a circle. Determine how the
wire should be cut so that the total area enclosed is

a. a maximum

b. a minimum

20. Determine the minimal distance from point to the curve given by

21. A chord joins any two points A and B on the parabola whose equation is
If C is the midpoint of AB, and CD is drawn parallel to the x-axis to

meet the parabola at D, prove that the tangent at D is parallel to chord AB.

22. A rectangle lies in the first quadrant, with one vertex at the origin and two of
the sides along the coordinate axes. If the fourth vertex lies on the line defined
by find the rectangle with the maximum area.

23. The base of a rectangle lies along the x-axis, and the upper two vertices are on
the curve defined by Determine the dimensions of the rectangle
with the maximum area.

y � k2 � x2.

x � 2y � 10 � 0,

y2 � 4x.

y � 1x � 3 22.
1�3, 3 2

>>
>>
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Section 3.4—Optimization Problems in 
Economics and Science

In the world of business, it is extremely important to manage costs effectively.
Good control will allow for minimization of costs and maximization of profit. 
At the same time, there are human considerations. If your company is able to
maximize profit but antagonizes customers or employees in the process, there 
may be problems in the future. For this reason, it may be important that, in
addition to any mathematical constraints, you consider other more practical
constraints on the domain when you construct a workable function.

The following examples will illustrate economic situations and domain constraints
you may encounter.

EXAMPLE 1 Solving a problem to maximize revenue

A commuter train carries 2000 passengers daily from a suburb into a large city.
The cost to ride the train is $7.00 per person. Market research shows that 40 fewer
people would ride the train for each $0.10 increase in the fare, and 40 more
people would ride the train for each $0.10 decrease. If the capacity of the train is
2600 passengers, and carrying fewer than 1600 passengers means costs exceed
revenue, what fare should the railway charge to get the largest possible revenue?

Solution
To maximize revenue, we require a revenue function. We know that

To form a revenue function, the most straightforward choice for the independent
variable comes from noticing that both the number of passengers and the fare per
passenger change with each $0.10 increase or decrease in the fare. If we let x
represent the number of $0.10 increases in the fare (for example, represents
a $0.30 increase in the fare, whereas represents a $0.10 decrease in the
fare), then we can write expressions for both the number of passengers and the
fare per passenger in terms of x, as follows:
• the fare per passenger is 
• the number of passengers is 
Since the number of passengers must be at least 1600,
and Since the number of passengers cannot exceed 2600,

and 

The domain is �15 � x � 10.

x � �15.2000 � 40x � 2600,
x � 10.

2000 � 40x � 1600,
2000 � 40x

7 � 0.10x

x � �1
x � 3

revenue � 1number of passengers 2 � 1fare per passenger 2 .

3 . 4 O P T I M I Z AT I O N  P R O B L E M S  I N  E C O N O M I C S  A N D  S C I E N C E
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The revenue function is 

From a practical point of view, we also require x to be an integer, so that the fare
only varies by increments of $0.10. We do not wish to consider fares that are not
multiples of 10 cents.

Therefore, we need to find the absolute maximum value of the revenue function
on the interval where x must be

an integer.

when 

is never undefined. Notice that , is in the domain. To determine the
maximum revenue, we evaluate

Therefore, the maximum revenue occurs when there are fare increases of
$0.10 each, or a fare decrease of At a fare of $6.00, the daily
revenue is $14 400, and the number of passengers is 

EXAMPLE 2 Solving a problem to minimize cost

A cylindrical chemical storage tank with a capacity of 1000 m3 is going to be
constructed in a warehouse that is 12 m by 15 m, with a height of 11 m. The
specifications call for the base to be made of sheet steel that costs $100 m2, the
top to be made of sheet steel that costs $50 m2, and the wall to be made of sheet
steel that costs $80 m2.
a. Determine whether it is possible for a tank of this capacity to fit in the

warehouse. If it is possible, state the restrictions on the radius.
b. If fitting the tank in the warehouse is possible, determine the proportions that

meet the conditions and that minimize the cost of the steel for construction.
All calculations should be accurate to two decimal places.

> > >

2000 � 401�10 2 � 2400.
1010.10 2 � $1.00.

�10

 � 12 800

 R110 2 � �4110 22 � 80110 2 � 14 000

 � 14 400

 R1�10 2 � �41�10 22 � 801�10 2 � 14 000

 � 14 300

 R1�15 2 � �41�15 22 � 801�15 2 � 14 000

x � �10R¿ 1x 2 x � �10�8x � 80 � 0R¿ 1x 2 � 0

R¿ 1x 2 � �8x � 80

�15 � x � 10,� �4x2 � 80x � 14 000 R1x 2

� �4x2 � 80x � 14 000

R1x 2 � 17 � 0.10x 2 12000 � 40x 2
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Solution
a. The radius of the tank cannot exceed 6 m, and the maximum height is 11 m.

The volume, using and is 
It is possible to build a tank with a volume of 1000 m3.
There are limits on the radius and the height. Clearly, Also, if 

then so 
The tank can be constructed to fit in the warehouse. Its radius must be

b. If the height is h metres and the radius is r metres, then
• the cost of the base is 
• the cost of the top is 
• the cost of the wall is 
The cost of the tank is 
Here we have two variable quantities, r and h.

However, since 

Substituting for h, we have a cost function in terms of r.

or 

From part a., we know that the domain is 
To find points where extreme values could occur, set 

This value is within the given domain, so we use the algorithm for finding
maximum and minimum values.

 C16 2 � 150p16 22 �
160 000

6
� 43 631

 C15.54 2 � 150p15.54 22 �
160 000

5.54
� 43 344

 C15.38 2 � 150p15.38 22 �
160 000

5.38
� 43 380

 r � 5.54

 r3 �
1600

3p

  300pr �
160 000

r2

 300pr �
160 000

r2 � 0

C¿ 1r 2 � 0.
5.38 � r � 6.

 C1r 2 � 150pr2 �
160 000

r

 C1r 2 � 150pr2 � 160pr a 1000

pr2 b
h �

1000

pr
2 .V � pr2h � 1000,

C � 150pr2 � 160prh.
$8012prh 2$501pr2 2$1001pr2 2

5.38 � r � 6.

r � 5.38.pr2111 2 � 1000,h � 11,
0 6 r � 6.

V � pr2h � 1244 m3.h � 11,r � 6

r

h

150
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Exercise 3.4

PART A
1. The cost, in dollars, to produce x litres of maple syrup for the Elmira Maple

Syrup Festival is where 

a. What is the average cost of producing 625 L?

b. The marginal cost is and the marginal revenue is Marginal
cost at x litres is the expected change in cost if we were to produce one
additional litre of syrup. Similarly for marginal revenue. What is the 
marginal cost at 1225 L?

c. How much production is needed to achieve a marginal cost of $0.50 L?>
R¿ 1x 2 .C¿ 1x 2 ,

x � 400.C1x 2 � 751�x � 10 2  ,

IN SUMMARY

Key Ideas

• Profit, cost, and revenue are quantities whose rates of change are measured
in terms of the number of units produced or sold.

• Economic situations usually involve minimizing costs or maximizing profits.

Need to Know 

• To maximize revenue, we can use the revenue function.

revenue total revenue from the sale of x units (price per unit) x.

• Practical constraints, as well as mathematical constraints, must always be
considered when constructing a model.

• Once the constraints on the model have been determined—that is the
domain of the function—apply the extreme value algorithm to the function
over the appropriately defined domain to determine the absolute extrema.

���

K

The minimal cost is approximately $43 344, with a tank of radius 5.54 m and 
a height of m.

When solving real-life optimization problems, there are often many factors that can
affect the required functions and their domains. Such factors may not be obvious
from the statement of the problem. We must do research and ask many questions to
address all the factors. Solving an entire problem is a series of many steps, and
optimization using calculus techniques is only one step in determining a solution.

1000

p15.54 2 2 � 10.37
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2. A sociologist determines that a foreign-language student has learned
vocabulary terms after t hours of uninterrupted study.

a. How many terms are learned between times and ?

b. What is the rate, in terms per hour, at which the student is learning at time
?

c. What is the maximum rate, in terms per hour, at which the student is 
learning?

3. A researcher found that the level of antacid in a person’s stomach, t minutes 

after a certain brand of antacid tablet is taken, is 

a. Determine the value of t for which 

b. Determine for the value you found in part a.

c. Using your graphing calculator, graph 

d. From the graph, what can you predict about the level of antacid in a
person’s stomach after 1 min?

e. What is happening to the level of antacid in a person’s stomach from
?

PART B
4. The operating cost, C, in dollars per hour, for an airplane cruising at a 

height of h metres and an air speed of 200 km h is given by 

for the domain Determine 

the height at which the operating cost is at a minimum, and find the operating 
cost per hour at this height.

5. A rectangular piece of land is to be fenced using two kinds of fencing. Two
opposite sides will be fenced using standard fencing that costs $6 m, while
the other two sides will require heavy-duty fencing that costs $9 m. What are
the dimensions of the rectangular lot of greatest area that can be fenced for a
cost of $9000?

6. A real estate office manages 50 apartments in a downtown building. When 
the rent is $900 per month, all the units are occupied. For every $25 increase
in rent, one unit becomes vacant. On average, all units require $75 in
maintenance and repairs each month. How much rent should the real estate
office charge to maximize profits?

7. A bus service carries 10 000 people daily between Ajax and Union Station,
and the company has space to serve up to 15 000 people per day. The cost to
ride the bus is $20. Market research shows that if the fare increases by 
$0.50, 200 fewer people will ride the bus. What fare should be charged to 
get the maximum revenue, given that the bus company must have at least
$130 000 in fares a day to cover operating costs?

>>
1000 � h � 20 000.C � 4000 �

h
15 �

15 000 000
h

>
2 � t � 8

L1t 2 .L1t 2 L¿ 1t 2 � 0.

L1t 2 �
6t

t
2

� 2t � 1
.

t � 2

t � 3t � 2

N1t 2 � 20t � t2

A
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8. The fuel cost per hour for running a ship is approximately one half the cube
of the speed (measured in knots) plus additional fixed costs of $216 per hour.
Find the most economical speed to run the ship for a 500 M (nautical mile)
trip. Note: Assume that there are no major disturbances, such as heavy tides
or stormy seas.

9. A 20 000 m3 rectangular cistern is to be made from reinforced concrete such that
the interior length will be twice the height. If the cost is $40 m2 for the base,
$100 m2 for the side walls, and $200 m2 for the roof, find the interior dimensions
(to one decimal place) that will keep the cost to a minimum. To protect the water
table, the building code specifies that no excavation can be more than 22 m deep. It
also specifies that all cisterns must be at least 1 m deep.

10. The cost of producing an ordinary cylindrical tin can is determined by the
materials used for the wall and the end pieces. If the end pieces are twice as
expensive per square centimetre as the wall, find the dimensions (to the
nearest millimetre) to make a 1000 cm3 can at minimal cost.

11. Your neighbours operate a successful bake shop. One of their specialties is a very
rich whipped-cream-covered cake. They buy the cakes from a supplier who
charges $6.00 per cake, and they sell 200 cakes weekly at $10.00 each. Research
shows that profit from the cake sales can be increased by increasing the price.
Unfortunately, for every increase of $0.50 cents, sales will drop by seven cakes.

a. What is the optimal retail price for a cake to obtain a maximum weekly
profit?

b. The supplier, unhappy with reduced sales, informs the owners that if they
purchase fewer than 165 cakes weekly, the cost per cake will increase to
$7.50. Now what is the optimal retail price per cake, and what is the bake
shop’s total weekly profit?

c. Situations like this occur regularly in retail trade. Discuss the implications
of reduced sales with increased total profit versus greater sales with
smaller profits. For example, a drop in the number of customers could
mean fewer sales of associated products.

12. Sandy is making a closed rectangular jewellery box with a square base from
two different woods. The wood for the top and bottom costs . The wood
for the sides costs . Find the dimensions that will minimize the cost of 
the wood for a volume of .

13. An electronics store is selling personal CD players. The regular price for each
CD player is $90. During a typical two weeks, the store sells 50 units. Past
sales indicate that for every $1 decrease in price, the store sells five more
units during two weeks. Calculate the price that will maximize revenue.

4000 cm3
$30>m2

$20>m2

>> >

T

C
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14. A professional basketball team plays in an arena that holds 20 000 spectators.
Average attendance at each game has been 14 000. The average ticket price is
$75. Market research shows that for each $5 reduction in the ticket price,
attendance increases by 800. Find the price that will maximize revenue.

15. Through market research, a computer manufacturer found that x thousand units of
its new laptop will sell at a price of dollars per unit. The cost, C, in
dollars to produce this many units is 
Determine the level of sales that will maximize profit.

PART C
16. If the cost of producing x items is given by the function and the total

revenue when x items are sold is then the profit function is
Show that the instantaneous rate of change in profit is 0

when the marginal revenue equals the marginal cost.

17. A fuel tank is being designed to contain 200 m3 of gasoline, but the maximum
length of a tank (measured from the tips of each hemisphere) that can be safely
transported to clients is 16 m long. The design of the tank calls for a cylindrical
part in the middle, with hemispheres at each end. If the hemispheres are twice
as expensive per unit area as the cylindrical part, find the radius and height of
the cylindrical part so the cost of manufacturing the tank will be minimal.
Give your answers correct to the nearest centimetre.

18. A truck crossing the prairies at a constant speed of 110 kilometres per hour gets
gas mileage of 8 kilometre per litre. Gas costs $1.15 per litre. The truck loses
0.10 kilometres per litre in fuel efficiency for each kilometre per hour increase
in speed. The driver is paid $35 per hour in wages and benefits. Fixed costs for
running the truck are $15.50 per hour. If a trip of 450 kilometres is planned,
what speed will minimize operating expenses?

19. During a cough, the diameter of the trachea decreases. The velocity, v,
of air in the trachea during a cough may be modelled by the formula

where A is a constant, r is the radius of the trachea
during the cough, and is the radius of the trachea in a relaxed state. Find
the radius of the trachea when the velocity is the greatest, and find the
associated maximum velocity of air. Note that the domain for the problem 
is 0 � r � r0.

r0

v1r 2 � Ar21r0 � r 2 ,

P1x 2 � R1x 2 � C1x 2 . R1x 2 , C1x 2 ,
C1x 2 � 15 000 000 � 1 800 000x �75x2.

2000 � 5x
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CHAPTER 3: MAXIMIZING PROFITS

Investigate and ApplyCAREER LINK WRAP-UP

A construction company has been offered a contract for $7.8 million to construct
and operate a trucking route for five years to transport ore from a mine site to a
smelter. The smelter is located on a major highway, and the mine is 3 km into a
heavily forested area off the road.

Construction (capital) costs are estimated as follows:

• Repaving the highway will cost $200 000 km.

• A new gravel road from the mine to the highway will cost $500 000 km.

Operating conditions are as follows:

• There will be 100 round trips each day, for 300 days a year, for each of the
five years the mine will be open.

• Operating costs on the gravel road will be $65 h, and the speed limit will be
40 km h.

• Operating costs on the highway will be $50 h, and the speed limit will be 
70 km h.

Use calculus to determine if the company should accept the contract. Determine
the average speeds of the trucks along the paved and gravel roads that produce
optimum conditions (maximum profit). What is the maximum profit?

> >> >
>>

Key Concepts Review

In Chapter 3, you have considered a variety of applications of derivatives on an
interval.
You should now be familiar with the following concepts:

• the position, velocity, and acceleration functions , and 
respectively, where and 

• the algorithm for finding absolute maximum and absolute minimum values

• derivatives that involve cost, revenue, and profit in the social sciences 

• optimization problems (remember that you must first create a function to 
analyze, and that restrictions in the domain may be crucial)

a1t 2 � n¿ 1t 2 � s– 1t 2v1t 2 � s¿ 1t 2 a1t 2 ,v1t 2 ,s1t 2

C H A P T E R  3

10 km
highway

mine

smelter

3 km
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Review Exercise

1. Determine and if 

2. For find 

3. Determine the velocity and acceleration of an object that moves along a

straight line in such a way that its position is 

4. Determine the velocity and acceleration as functions of time, t, for 

5. A pellet is shot into the air. Its position above the ground at any time, t, is
defined by m. For what values of t, is the upward
velocity of the pellet positive? For what values of t is the upward velocity
zero and negative? Draw a graph to represent the velocity of the pellet.

6. Determine the maximum and minimum of each function on the given interval.

a.

b.

c.

7. A motorist starts braking for a stop sign. After t seconds, the distance, in
metres, from the front of the car to the sign is 

a. How far was the front of the car from the sign when the driver started
braking?

b. Does the car go beyond the stop sign before stopping?

c. Explain why it is unlikely that the car would hit another vehicle that is
travelling perpendicular to the motorist’s road when the car first comes to
a stop at the intersection.

8. The position function of an object that moves in a straight line is

Calculate the maximum and minimum 

velocities of the object over the given time interval.

9. Suppose that the cost, in dollars, of manufacturing x items is approximated by

for The unit cost (the cost of

manufacturing one item) would then be How many items

should be manufactured to ensure that the unit cost is minimized?

U1x 2 �
C1x 2

x .

1 � x � 500.C1x 2 � 625 � 15x � 0.01x2,

0 � t � 2.s1t 2 � 1 � 2t �
8

t
2

� 1
,

s1t 2 � 62 � 16t � t2.

1 � x � 5f 1x 2 � 2x �
18
x ,

x� 3�3, 5 4f 1x 2 � 12x � x3,

�2 � x � 4f 1x 2 � 2x3 � 9x2,

t � 0,s1t 2 � 45t � 5t2

t � 0.s1t 2 � t � 7 �
5
t ,

s1t 2 � t2 � 12t � 3 2 12.
d 2y

dx2 .y � x9 � 7x3 � 2,

f 1x 2 � x4 �
1
x4.f –,f ¿

R E V I E W  E X E R C I S E
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10. For each of the following cost functions, determine

i. the cost of producing 400 items

ii. the average cost of each of the first 400 items produced

iii. the marginal cost when as well as the cost of producing the 
401st item

a. 

b. 

c. 

d. 

11. Find the production level that minimizes the average cost per unit for the cost
function Show that it is a minimum by
using a graphing calculator to sketch the graph of the average cost function.

12. a. The position of an object moving along a straight line is described by the
function for Is the object moving toward or away
from its starting position when 

b. Repeat the problem using for 

13. A particle moving along a straight line will be s centimetres from a fixed
point at time t seconds, where and 

a. Determine when the velocity will be zero.

b. Is the particle accelerating? Explain.

14. A box with a square base and no top must have a volume of 10 000 cm3. If
the smallest dimension is 5 cm, determine the dimensions of the box that 
minimize the amount of material used.

15. An animal breeder wishes to create five adjacent rectangular pens, each with
an area of 2400 m2. To ensure that the pens are large enough for grazing, the
minimum for either dimension must be 10 m. Find the dimensions required
for the pens to keep the amount of fencing used to a minimum.

16. You are given a piece of sheet metal that is twice as long as it is wide and has
an area of . Find the dimensions of the rectangular box that would
contain a maximum volume if it were constructed from this piece of metal by
cutting out squares of equal area at all four corners and folding up the sides.
The box will not have a lid. Give your answer correct to one decimal place.

17. A cylindrical can needs to hold 500 cm3 of apple juice. The height of the 
can must be between 6 cm and 15 cm, inclusive. How should the can be
constructed so that a minimum amount of material will be used in the
construction? (Assume that there will be no waste.)

800 m2

s � 27t3 �
16
t � 10.t 7 0

t � 0.s1t 2 � �t3 � 4t2 � 10

t � 3?
t � 0.s1t 2 � 3t2 � 10

C1x 2 � 0.004x2 � 40x � 16 000.

C1x 2 � 100x�
1
2 � 5x � 700

C1x 2 � Vx � 5000

C1x 2 � 0.004x2 � 40x � 8000

C1x 2 � 3x � 1000

x � 400,
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18. In oil pipeline construction, the cost of pipe to go underwater is 60% more
than the cost of pipe used in dry-land situations. A pipeline comes to a river
that is 1 km wide at point A and must be extended to a refinery, R, on the
other side, 8 km down the river. Find the best way to cross the river (assuming
it is straight) so that the total cost of the pipe is kept to a minimum. (Give
your answer correct to one decimal place.)

19. A train leaves the station at 10:00 p.m. and travels due north at a speed of 
100 km h. Another train has been heading due west at 120 km h and reaches
the same station at 11:00 p.m. At what time were the two trains closest
together?

20. A store sells portable MP3 players for $100 each and, at this price, sells 
120 MP3 players every month. The owner of the store wishes to increase his 
profit, and he estimates that, for every $2 increase in the price of MP3 players,
one less MP3 player will be sold each month. If each MP3 player costs the
store $70, at what price should the store sell the MP3 players to maximize
profit?

21. An offshore oil well, P, is located in the ocean 5 km from the nearest point on
the shore, A. A pipeline is to be built to take oil from P to a refinery that is 
20 km along the straight shoreline from A. If it costs $100 000 per kilometre
to lay pipe underwater and only $75 000 per kilometre to lay pipe on land,
what route from the well to the refinery will be the cheapest? (Give your
answer correct to one decimal place.)

22. The printed area of a page in a book will be . The margins at the top
and bottom of the page will each be 3 cm deep. The margins at the sides of
the page will each be 2 cm wide. What page dimensions will minimize the
amount of paper?

23. A rectangular rose garden will be surrounded by a brick wall on three sides
and by a fence on the fourth side. The area of the garden will be .
The cost of the brick wall is $192 m. The cost of the fencing is $48 m. Find
the dimensions of the garden so that the cost of the materials will be as low as
possible.

24. A boat leaves a dock at 2:00 p.m., heading west at 15 km h. Another boat
heads south at 12 km h and reaches the same dock at 3:00 p.m. When were
the boats closest to each other?

25. Two towns, Ancaster and Dundas, are 4 km and 6 km, respectively, from an
old railroad line that has been made into a bike trail. Points C and D on the
trail are the closest points to the two towns, respectively. These points are 
8 km apart. Where should a rest stop be built to minimize the length of new
trail that must be built from both towns to the rest stop?

> >
>> 1000 m2

81 cm2

>>

Dundas

Ancaster
rest
stop

C 8

6
4

D

3 cm

3 cm

2 
cm

2 
cm
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26. Find the absolute maximum and minimum values.

a.

b.

c.

d.

27. Sam applies the brakes steadily to stop his car, which is travelling at 20 m s.
The position of the car, s, in metres at t seconds, is given by 
Determine

a. the stopping distance b. the stopping time c. the deceleration at 2 s

28. Calculate each of the following:

a.

b.

c.

d.

e.

f.

29. An object moves along a straight line. The object’s position at time t is given
by . Find the position, velocity, acceleration, and speed at the specified
time.

a. b.

30. The function represents the displacement, s, in metres,
of a particle moving along a straight line after t seconds.

a. Determine and .

b. Find the average velocity during the first 5 s.

c. Determine the velocity at exactly 5 s.

d. Find the average acceleration during the first 5 s.

e. Determine the acceleration at exactly 5 s.

a1t 2v1t 2
s1t 2 � 1t2 � t 2 23, t � 0,

s1t 2 � t �
5

t � 2
, t � 1s1t 2 �

2t

t � 3
, t � 3

s1t 2
f – 18 2  if f 1x 2 � �3 x2

f – 14 2  if f 1x 2 � �x � 5

f – 11 2  if f 1x 2 �
2x

x � 5

f – 10 2  if f 1x 2 � 14x � 1 24f – 1�1 2  if f 1x 2 � �2x�3 � x2

f – 12 2  if f 1x 2 � 5x3 � x

s1t 2 � 20t � 0.3t3.
>f 1x 2 � 3x5 � 5x3, �2 � x � 4

f 1x 2 � x3 � 12x � 2, �5 � x � 5

f 1x 2 � x3 � x2, �3 � x � 3

f 1x 2 � x2 � 2x � 6, �1 � x � 7
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Chapter 3 Test

1. Determine the second derivative of each of the following:

a. c.

b. d.

2. For each of the following displacement functions, calculate the velocity and 
acceleration at the indicated time:

a. , b. ,

3. The position function of an object moving horizontally along a straight line 
as a function of time is in metres, at time t, in 
seconds.

a. Determine the velocity and acceleration of the object.

b. Determine the position of the object when the velocity is 0.

c. Determine the speed of the object when the position is 0.

d. When does the object move to the left?

e. Determine the average velocity from to .

4. Determine the maximum and minimum of each function on the given interval.

a. b.

5. After a football is punted, its height, h, in metres above the ground at 
t seconds, can be modelled by 

a. When does the football reach its maximum height?

b. What is the football’s maximum height?

6. A man purchased 2000 m of used wire fencing at an auction. He and his wife
want to use the fencing to create three adjacent rectangular paddocks. Find the
dimensions of the paddocks so that the fence encloses the largest possible area.

7. An engineer working on a new generation of computer called The Beaver is
using compact VLSI circuits. The container design for the CPU is to be 
determined by marketing considerations and must be rectangular in shape. 
It must contain exactly 10 000 cm3 of interior space, and the length must be
twice the height. If the cost of the base is $0.02 cm2, the cost of the side 
walls is $0.05 cm2, and the cost of the upper face is $0.10 cm2, find the
dimensions to the nearest millimetre that will keep the cost of the container 
to a minimum.

8. The landlord of a 50-unit apartment building is planning to increase the rent.
Currently, residents pay $850 per month, and all the units are occupied. A
real estate agency advises that every $100 increase in rent will result in 10
vacant units. What rent should the landlord charge to maximize revenue?

>> >

t � 0.h1t 2 � �4.9t2 � 21t � 0.45,

x� 31, 6 4f 1x 2 � x �
9
x ,�5 � x � 5f 1x 2 � x3 � 12x � 2,

t � 5t � 2

t � 0,s1t 2 � t2 � 3t � 2,

t � 2s1t 2 � 12t � 5 23t � 3s1t 2 � �3t3 � 5t2 � 6t

f 1x 2 � 14x � 8 23f 1x 2 � �9x5 � 4x3 � 6x � 12

y � 5x�3 � 10x3y � 7x2 � 9x � 22



Chapter 4

CURVE SKETCHING

If you are having trouble figuring out a mathematical relationship, what do you do?
Many people find that visualizing mathematical problems is the best way to
understand them and to communicate them more meaningfully. Graphing calculators
and computers are powerful tools for producing visual information about functions.
Similarly, since the derivative of a function at a point is the slope of the tangent to
the function at this point, the derivative is also a powerful tool for providing
information about the graph of a function. It should come as no surprise, then, that
the Cartesian coordinate system in which we graph functions and the calculus that
we use to analyze functions were invented in close succession in the seventeenth
century. In this chapter, you will see how to draw the graph of a function using the
methods of calculus, including the first and second derivatives of the function.

CHAPTER EXPECTATIONS
In this chapter, you will

• determine properties of the graphs of polynomial and rational functions, 
Sections 4.1, 4.3, 4.5

• describe key features of a given graph of a function, Sections 4.1, 4.2, 4.4

• determine intercepts and positions of the asymptotes of a graph, Section 4.3

• determine the values of a function near its asymptotes, Section 4.3

• determine key features of the graph of a function, Section 4.5, Career Link

• sketch, by hand, the graph of the derivative of a given graph, Section 4.2

• determine, from the equation of a simple combination of polynomial or rational

functions such as , the key features of the graph of the function,

using the techniques of differential calculus, and sketch the graph by hand,
Section 4.4

f 1x 2 � x2 �
1
xRQ

NEL



Review of Prerequisite Skills

There are many features that we can analyze to help us sketch the graph of a
function. For example, we can try to determine the x- and y-intercepts of the
graph, we can test for horizontal and vertical asymptotes using limits, and we can
use our knowledge of certain kinds of functions to help us determine domains,
ranges, and possible symmetries.

In this chapter, we will use the derivatives of functions, in conjunction with the
features mentioned above, to analyze functions and their graphs. Before you
begin, you should
• be able to solve simple equations and inequalities
• know how to sketch graphs of parent functions and simple transformations of

these graphs (including quadratic, cubic, and root functions)
• understand the intuitive concept of a limit of a function and be able to evaluate

simple limits
• be able to determine the derivatives of functions using all known rules

Exercise

1. Solve each equation.

a. c.

b. d.

2. Solve each inequality.

a. c.

b. d.

3. Sketch the graph of each function.

a. c.

b. d.

4. Evaluate each limit.

a. c.

b. d. lim
xS4�

�2x � 1lim
xS2

x2 � 3x � 10

x � 2

lim
xS3

x3 � 27

x � 3
lim

xS2�
1x2 � 4 2

f 1x 2 � �x � 2f 1x 2 � x2 � 5x � 6

f 1x 2 �
2x � 4

x � 2
f 1x 2 � 1x � 1 22 � 3

x2 � 3x � 4 7 0513 � x 2 � 3x � 1

t2 � 2t 6 33x � 9 6 2

y3 � 4y2 � y � 6 � 0x2 � 5x � 3 � 17

4x2 � 20x � 25 � 02y2 � y � 3 � 0
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5. Determine the derivative of each function.

a. c.

b. d.

6. Divide, and then write your answer in the form For example,

a. b.

7. Determine the points where the tangent is horizontal to 

8. State each differentiation rule in your own words.

a. power rule d. quotient rule

b. constant rule e. chain rule

c. product rule f. power of a function rule

9. Describe the end behaviour of each function as and .

a. c.

b. d.

10. For each function, determine the reciprocal, , and the equations of the 

vertical asymptotes of . Verify your results using graphing technology.

a. c.

b. d.

11. State the equation of the horizontal asymptote of each function.

a. c.

b. d.

12. For each function in question 11, determine the following:

a. the x- and y-intercepts

b. the domain and range

y �
10x � 4

5x
y �

4x

x � 2

y �
3x � 5

6x � 3
y �

5

x � 1

f 1x 2 � 1x � 3 22f 1x 2 � �x � 3

f 1x 2 � 1x � 4 22 � 1f 1x 2 � 2x

y �
1

f 1x 2
y �

1
f 1x 2

f 1x 2 � 6x5 � 4x � 7f 1x 2 � �2x3 � 4x � 1

f 1x 2 � �5x4 � 2x3 � 6x2 � 7x � 1f 1x 2 � 2x2 � 3x � 4

xS�qxSq

f 1x 2 � x3 � 0.5x2 � 2x � 3.

1x2 � 6x � 9 2 � 1x � 1 21x2 � 5x � 4 2 � 1x � 3 21x2 � 4x � 5 2 � 1x � 2 2 � x � 6 �
7

x � 2.

ax �  b �
r

q1x 2 .
f 1t 2 �

2t

�t � 4
f 1x 2 �

x � 1

x2 � 3

f 1x 2 � 13x2 � 6x 22f 1x 2 �
1

4
 x4 � 2x3 �

1
x
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CHAPTER 4: PREDICTING STOCK VALUES

InvestigateCAREER LINK

Stock-market analysts collect and interpret vast amounts of information and then
predict trends in stock values. Stock analysts are classified into two main groups:
the fundamentalists who predict stock values based on analysis of the companies’
economic situations, and the technical analysts who predict stock values based on
trends and patterns in the market. Technical analysts spend a significant amount
of their time constructing and interpreting graphical models to find undervalued
stocks that will give returns in excess of what the market predicts. In this chapter,
your skills in producing and analyzing graphical models will be extended through
the use of differential calculus.

Case Study: Technical Stock Analyst

To raise money for expansion, many privately owned companies give the public a
chance to own part of their company through purchasing stock. Those who buy
ownership expect to obtain a share in the future profits of the company. Some
technical analysts believe that the greatest profits to be had in the stock market
are through buying brand new stocks and selling them quickly. A technical
analyst predicts that a stock’s price over its first several weeks on the market will
follow the pattern shown on the graph. The technical analyst is advising a
person who purchased the stock the day it went on sale.

DISCUSSION QUESTIONS

Make a rough sketch of the graph, and answer the following questions:

1. When would you recommend that the owner sell her shares? Label this
point S on your graph. What do you notice about the slope, or
instantaneous rate of change, of the graph at this point?

2. When would you recommend that the owner get back into the company
and buy shares again? Label this point B on your graph. What do you notice
about the slope, or instantaneous rate of change, of the graph at this point?

3. A concave-down section of a graph opens in a downward direction, and a
concave-up section opens upward. On your graph, find the point where the
concavity changes from concave down to concave up, and label this point C.
Another analyst says that a change in concavity from concave down to
concave up is a signal that a selling opportunity will soon occur. Do you
agree with the analyst? Explain.

At the end of this chapter, you will have an opportunity to apply the tools of
curve sketching to create, evaluate, and apply a model that could be used to
advise clients on when to buy, sell, and hold new stocks.

Time (weeks)

Pr
ic

e 
($

)



Section 4.1—Increasing and Decreasing
Functions

The graph of the quadratic function is a parabola. If we imagine a particle
moving along this parabola from left to right, we can see that, while the x-coordinates
of the ordered pairs steadily increase, the y-coordinates of the ordered pairs along the
particle’s path first decrease and then increase. Determining the intervals in which a
function increases and decreases is extremely useful for understanding the behaviour
of the function. The following statements give a clear picture:

For the parabola with the equation the change from decreasing y-values
to increasing y-values occurs at , the vertex of the parabola. The function

is decreasing on the interval and is increasing on the interval

If we examine tangents to the parabola anywhere on the interval where the
y-values are decreasing (that is, on ), we see that all of these tangents have
negative slopes. Similarly, the slopes of tangents to the graph on the interval where
the y-values are increasing are all positive.

y

x
2

–2

4

0 2–2–4 4

tangent

x 6 0

x 7 0.
x 6 0f 1x 2 � x2

10, 0 2y � x2,

y

x
2

–2

4

0 2–2–4 4

y = x2

f 1x 2 � x2
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Intervals of Increase and Decrease

We say that a function f is decreasing on an interval if, for any value of 
on the interval,

Similarly, we say that a function f is increasing on an interval if, for any value 
of on the interval, f 1x1 2 6 f 1x2 2 .x1 6 x2

f 1x1 2 7 f 1x2 2 .x1 6 x2



For functions that are both continuous and differentiable, we can determine
intervals of increasing and decreasing y-values using the derivative of the function. 

In the case of and the slopes of the tangents

are negative. The interval corresponds to the decreasing portion of the graph

of the parabola. For and the slopes of the tangents are positive on

the interval where the graph is increasing.

We summarize this as follows: For a continuous and differentiable function, f, the
function values (y-values) are increasing for all x-values where and the
function values (y-values) are decreasing for all x-values where 

EXAMPLE 1 Using the derivative to reason about intervals of increase and decrease

Use your calculator to graph the following functions. Use the graph to estimate the
values of x for which the function values (y-values) are increasing, and the values of x
for which the y-values are decreasing. Verify your estimates with an algebraic solution.

a. b.

Solution
a. Using a calculator, we obtain the graph of Using the 

key on the calculator, we estimate that the function values are increasing 
on , decreasing on and increasing again on To verify 
these estimates with an algebraic solution, we consider the slopes of the tangents.

x 7 0.�2 6 x 6 0,x 6 �2

TRACE

y � x3 � 3x2 � 2.

y �
x

x2 � 1
y � x3 � 3x2 � 2

f ¿ 1x 2 6 0.
f ¿ 1x 2 7 0,

x 7 0, 
dy
dx 7 0,

x 6 0

y � x2, 
dy
dx � 2x . For x 6 0, 

dy
dx 6 0,
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The slope of a general tangent to the graph of is given by

We first determine the values of x for which These

values tell us where the function has a local maximum or local minimum value.
These are greatest and least values respectively of a function in relation to its
neighbouring values. 

Setting we obtain 

These values of x locate points on the graph where the slope of the tangent is
zero (that is, where the tangent is horizontal).

x � �2x � 0,
3x1x � 2 2 � 0

3x2 � 6x � 0
dy
dx � 0,

dy
dx � 0.

dy
dx � 3x2 � 6x.

y � x3 � 3x2 � 2



Since this is a polynomial function it is continuous so is defined for all values

of x. Because only at and the derivative must be either

positive or negative for all other values of x. We consider the intervals 
and x 7 0.�2 6 x 6 0,

x 6 �2,

x � 0,x � �2
dy
dx � 0

dy
dx

Value of x x 6 �2 �2 6 x 6 0 x 7 0

Sign of 
dy

dx
� 3x(x � 2)

dy

dx
7 0

dy

dx
6 0

dy

dx
7 0

Slope of Tangents positive negative positive

Values of y Increasing 
or Decreasing

increasing decreasing increasing

167

So is increasing on the intervals and and is
decreasing on the interval 

b. Using a calculator, we obtain the graph of Using the key 

on the calculator, we estimate that the function values (y-values) are decreasing on 
increasing on and decreasing again on 

We analyze the intervals of increasing/decreasing y-values for the function by

determining where is positive and where it is negative.

Setting we obtain 

or x � �1x � 1

x2 � 1

�x2 � 1 � 0

�x2 � 11x2 � 1 2 2 � 0dy
dx � 0,

�
�x2 � 11x2 � 1 22

�
x2 � 1 � 2x21x2 � 1 22

�
1

x2 � 1
�

2x21x2 � 1 22
dy

dx
� 11x2 � 1 2�1 � x1�1 2 1x2 � 1 2�212x 2� x1x2 � 1 2�1

y �
x

x2 � 1

dy
dx

x 7 1.�1 6 x 6 1,x 6 �1,

TRACEy �
x

x2 � 1.

�2 6 x 6 0.
x 7 0x 6 �2y � x3 � 3x2 � 2
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(Express as a product)

(Product and chain rules)

(Simplify)

(Solve)



These values of x locate the points on the graph where the slope of the tangent is 0.
Since the denominator of this rational function can never be 0, this function is

continuous so is defined for all values of x. Because at and 

we consider the intervals , and .11, q 21�q, �1 2 , 1�1, 1 2 x � 1,x � �1
dy
dx � 0

dy
dx

Value of x 1�q, �1 2 1�1, 1 2 11, q 2
Sign of 

dy

dx
�

�x2 � 11x2 � 1 22 dy

dx
6 0

dy

dx
7 0

dy

dx
6 0

Slope of Tangents negative positive negative

Values of y Increasing 
or Decreasing

decreasing increasing decreasing

Then is increasing on the interval and is decreasing on the

intervals and .

EXAMPLE 2 Graphing a function given the graph of the derivative

Consider the graph of . Graph .

Solution
When the derivative, , is positive, the graph of is rising. When the
derivative is negative, the graph is falling. In this example, the derivative changes
sign from positive to negative at . This indicates that the graph of 
changes from increasing to decreasing, resulting in a local maximum for this value
of x. The derivative changes sign from negative to positive at , indicating the
graph of changes from decreasing to increasing resulting in a local minimum for
this value of x.

One possible graph of is shown. f 1x 2
f 1x 2 x � 2.9

f 1x 2x � �0.6

f 1x 2f ¿ 1x 2

f 1x 2f ¿ 1x 2
11, q 21�q, �1 2 1�1, 1 2y �

x
x2 � 1
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y

x
0

6

2 4 6

8

2

4

–2

–4

–2–4–6

y = f’(x)

x

y

0

y = f’(x)

y = f(x)

–8

–6

–4

–2

2

4

6

8

–4 –2 2 4 6 8



• A function f is decreasing on an
interval if, for any value of 
in the interval, 

a bx1 x2

f (x2)
f (x1)

f 1x1 2 7 f 1x2 2 .x1 6 x2

Exercise 4.1

PART A
1. Determine the points at which for each of the following functions:

a. c.

b. d.

2. Explain how you would determine when a function is increasing or decreasing.

3. For each of the following graphs, state

i. the intervals where the function is increasing

ii. the intervals where the function is decreasing

iii. the points where the tangent to the function is horizontal

f 1x 2 �
5x

x2 � 1
f 1x 2 � �x2 � 4

f 1x 2 � 12x � 1 221x2 � 9 2f 1x 2 � x3 � 6x2 � 1

f ¿ 1x 2 � 0
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IN SUMMARY

Key Ideas
• A function f is increasing on an 

interval if, for any value of 
in the interval, 

• For a function f that is continuous and differentiable on an interval I

• is increasing on I if for all values of x in I

• is decreasing on I if for all values of x in I

Need to Know

• A function increases on an interval if the graph rises from left to right.

• A function decreases on an interval if the graph falls from left to right.

• The slope of the tangent at a point on a section of a curve that is increasing 
is always positive.

• The slope of the tangent at a point on a section of a curve that is decreasing 
is always negative.

f¿ 1x 2 6 0f1x 2 f¿ 1x 2 7 0f1x 2
a bx1 x2

f (x2)

f (x1)

f 1x1 2 6 f 1x2 2 .x1 6 x2

NEL
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a. c.

b. d.

4. Use a calculator to graph each of the following functions. Inspect the graph to
estimate where the function is increasing and where it is decreasing. Verify your
estimates with algebraic solutions.

a. d.

b. e.

c. f.

PART B
5. Suppose that f is a differentiable function with the derivative

Determine the values of x for which the
function f is increasing and the values of x for which the function is decreasing.

6. Sketch a graph of a function that is differentiable on the interval 
and that satisfies the following conditions:

• The graph of f passes through the points and .

• The function f is decreasing on increasing on 
and decreasing again on 

7. Find constants a, b, and c such that the graph of will
increase to the point decrease to the point and then continue
increasing.

8. Sketch a graph of a function f that is differentiable and that satisfies the 
following conditions:

• when 

• when and when 

• and 

• and f 11 2 � 2f 1�5 2 � 6

f ¿ 11 2 � 0f ¿ 1�5 2 � 0

x 7 1�5 6 x 6 1f ¿ 1x 2 6 0,

x 6 �5f ¿ 1x 2 7 0,

11,�14 2 ,1�3, 18 2 , f 1x 2 � x3 � ax2 � bx � c

2 6 x 6 5.
�1 6 x 6 2,�2 6 x 6 �1,

12, 5 21�1, 0 2
�2 � x � 5

1x � 2 2 1x � 3 2 .f ¿ 1x 2 � 1x � 1 2
f 1x 2 � x4 � x2 � 1f 1x 2 � x �

1
x

f 1x 2 � 3x4 � 4x3 � 12x2f 1x 2 � x5 � 5x4 � 100

f 1x 2 �
x � 1

x2 � 3
f 1x 2 � x3 � 3x2 � 1

y

x
2

4

–2
–4 0 42–2

y

x

4

2

0
–2

–2 2 4–4

y

x

4

2

0
–2

–2 2 4–4

y

x

4

2

0
–2

–2 2 4–4
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9. Each of the following graphs represents the derivative function of a 
function Determine

i. the intervals where is increasing

ii. the intervals where is decreasing

iii. the x-coordinate for all local extrema of 

Assuming that make a rough sketch of the graph of each function.

a. c.

b. d.

10. Use the derivative to show that the graph of the quadratic function

is decreasing on the interval 

and increasing on the interval 

11. For find where , the intervals on which the
function increases and decreases, and all the local extrema. Use graphing
technology to verify your results.

12. Sketch a graph of the function g that is differentiable on the interval
decreases on and increases elsewhere on the

domain. The absolute maximum of g is 7, and the absolute minimum is .
The graph of g has local extrema at 

PART C
13. Let f and g be continuous and differentiable functions on the interval

If f and g are both increasing on and if and
on show that the product fg is also increasing on

14. Let f and g be continuous and differentiable functions on the interval
If f and g are both increasing on and if 

and on is the product fg increasing on 
decreasing, or neither?

a � x � b,a � x � b,g1x 2 6 0
f 1x 2 6 0a � x � b,a � x � b.

a � x � b.
a � x � b,g1x 2 7  0

f 1x 2 7 0a � x � b,a � x � b.

10, 4 2  and 13, �1 2 . �3
0 6 x 6 3,�2 � x � 5,

f ¿1x 2 � 0f 1x 2 � x4 � 32x � 4,

x 7 �
b

2a.

x 6 �
b

2af 1x 2 � ax2 � bx � c, a 7 0,

y

x
y = f '(x)2

–2
–4 0 42–2

y

x
y= f '(x)2

4

–2
–4 0 42–2

y

x

y= f '(x)
2

4

–2
–4 0 42–2

y

x
y= f '(x)2

4

–2
–4 0 42–2

f 10 2 � 2,

f 1x 2f 1x 2f 1x 2f 1x 2 . f ¿ 1x 2
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Section 4.2—Critical Points, Local Maxima, and
Local Minima

In Chapter 3, we learned that a maximum or minimum function value might occur
at a point if It is also possible that a maximum or minimum
function value might occur at a point is undefined. Since these points
help to define the shape of the function’s graph, they are called critical points and the
values of c are called critical numbers. Combining this with the properties of
increasing and decreasing functions, we have a first derivative test for local extrema.

The First Derivative Test
Test for local minimum and local maximum points. Let 

When moving left to right through x-values:

• if changes sign from negative to positive at then has a local
minimum at this point.

• if changes sign from positive to negative at then has a local
maximum at this point.

may imply something other than the existence of a maximum or a
minimum at There are also simple functions for which the derivative
does not exist at certain points. In Chapter 2, we demonstrated three different
ways that this could happen. For example, extrema could occur at points that
correspond to cusps and corners on a function’s graph and in these cases the
derivative is undefined.

EXAMPLE 1 Connecting the first derivative test to local extrema of a polynomial
function

For the function determine all the critical numbers.
Determine whether each of these values of x gives a local maximum, a local
minimum, or neither for the function.

y � x4 � 8x3 � 18x2,

x � c.
f ¿ 1c 2 � 0

f 1x 2x � c,f ¿ 1x 2
f 1x 2x � c,f ¿ 1x 2

y

0 local maximum

x

f '.0 f ',0

(c, f (c))
y

0
x

f ' ,0 f ' .0

(c, f (c))

local minimum

f ¿ 1c 2 � 0.

1c, f 1c 22  if f ¿ 1c 2f ¿ 1c 2 � 0.1c, f 1c 22
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Solution
First determine 

For critical numbers, let 

or 

Both values of x are in the domain of the function. There is a horizontal tangent
at each of these values of x. To determine which of these values of x yield local
maximum or minimum values of the function, we use a table to analyze the 

behaviour of and y � x4 � 8x3 � 18x2.
dy
dx

x � 3x � 0

4x1x � 3 22 � 0

dy
dx � 0.

 � 4x1x � 3 22 � 4x1x2 � 6x � 9 2 
dy

dx
� 4x3 � 24x2 � 36x

dy
dx.

Interval x 6 0 0 6 x 6 3 x 7 3

4x � � �

(x � 3)2 � � �

4x1x � 3 22 1� 2 1 � 2 � � 1 � 2 1 � 2 � � 1 � 2 1 � 2 � �

dy

dx
6 0 7 0 7 0

y � x4 � 8x3 � 18x2 decreasing increasing increasing

Shape of the Curve

Using the information from the table, we see that there is a local minimum value
of the function at since the function values are decreasing before 
and increasing after We can also tell that there is neither a local maximum
nor minimum value at since the function values increase toward this point
and increase away from it.

A calculator gives the following graph for which verifies
our solution:

y � x4 � 8x3 � 18x2,

x � 3,
x � 0.

x � 0x � 0,
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EXAMPLE 2 Reasoning about the significance of horizontal tangents

Determine whether or not the function has a maximum or minimum at
, where 

Solution
The derivative is 

Setting gives

has a horizontal tangent at .

From the graph, it is clear that is neither a maximum nor a minimum value
since the values of this function are always increasing. Note that for all
values of x other than 0.

From this example, we can see that it is possible for a horizontal tangent to exist
when but that is neither a maximum nor a minimum. In the
next example you will see that it is possible for a maximum or minimum to occur
at a point at which the derivative does not exist.

EXAMPLE 3 Reasoning about the significance of a cusp

For the function determine the critical numbers. Use your
calculator to sketch a graph of the function.

Solution
First determine 

 �
2

31x � 2 2 13
 f ¿ 1x 2 �

2

3
1x � 2 2�1

3

f ¿ 1x 2 .
f 1x 2 � 1x � 2 2 23,

1c, f 1c 22f ¿ 1c 2 � 0,

f ¿ 1x 2 7 0
10, 0 2

y

x
2

–2

–4

4

0 2–2–4 4

y = x3

10, 0 2f 1x 2 x � 0
3x2 � 0

f ¿ 1x 2 � 0

f ¿ 1x 2 � 3x2.

f ¿ 1c 2 � 0.1c, f 1c 22 f 1x 2 � x3
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Note that there is no value of x for which since the numerator is
always positive. However, is undefined for 

Since is in the domain of We 
determine the slopes of tangents for x-values close to �2.

f 1x 2 � 1x � 2 2 23.x � �2f 1�2 2 � 1�2 � 2 2 23 � 0,

x � �2.f ¿ 1x 2 f ¿ 1x 2 � 0

x f ¿ 1x 2 �
2

31x � 2 2 13 x f ¿ 1x 2 �
2

31x � 2 2 13
�2.1 �1.436 29 �1.9 1.436 29

�2.01 �3.094 39 �1.99 3.094 39

�2.001 �6.666 67 �1.999 6.666 67

�2.000 01 �30.943 9 �1.999 99 30.943 9

The slope of the tangent is undefined at the point . Therefore, the function
has one critical point, when 

In this example, the slopes of the tangents to the left of are approaching
while the slopes to the right of are approaching Since the

slopes on opposite sides of are not approaching the same value, there is
no tangent at even though there is a point on the graph.

A calculator gives the following graph of There is a cusp at

If a value c is in the domain of a function , and if this value is such that 
or is undefined, then is a critical point of the function f and c is called
a critical number for .

In summary, critical points that occur when give the locations of horizontal 

tangents on the graph of a function. Critical points that occur when is undefined 
give the locations of either vertical tangents or cusps (where we say that no tangent
exists). Besides giving the location of interesting tangents (or lack thereof),
critical points also determine other interesting features of the graph of a function.

dy
dx

dy
dx � 0

f –
1c, f 1c 22f ¿ 1c 2 f ¿ 1c 2 � 0f 1x 2

1�2, 0 2 . f 1x 2 � 1x � 2 2 23.x � �2
x � �2

�q.x � �2�q,
x � �2

x � �2.
1�2, 0 2
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As mentioned earlier, a local minimum value of a function does not have to be the
smallest value in the entire domain, just the smallest value in its neighbourhood.
Similarly, a local maximum value of a function does not have to be the largest
value in the entire domain, just the largest value in its neighbourhood. Local
extrema occur graphically as peaks or valleys. The peaks and valleys can be either
smooth or sharp.

To apply this reasoning, let’s reconsider the graph of 

The function has a local minimum value at which also
happens to be a critical value of the function.

Every local maximum or minimum value of a function occurs at a critical point of
the function.

In simple terms, peaks or valleys occur on the graph of a function at places where
the tangent to the graph is horizontal, vertical, or does not exist.

How do we determine whether a critical point yields a local maximum or 
minimum value of a function without examining the graph of the function? We
use the first derivative test to analyze whether the function is increasing or
decreasing on either side of the critical point.

x � �2,f 1x 2 � 1x � 2 2 23

f 1x 2 � 1x � 2 2 23.

Critical Numbers and Local Extrema

The critical number c determines the location of a local minimum value for
a function f if for all values of x near c.

Similarly, the critical number c determines the location of a local maximum
value for a function f if for all values of x near c.

Together, local maximum and minimum values of a function are called 
local extrema.

f 1c 2 7 f 1x 2
f 1c 2 6 f 1x 2
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EXAMPLE 4 Graphing the derivative given the graph of a polynomial function

Given the graph of a polynomial function graph 

Solution
A polynomial function f is continuous for all values of x in the domain of f. The
derivative of f, is also continuous for all values of x in the domain of f.

To graph using the graph of first determine the slopes of the
tangent lines, at certain x-values, . These x-values include zeros, critical
numbers, and numbers in each interval where f is increasing or decreasing. Then
plot the corresponding ordered pairs on a graph. Draw a smooth curve through
these points to complete the graph.

The given graph has a local minimum at (0, 1) and a local maximum at (1, 2). At
these points, the tangents are horizontal. Therefore, and .

At , which is halfway between and , the slope of the tangent is 

about . So 

The function is decreasing when The tangent lines show that
when and when Similarly, is increasing when
The tangent lines show that when 

The shape of the graph of suggests that is a cubic polynomial with a
negative leading coefficient. Assume that this is true. The derivative, , may be
a quadratic function with a negative leading coefficient. If it is, the graph of 
is a parabola that opens down.

Plot (0, 0), (1, 0), and , on the graph of . The graph of is a parabola 

that opens down and passes through these points.

f ¿ 1x 2f ¿ 1x 22
3RQ12

f ¿ 1x 2f ¿ 1x 2f 1x 2f 1x 2 0 6 x 6 1.f ¿ 1x 2 7 0f ¿ 1x 2 7 0.
f 1x 2x 7 1.x 6 0f ¿ 1x 2 6 0

f ¿ 1x 2 6 0.f 1x 2f ¿Q12R �
2
3

2
3

x � 1x � 0x �
1
2

f ¿ 11 2 � 0f ¿ 10 2 � 0

xif ¿ 1xi 2 , y � f 1x 2 ,y � f ¿ 1x 2f ¿,

y

x
0

8

6

4

2

1 2 3

–8

–6

–4

–2
–1–2–3

y = f (x)

y � f ¿ 1x 2 .y � f 1x 2 ,

y

x
0

6

4

2

–6

–4

–2
–1 2

y

x
0

4

2

1

–8

–6

–4

–2
–1 2

1

y = f(x)

y = f’(x)
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Exercise 4.2

PART A
1. Explain what it means to determine the critical points of the graph of a

given function.

2. a. For the function explain how you would find the critical
points.

b. Determine the critical points for , and then sketch the graph.

3. Find the critical points for each function. Use the first derivative test to determine
whether the critical point is a local maximum, local minimum, or neither.

a. b. c. y � x3 � 3x2 � 1f 1x 2 �
2x

x2 � 9
y � x4 � 8x2

y � x3 � 6x2

y � x3 � 6x2,

IN SUMMARY

Key Idea

For a function a critical number is a number, , in the domain of 
such that or is undefined. As a result is called a critical
point and usually corresponds to local or absolute extrema.

Need to Know

First Derivative Test

Let c be a critical number of a function f.

When moving through x-values from left to right:

• if changes from negative to positive at c, then is a local
minimum of f.

• if changes from positive to negative at c, then is a local
maximum of f.

• if does not change its sign at c, then is neither a local minimum
or a local maximum.

Algorithm for Finding Local Maximum and Minimum Values of a Function f

1. Find critical numbers of the function (that is, determine where and
where is undefined) for all x-values in the domain of f.

2. Use the first derivative to analyze whether f is increasing or decreasing on
either side of each critical number.

3. Based upon your findings in step 2., conclude whether each critical number
locates a local maximum value of the function f, a local minimum value, or
neither.

f ¿ 1x 2  f ¿ 1x 2 � 0

1c, f 1c 22f ¿ 1x 2  1c, f 1c 22f ¿ 1x 2  1c, f 1c 22f ¿ 1x 2  

1c, f 1c 22f ¿ 1x 2f ¿ 1x 2 � 0
f 1x 2cf1x 2 ,

C
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4. Find the x- and y-intercepts of each function in question 3, and then sketch the
curve.

5. Determine the critical points for each function. Determine whether the critical
point is a local maximum or minimum, and whether or not the tangent is
parallel to the horizontal axis.

a. c.

b. d.

6. Use graphing technology to graph the functions in question 5 and verify 
your results.

PART B
7. Determine the critical points for each of the following functions, and 

determine whether the function has a local maximum value, a local minimum
value, or neither at the critical points. Sketch the graph of each function.

a. d.

b. e.

c. f.

8. Suppose that f is a differentiable function with the derivative
Find all the critical numbers of f, and

determine whether each corresponds to a local maximum, a local
minimum, or neither.

9. Sketch a graph of a function f that is differentiable on the interval 
and that satisfies the following conditions:

• The function f is decreasing on and increasing elsewhere on

• The largest value of f is 6, and the smallest value is 0.

• The graph of f has local extrema at and 

10. Determine values of a, b, and c such that the graph of has
a relative maximum at and crosses the y-axis at 

11. For find the values of p and q such that is an
extremum of f on the interval Is this extremum a maximum value
or a minimum value? Explain.

12. For where find the values of k such that f has

a. no critical numbers b. one critical number c. two critical numbers

13. Find values of a, b, c, and d such that has a local
maximum at (2, 4) and a local minimum at (0, 0).

g1x 2 � ax3 � bx2 � cx � d

k�R,f 1x 2 � x3 � kx,

0 � x � 2.
f 11 2 � 5f 1x 2 � x2 � px � q,

10, 1 2 .13, 12 2 y � ax2 � bx � c

13, 1 2 .1�1, 6 2
�3 � x � 4.

�1 6 x 6 3

�3 � x � 4

1x � 6 2 .f ¿ 1x 2 � 1x � 1 2 1x � 2 2
f 1x 2 � 3x4 � 4x3f 1x 2 � 2x3 � 9x2 � 12x

f 1x 2 � �x2 � 2x � 2f 1x 2 �
1

3
x3 � 9x � 2

f 1x 2 � �3x3 � 5xf 1x 2 � �2x2 � 8x � 13

f 1x 2 � 1x2 � 1 2 13g1t 2 � t5 � t3

y � 1x � 5 2 13h1x 2 � �6x3 � 18x2 � 3

K

A

T



180 NEL

14. For each of the following graphs of the function make a rough
sketch of the derivative function By comparing the graphs of 
and show that the intervals for which is increasing correspond
to the intervals where is positive. Also show that the intervals where

is decreasing correspond to the intervals for which is negative.

a. c.

is a linear function. is a cubic function.

b. d.

is a quadratic function. is a quartic function.

15. Consider the function 

a. Find constants a, b, c, and d such that the graph of f will have horizontal
tangents at and 

b. There is a third point that has a horizontal tangent. Find this point.

c. For all three points, determine whether each corresponds to a local
maximum, a local minimum, or neither.

PART C
16. For each of the following polynomials, find the local extrema and the 

direction that the curve is opening for Use this information to make 
a quick sketch of the curve.

a.

b.

17. Suppose that and are positive functions (functions where 
and ) such that has a local maximum and has a local 

minimum at Show that the function has a local maximum
at x � c.

h1x 2 �
f 1x 2
g1x 2x � c.

g1x 2f 1x 2g1x 2 7 0
f 1x 2 7 0g1x 2f 1x 2y � 3x5 � 5x3 � 30x

y � 4 � 3x2 � x4

x � 100.

10, �9 2 .1�2, �73 2
f 1x 2 � 3x4 � ax3 � bx2 � cx � d.

f 1x 2f 1x 2

y

x
2

4

–2
–4 0 42–2

y = f(x)

y

x
2

4

–2
–4 0 42–2

y = f(x)

f 1x 2f 1x 2

y

x
2

4

–2
–2 0 2 31–1

y = f(x)
y

x
2

4

–2
–4 0 42

y = f(x)

–2

f ¿ 1x 2f 1x 2 f ¿ 1x 2 f 1x 2f ¿ 1x 2 , f 1x 2f ¿ 1x 2 . y � f 1x 2 ,
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Section 4.3—Vertical and Horizontal
Asymptotes

Adding, subtracting, or multiplying two polynomial functions yields another
polynomial function. Dividing two polynomial functions results in a function that
is not a polynomial. The quotient is a rational function. Asymptotes are among
the special features of rational functions, and they play a significant role in curve
sketching. In this section, we will consider vertical and horizontal asymptotes of
rational functions.

INVESTIGATION The purpose of this investigation is to examine the occurrence of vertical
asymptotes for rational functions.

A. Use your graphing calculator to obtain the graph of and the 

table of values for each of the following: , and 

B. Describe the behaviour of each graph as x approaches k from the right and
from the left.

C. Repeat parts A and B for the function using the same values of k.

D. Repeat parts A and B for the function using the following

values: and 12.

E. Make a general statement about the existence of a vertical asymptote for a

rational function of the form if there is a value c such that 
and 

Vertical Asymptotes and Rational Functions
Recall that the notation means that x approaches c from the right.
Similarly, means that x approaches c from the left.

You can see from this investigation that as from either side, the function
values get increasingly large and either positive or negative depending on the
value of We say that the function values approach (positive infinity) or

(negative infinity). These are not numbers. They are symbols that represent
the behaviour of a function that increases or decreases without limit.

Because the symbol is not a number, the limits and do not

exist. For convenience, however, we use the notation and

lim
xSc�

1
x � c � �q.

lim
xSc�

1
x � c � �q

lim
xSc�

1
x � clim

xSc�

1
x � cq

�q
�qp1c 2 . xS c

xS c�
xS c�

p1c 2 � 0.
q1c 2 � 0y �

p1x 2
q1x 2

k � 2, 6,

f 1x 2 �
1

x 2 � x � k

f 1x 2 �
x � 3
x � k

�5.�4,�2,k � 3, 1, 0

f 1x 2 �
1

x � k

NEL
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These limits form the basis for determining the asymptotes of simple functions.

EXAMPLE 1 Reasoning about the behaviour of a rational function near its 
vertical asymptotes

Determine any vertical asymptotes of the function and 

describe the behaviour of the graph of the function for values of x near the
asymptotes.

Solution
First, determine the values of x for which is undefined by solving the
following:

or 

Neither of these values of x makes the numerator zero, so both of these values give
vertical asymptotes. The equations of the asymptotes are and 

To determine the behaviour of the graph near the asymptotes, it can be helpful to
use a chart.

x � 1.x � �2

x � 1 x � �2
 1x � 2 2 1x � 1 2 � 0

 x2 � x � 2 � 0

f 1x 2
f 1x 2 �

x
x2 � x � 2  ,

Vertical Asymptotes of Rational Functions

A rational function of the form has a vertical asymptote 

if and p1c 2 � 0.q1c 2 � 0x � c

f 1x 2 �
p1x 2
q1x 2

Values of x x x � 2 x � 1 f (x) �
x

(x � 2)(x � 1)
f (x)S ?

xS �2� 6 0 6 0 6 0 6 0 �q

xS �2� 6 0 7 0 6 0 7 0 �q

xS 1� 7 0 7 0 6 0 6 0 �q

xS 1� 7 0 7 0 7 0 7 0 �q
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The following graphs correspond to each limit statement above:

lim
xSc�

f 1x 2 � �qlim
xSc�

f 1x 2 � �q

y

x
c

y

x
c

lim
xSc�

f 1x 2 � �qlim
xSc�

f 1x 2 � �q

y

x
c

y

x
c

The behaviour of the graph can be illustrated as follows:

To proceed beyond this point, we require additional information.

y

x
0

3

1 2 3

1

2

–1

–2

–1–2–3

x = 1x = –2

Vertical Asymptotes and Infinite Limits

The graph of has a vertical asymptote, , if one of the following
infinite limit statements is true:

, , or  lim
xSc�

f 1x 2 � �qlim
xSc�

f 1x 2 � �qlim
xSc�

f 1x 2 � �qlim
xSc�

f 1x 2 � �q

x � cf 1x 2

NEL
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The second observation is that a polynomial can always be written so the term of
highest degree is a factor.

y

horizontal
asymptote

vertical
asymptote

0

6

2 4 6

2

4

–2

–6

–4

–2–4–6

f (x) = x
1

Horizontal Asymptotes and Rational Functions
Consider the behaviour of rational functions as x increases without

bound in both the positive and negative directions. The following notation is used
to describe this behaviour:

and 

The notation is read “x tends to positive infinity” and means that the
values of x are positive and growing in magnitude without bound. Similarly,
the notation is read “x tends to negative infinity” and means that 
the values of x are negative and growing in magnitude without bound.

The values of these limits can be determined by making two observations. The
first observation is a list of simple limits, similar to those used for determining
vertical asymptotes.

xS�q

xS�q

lim
xS�q

f 1x 2lim
xS�q

f 1x 2
f 1x 2 �

p1x 2
q1x 2

The Reciprocal Function and Limits at Infinity

and lim
xS�q

1
x

� 0lim
xS�q

1
x

� 0

4 . 3 V E RT I C A L  A N D  H O R I Z O N TA L  A S Y M P TOT E S
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EXAMPLE 2 Expressing a polynomial function in an equivalent form

Write each function so the term of highest degree is a factor.
a. b.

Solution
a. b.

The value of writing a polynomial in this form is clear. It is easy to see that as x
becomes large (either positive or negative), the value of the second factor always
approaches 1.

We can now determine the limit of a rational function in which the degree of 
is equal to or less than the degree of .

EXAMPLE 3 Selecting a strategy to evaluate limits at infinity

Determine the value of each of the following:

a. b. c.

Solution

a. (Factor and simplify)

(Apply limit properties)

(Evaluate)

� 2

�
211 � 0 2

1 � 0

lim
xS�q

f 1x 2 �

2 c lim
xS�q

a1 �
3

2x
b d

lim
xS�q

a1 �
1
x
b

�

2 a 1 �
3

2x
b

1 �
1
x

f 1x 2 �
2x � 3

x � 1
�

2x a1 �
3

2x
b

x a1 �
1
x
b

lim
xS�q

2x2 � 3

3x2 � x � 4
lim

xS�q

x

x2 � 1
lim

xS�q

2x � 3

x � 1

q1x 2 p1x 2

� 3x2 a 1 �
4

3x
�

5

3x2 b� x2 a1 �
4
x

�
1

x2 b
q1x 2 � 3x2 � 4x � 5p1x 2 � x2 � 4x � 1

q1x 2 � 3x2 � 4x � 5p1x 2 � x2 � 4x � 1

NEL
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b. (Factor)

(Simplify)

(Apply limit properties)

(Evaluate)

c. To evaluate this limit, we can use the technique of dividing the numerator and
denominator by the highest power of x in the denominator.

(Divide by x2)

(Simplify)

(Apply limit properties)

(Evaluate)

�
2

3

�
2 � 0

3 � 0 � 0

 lim
xS�q

p1x 2 �

lim
xS�q

a2 �
3

x2 b
lim

xS�q
a3 �

1
x

�
4

x2 b

 �

2 �
3

x2

3 �
1
x

�
4

x2

 �
12x2 � 3 2 � x213x2 � x � 4 2 � x2

 p1x 2 �
2x2 � 3

3x2 � x � 4

� 0

� lim
xS�q

 
1
x

�
1

lim
xS�q

x � 11 2
lim

xS�q
g1x 2 �

1

lim
xS�q

x � lim
xS�q

a1 �
1

x2 b
�  

1

x a1 �
1

x2 b
�  

x11 2
x2 a1 �

1

x2 b
g1x 2 �

x

x2 � 1
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When or the graph of the function is approaching the

line This line is a horizontal asymptote of the function. In Example 3, part a,

is a horizontal asymptote of Therefore, for large positive 

x-values, the y-values approach 2. This is also the case for large negative x-values.

To sketch the graph of the function, we need to know whether the curve approaches
the horizontal asymptote from above or below. To find out, we need to consider

where k is the limit we just determined. This is illustrated in the following
examples.

EXAMPLE 4 Reasoning about the end behaviours of a rational function
Determine the equations of any horizontal asymptotes of the function

State whether the graph approaches the asymptote from

above or below.

Solution

(Divide by x)

(Evaluate)

Similarly, we can show that So, is a horizontal asymptote of

the graph of for both large positive and negative values of x. To determine
whether the graph approaches the asymptote from above or below, we consider
very large positive and negative values of x.

If x is large and positive (for example, if ), which is greater

than Therefore, the graph approaches the asymptote from above.

If x is large and negative (for example, if ), , which isf 1x 2 �
�2995

�20 001x � �1000

y �
3
2

3
2.

f 1x 2 �
3005
1999,x � 1000

f 1x 2 y �
3
2lim

xS�q
f 1x 2 �

3
2.

�
3

2

lim
xS�q

f 1x 2 �

lim
xS�q

a3 �
5
x
b

lim
xS�q

a2 �
1
x
b

�

3 �
5
x

2 �
1
x

f 1x 2 �
3x � 5

2x � 1
�
13x � 5 212x � 1 2 � x

� x

f 1x 2 �
3x � 5
2x � 1 .

f 1x 2 � k,

f 1x 2 �
2x � 3
x � 1 .y � 2

y � k.

lim
xS�q

f 1x 2 � k,lim
xS�q

f 1x 2 � k

NEL
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Values of x x x � 3 x � 2 f (x) f (x)S ?

xS 3� 7 0 6 0 7 0 6 0 �q

xS 3� 7 0 7 0 7 0 7 0 �q

xS � 2� 6 0 6 0 6 0 6 0 �q

xS � 2� 6 0 6 0 7 0 7 0 �q

less than This part of the graph approaches the asymptote from below, as

illustrated in the diagram.

EXAMPLE 5 Selecting a limit strategy to analyze the behaviour of a rational 
function near its asymptotes

For the function determine the equations of all horizontal or 

vertical asymptotes. Illustrate the behaviour of the graph as it approaches the
asymptotes.

Solution
For vertical asymptotes,

or 
There are two vertical asymptotes, at and x � �2.x � 3

x � �2x � 3

1x � 3 2 1x � 2 2 � 0

x2 � x � 6 � 0

f 1x 2 �
3x

x2 � x � 6,

y

x
0 2 4

2

4

–2

–4

–2–4

y �
3
2

3
2.
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Horizontal Asymptotes and Limits at Infinity

If or we say that the line is a horizontal

asymptote of the graph of f 1x 2 . y � Llim
xS�q

f 1x 2 � L,lim
xS�q

f 1x 2 � L

For horizontal asymptotes,

(Factor)

(Simplify)

Similarly, we can show Therefore, is a horizontal asymptote

of the graph of for both large positive and negative values of x.

As x becomes large positively, so the graph is above the horizontal
asymptote. As x becomes large negatively, so the graph is below the
horizontal asymptote.

This diagram illustrates the behaviour of the graph as it nears the asymptotes:

y

0 1

x = –2

x = 3

y = 0

1

2

–1

–2

3

–3

2 3 4–1–2

x

f 1x 2 6 0,
f 1x 2 7 0,

f 1x 2 y � 0lim
xS�q

f 1x 2 � 0.

lim
xS�q

f 1x 2 � lim
xSq

 
3
x

� 0

�
3

x a1 �
1
x

�
6

x2 b
�

3x

x2 a1 �
1
x

�
6

x2 b
f 1x 2 �

3x

x2 � x � 6

NEL
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The following graphs illustrate some typical situations:

so the graph  so the graph 
approaches from above. approaches from below.

In addition to vertical and horizontal asymptotes, it is possible for a graph to have
oblique asymptotes. These are straight lines that are slanted and to which the
curve becomes increasingly close. They occur with rational functions in which the
degree of the numerator exceeds the degree of the denominator by exactly one.
This is illustrated in the following example.

EXAMPLE 6 Reasoning about oblique asymptotes

Determine the equations of all asymptotes of the graph of 

Solution
Since for and for is a
vertical asymptote.

Now 

This limit does not exist, and, by a similar calculation, does not exist,
so there is no horizontal asymptote.

Dividing the numerator by the denominator,

Thus, we can write in the form f 1x 2 � 2x � 1 �
2

x � 1.f 1x 2

           2x � 1

x � 1�2x2 � 3x � 1

           2x2 � 2x

                        x � 1

                        x � 1

                          � 2

lim
xS�q

f 1x 2� lim
xSq

2x

lim
xSq

2x2 � 3x � 1

x � 1
� lim

xSq

2x2 a1 �
3

2x
�

1

2x2 b
x a1 �

1
x
b

x � �1x � �1,2x2 � 3x � 1 � 0x � �1,x � 1 � 0

f 1x 2 �
2x2 � 3x � 1

x � 1 .

f 1x 2 6 L,f 1x 2 7 L,

yy

y = L y = L

xx

yy

y = L y = L xx
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Now let's consider the straight line and the graph of For 
any value of x, we can determine point on the line and point

on the curve.

Then the vertical distance QP from the curve to the line is

That is, as x gets very large, the curve approaches the line but never touches it.
Therefore, the line is an asymptote of the curve.

Since the line is also an asymptote for large negative values of x. 

In conclusion, there are two asymptotes of the graph of 
They are and 

Use a graphing calculator to obtain the graph of 

Note that the vertical asymptote appears on the graph on the left, but the
oblique asymptote does not. Use the Y2 function to graph the oblique
asymptote y � 2x � 1.

y � 2x � 1
x � �1

f 1x 2 �
2x2 � 3x � 1

x � 1 .

x � �1.y � 2x � 1
f 1x 2 �

2x2 � 3x � 1
x � 1 .

lim
xS�q

 2
x � 1 � 0,

y � 2x � 1

� 0

lim
xSq

QP � lim
xSq

 2
x � 1

�
2

x � 1

QP � 2x � 1 � Q2x � 1 �
2

x � 1R

y = f(x)
Q

P

y

x

QQx, 2x � 1 �
2

x � 1R P1x, 2x � 1 2 y � f 1x 2 .y � 2x � 1

NEL
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IN SUMMARY

Key Ideas

• The graph of f(x) has a vertical asymptote if any of the following is
true:

• The line is a horizontal asymptote of the graph of f (x) if
or

• In a rational function, an oblique asymptote occurs when the degree of the
numerator is exactly one greater than the degree of the denominator.

Need to Know

The techniques for curve sketching developed to this point are described in
the following algorithm. As we develop new ideas, the algorithm will be
extended.

Algorithm for Curve Sketching (so far)IN SUMMARY
To sketch a curve, apply these steps in the order given.

1. Check for any discontinuities in the domain. Determine if there are
vertical asymptotes at these discontinuities, and determine the direction
from which the curve approaches these asymptotes.

2. Find both intercepts.

3. Find any critical points.

4. Use the first derivative test to determine the type of critical points that
may be present.

5. Test end behaviour by determining 

6. Construct an interval of increase/decrease table and identify all local or
absolute extrema.

7. Sketch the curve.

lim
xSq 

f 1x 2  and lim
xS�q

f 1x 2 .

lim
xS�q

f 1x 2 � L.lim
xS�q

f 1x 2 � L
y � L

lim
xSc �

f 1x 2 � �qlim
xSc �

f 1x 2 � �q

lim
xSc�

f 1x 2 � �qlim
xSc�

f 1x 2 � �q

x � c
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Exercise 4.3

PART A
1. State the equations of the vertical and horizontal asymptotes of the 

curves shown.

a. b.

2. Under what conditions does a rational function have vertical, horizontal, and
oblique asymptotes?

3. Evaluate and using the symbol “ ” when appropriate.

a. c.

b. d.

4. For each of the following, check for discontinuities and state the equation of
any vertical asymptotes. Conduct a limit test to determine the behaviour of the
curve on either side of the asymptote.

a. d.

b. e.

c. f.

5. For each of the following, determine the equations of any horizontal
asymptotes. Then state whether the curve approaches the asymptote from
above or below.

a. c.

b. d. y �
3x2 � 8x � 7

x � 4
f 1x 2 �

2x

x2 � 1

g1t 2 �
3t2 � 4

t2 � 1
y �

x

x � 4

y �
x2

x2 � 1
s �

11t � 3 22
f 1x 2 �

61x � 3 2 1x � 1 2f 1x 2 �
x � 2

x � 2

y �
x2 � x � 6

x � 3
y �

x

x � 5

f 1x 2 �
2x5 � 3x2 � 5

3x4 � 5x � 4
f 1x 2 �

5x2 � 3

x2 � 2

f 1x 2 �
�5x2 � 3x

2x2 � 5
f 1x 2 �

2x � 3

x � 1

qlim
xS�q  

f 1x 2 ,lim
xSq  

f 1x 2

y

0 2 4–2

–4

2

4

–4
–2

x

y

0 2 4

2

4

–2–4

–4

–2

x

C
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PART B
6. For each of the following, check for discontinuities and then use at least two

other tests to make a rough sketch of the curve. Verify using a calculator.

a. c.

b. d.

7. Determine the equation of the oblique asymptote for each of the following:

a. c.

b. d.

8. a. For question 7, part a., determine whether the curve approaches the
asymptote from above or below.

b. For question 7, part b., determine the direction from which the curve
approaches the asymptote.

9. For each function, determine any vertical or horizontal asymptotes and
describe its behaviour on each side of any vertical asymptote.

a. c.

b. d.

10. Use the algorithm for curve sketching to sketch the graph of each function.

a. d.

b. e.

c. f.

11. Consider the function , where a, b, c, and d are constants,

a. Determine the horizontal asymptote of the graph.

b. Determine the vertical asymptote of the graph.

a � 0, c � 0.

y �
ax � b
cx � d

s1t 2 �
t2 � 4t � 21

t � 3
, t � �7y �

20

x2 � 4

g1x 2 �
2x2 � 5x � 2

x � 3
h1t 2 � 2t3 � 15t2 � 36t � 10

s1t 2 � t �
1
t

f 1x 2 �
3 � x

2x � 5

m1x 2 �
5x2 � 3x � 2

x � 2
g1x 2 �

x2 � 3x � 21x � 1 22
h1x 2 �

x2 � x � 6

x2 � 4
f 1x 2 �

3x � 1

x � 5

f 1x 2 �
x3 � x2 � 9x � 15

x2 � 4x � 3
f 1x 2 �

2x2 � 9x � 2

2x � 3

f 1x 2 �
x3 � 1

x2 � 2x
f 1x 2 �

3x2 � 2x � 17

x � 3

y �
12 � x 2 13 � 2x 21x2 � 3x 2f 1x 2 �

51x � 2 22
g1t 2 �

t2 � 2t � 15

t � 5
y �

x � 3

x � 5

A
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12. Use the features of each function's graph to sketch the graph of its first 
derivative.

a. b.

13. A function’s derivative is shown in each graph. Use the graph to sketch a 
possible graph for the original function.

a. b.

14. Let and 

How can you can tell from its equation which of these 

functions has

a. a horizontal asymptote? 

b. an oblique asymptote?

c. no vertical asymptote?

Explain. Determine the equations of all asymptote(s) for each function.
Describe the behaviour of each function close to its asymptotes.

PART C
15. Find constants a and b such that the graph of the function defined by

will have a vertical asymptote at and a horizontal 

asymptote at 

16. To understand why we cannot work with the symbol as though it were

a real number, consider the functions and 

a. Show that and 

b. Evaluate and show that the limit is not zero.

17. Use the algorithm for curve sketching to sketch the graph of the function 

f 1x 2 �
2x2 � 2x
x2 � 9

.

lim
xS�q

3 f 1x 2 � g1x 2 4 , lim
xS�q

g1x 2 � �q.lim
xS�q

f 1x 2 � �q
g1x 2 �

x2 � 2x � 1
x � 1 .f 1x 2 �

x2 � 1
x � 1

q

y � �3.

x � 5f 1x 2 �
ax � 5
3 � bx

r 1x 2 �
x2 � x � 6

x2 � 16  .

h1x 2 �
x3 � 1
x2 � 4  ,g1x 2 �

x � x3

x � 3  ,f 1x 2 �
�x � 3

x2 � 5x � 14 ,

y

x
4

–4

–8

0

y = g'(x)

4 8

y

x
2

–2
–4 0 42

y = f '(x)

–2

y
x4

–4
–4 0 4

y = g(x)

y

x
2

–2
–3 0 3

y = f(x)

T
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Mid-Chapter Review

1. Use a graphing calculator or graphing software to graph each of the following
functions. Inspect the graph to determine where the function is increasing and
where it is decreasing.

a. c.

b. d.

2. Determine where is increasing and 
where it is decreasing.

3. Graph if when and when
and 

4. Find all the critical numbers of each function.

a. c. e.

b. d. f.

5. For each function, find the critical numbers. Use the first derivative test to
identify the local maximum and minimum values.

a. b.

6. Find a value of k that gives a local minimum value of 1.

7. For find the critical numbers, the intervals on which
the function increases and decreases, and all the local extrema. Use graphing
technology to verify your results.

8. Find the vertical asymptote(s) of the graph of each function. Describe the
behaviour of to the left and right of each asymptote.

a. c.

b. d.

9. For each of the following, determine the equations of any horizontal asymptotes.
Then state whether the curve approaches the asymptote from above or below.

a. b.

10. For each of the following, check for discontinuities and state the equation of
any vertical asymptotes. Conduct a limit test to determine the behaviour of
the curve on either side of the asymptote.

a. b. c. f 1x 2 �
x � 2

x2 � 12x � 12
f 1x 2 �

5

x2 � 9
f 1x 2 �

x1x � 5 22

f 1x 2 �
x2 � 3x � 21x � 1 22y �

3x � 1

x � 5

f 1x 2 �
2 � x

3x2 � 13x � 10
f 1x 2 �

1

9 � x2

f 1x 2 �
x2 � 4

3x � 9
f 1x 2 �

x � 1

x � 2

f 1x 2
f 1x 2 � x4 � 32x � 4,

f 1x 2 � x2 � kx � 2

g1x 2 � x3 � 2x2 � 4xg1x 2 � 2x3 � 9x2 � 12x

y �
x

x2 � 2
y � 3x5 � 25x3 � 60xy � x3 � 27x

y �
x2 � 1

x2 � 1
y � x4 � 4x2y � �2x2 � 16x � 31

f 13 2 � 5.f 1�2 2 � 0,�2 6 x 6 3,
f ¿ 1x 2 7 0x 7 3,x 6 �2f ¿ 1x 2 6 0f 1x 2

g1x 2 � 2x3 � 3x2 � 12x � 15

f 1x 2 �
x2 � 1

x2 � 3
y � 4x3 � 12x2 � 8

f 1x 2 �
x � 2

x � 3
y � 3x2 � 12x � 7
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11. a. What does imply about ?

b. What does imply about ?

12. A diver dives from the 3 m springboard. The diver's height above the water, in

metres, at t seconds is .

a. When is the height of the diver increasing? When is it decreasing?

b. When is the velocity of the diver increasing? When is it decreasing? 

13. The concentration, C, of a drug injected into the bloodstream t hours after

injection can be modelled by Determine when the

concentration of the drug is increasing and when it is decreasing.

14. Graph for the function shown at the left.

15. For each function ,
i. find the critical numbers

ii. determine where the function increases and decreases

iii. determine whether each critical number is at a local maximum, a local
minimum, or neither

iv. use all the information to sketch the graph

a. c.

b. d.

16. Determine the equations of any vertical or horizontal asymptotes for each
function. Describe the behaviour of the function on each side of any 
vertical or horizontal asymptote.

a. c.

b. d.

17. Find each limit.

a. e.

b. f.

c. g.

d. h. lim
x S q a5x � 4 �

7

x � 3
blim

x S q 
5 � 2x3

x4 � 4x

lim
x S q 

x2 � 4x � 5

x2 � 1
lim

x S q 
7 � 2x2 � 3x3

x3 � 4x2 � 3x

lim
x S q 

x2 � 3x � 181x � 3 22lim
x S q 

x2 � 2x � 5

6x2 � 2x � 1

lim
x S q 

2x5 � 1

3x4 � x2 � 2
lim

x S q 
3 � 2x

3x

m1x 2 �
2x2 � x � 1

x � 4
g1x 2 �

x2 � 4x � 51x � 2 22
h1x 2 �

x2 � 2x � 15

9 � x2f 1x 2 �
x � 5

2x � 1

f 1x 2 � x5 � 5xf 1x 2 � �2x3 � 9x2 � 3

f 1x 2 � 2x4 � 4x2 � 2f 1x 2 � x2 � 7x � 18

f 1x 2y �  f ¿ 1x 2
C1t 2 �

t
4 � 2t�2.

h1t 2 �  �4.9t2 � 9.5t � 2.2

f 1x 2f ¿ 1x 2 6 0

f 1x 2f ¿ 1x 2 7 0

y

x
0

6

2 4 6

2

4

–2

–6

–4

–2–4–6

y = f (x)
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Section 4.4—Concavity and Points of Inflection

In Chapter 3, you saw that the second derivative of a function has applications in
problems involving velocity and acceleration or in general rates-of-change problems.
Here we examine the use of the second derivative of a function in curve sketching.

INVESTIGATION 1 The purpose of this investigation is to examine the relationship between slopes of
tangents and the second derivative of a function.

A. Sketch the graph of 

B. Determine Use to calculate the slope of the tangent to the curve at
the points with the following x-coordinates: , , , , 0, 1, 2, 3,
and 4. Sketch each of these tangents.

C. Are these tangents above or below the graph of 

D. Describe the change in the slopes as x increases.

E. Determine How does the value of relate to the way in which 
the curve opens? How does the value of relate to the way changes
as x increases?

F. Repeat parts B, C, and D for the graph of 

G. How does the value of relate to the way in which the curve opens?

INVESTIGATION 2 The purpose of this investigation is to extend the results of Investigation 1 
to other functions.

A. Sketch the graph of 

B. Determine all the values of x for which 

C. Determine intervals on the domain of the function such that ,
, and 

D. For values of x such that how does the shape of the curve 
compare with your conclusions in Investigation 1?

E. Repeat part D for values of x such that 

F. What happens when 

G. Using your observations from this investigation, sketch the graph of 
y � x3 � 12x.

f – 1x 2 � 0?

f – 1x 2 7 0.

f – 1x 2 6 0,

f – 1x 2 7 0.f – 1x 2 � 0
f – 1x 2 6 0

f ¿ 1x 2 � 0.

f 1x 2 � x3.

f – 1x 2 f 1x 2 � �x2.

f ¿ 1x 2f – 1x 2f – 1x 2f – 1x 2 .
y � f 1x 2?

�1�2�3x � �4
f ¿ 1x 2  f ¿ 1x 2 . f 1x 2 � x2.
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From these investigations, we can make a summary of the behaviour 
of the graphs.

Concavity and the Second Derivative
1. The graph of is concave up on an interval in which 

the slopes of are increasing. On this interval, exists and 
The graph of the function is above the tangent at every point on the interval.

2. The graph of is concave down on an interval in which
the slopes of  are decreasing. On this interval, exists and 
The graph of the function is below the tangent at every point on the interval.

3. If has a critical point at with then the behaviour 
of at can be analyzed through the use of the second derivative
test by analyzing as follows:
a. The graph is concave up, and is the location of a local minimum

value of the function, if 

y

0
x

local minimum
f '' (c).0

f – 1c 2 7 0.
x � c

f – 1c 2 ,x � cf 1x 2 f ¿ 1c 2 � 0,x � c,y � f 1x 2

y

0
x

a b

y

0
x

a b

f – 1x 2 6 0.f – 1x 2f 1x 2 a � x � by � f 1x 2

y

0
x

a b

y

0
x

a b

f – 1x 2 7 0.f – 1x 2f 1x 2 a � x � by � f 1x 2
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b. The graph is concave down, and is the location of a local maximum
value of the function, if 

c. If the nature of the critical point cannot be determined 
without further work.

4. A point of inflection occurs at on the graph of if 
changes sign at That is, the curve changes from concave down to
concave up, or vice versa.

5. All points of inflection on the graph of must occur either where

equals zero or where is undefined.

In the following examples, we will use these properties to sketch graphs 
of other functions.

EXAMPLE 1 Using the first and second derivatives to analyze a cubic function

Sketch the graph of 

Solution
dy

dx
� 3x2 � 6x � 9

y � x3 � 3x2 � 9x � 10.

d2y
dx2

d2y
dx2

y � f 1x 2

y

0
x

c

(c, f (c))

f'' .0 S d f'',0

y

0
x

c

(c, f (c))

f'' ,0 S d f'' .0

x � c.
f – 1x 2y � f 1x 21c, f 1c 22

f – 1c 2 � 0,

y

0
x

local maximum
f '' (c),0

f – 1c 2 6 0.
x � c
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Setting we obtain 

or 

Setting we obtain or 

Now determine the sign of in the intervals determined by x � 1.f – 1x 2 x � 1.6x � 6 � 0
d2y
dx2 � 0,

d2y

dx2 � 6x � 6

x � �1x � 3

 31x � 3 2 1x � 1 2 � 0

 31x2 � 2x � 3 2 � 0

dy
dx � 0,

Interval x 6 1 x � 1 x 7 1

f �(x) 6 0 0 7 0

Graph
of f (x)

concave down
point of
inflection

concave up

Sketch 
of f (x)

Applying the second derivative test, at we obtain the local minimum point,
and at we obtain the local maximum point, The point

of inflection occurs at where 
The graph can now be sketched.

EXAMPLE 2 Using the first and second derivatives to analyze a quartic function

Sketch the graph of 

Solution
The first and second derivatives of are and 
Setting we obtain 

or x � 0 12x2 � 0
f – 1x 2 � 0,

f – 1x 2 � 12x2.f ¿ 1x 2 � 4x3f 1x 2
f 1x 2 � x4.

y

x
10

20

–10

–20

–4 0 42–2

(–1, 15)

(3, –17)

(1, –1)

y = x3– 3x2– 9x + 10

f 11 2 � �1.x � 1
1�1, 15 2 .x � �1,13, �17 2 x � 3,

NEL



202 NEL

But is also obtained from 

Now determine the sign of on the intervals determined by x � 0.f – 1x 2 f ¿ 1x 2 � 0.x � 0

Interval x 6 0 x � 0 x 7 0

f �(x) 7 0 � 0 7 0

Graph
of f (x)

concave up ? concave up

Sketch 
of f (x)

We conclude that the point is not an inflection point because does not
change sign at However, since is a critical number and 
when and when is an absolute minimum.

EXAMPLE 3 Using the first and second derivatives to analyze a root function

Sketch the graph of the function 

Solution
The derivative of is

Note that does not exist, so is a critical number of It is important
to determine the behaviour of as Since for all values 
of and the denominator of is zero when we have

This means that there is a vertical tangent at In addition,

is increasing for and As a result this graph has no local extrema.x 7 0.x 6 0f 1x 2 x � 0.lim
xS0

f ¿ 1x 2 � �q.
x � 0,f ¿ 1x 2x � 0,

f ¿ 1x 2 7 0xS 0.f ¿ 1x 2 f 1x 2 .x � 0f ¿ 10 2
 �

1

3x
2
3

 f ¿ 1x 2 �
1

3
x�2

3

f 1x 2
f 1x 2 � x

1
3.

x 7 0, 10, 0 2f ¿ 1x 2 7 0x 6 0
f ¿ 1x 2 6 0x � 0x � 0.

f – 1x 210, 0 2
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The graph has a point of inflection when even though and do
not exist. Note that the curve crosses its tangent at 

EXAMPLE 4 Reasoning about points of inflection

Determine any points of inflection on the graph of 

Solution
The derivative of is 
The second derivative is

 �
6x2 � 61x2 � 3 23

 �
�21x2 � 3 2 � 8x21x2 � 3 23

 �
�21x2 � 3 22 �

8x21x2 � 3 23
 f – 1x 2 � �21x2 � 3 2�2 � 4x1x2 � 3 2�312x 2

f ¿ 1x 2 � �2x 1x2 � 3 2�2.f 1x 2 �
1

x2 � 3 � 1x2 � 3 2�1

f 1x 2 �
1

x2 � 3 .

y

x
0 2 4 6

2

4

–2

–4

–2–4–6

x � 0.
f – 10 2f ¿ 10 2x � 0,

The second derivative of is

Since if and if we obtain the following table:x 6 0,x
5
3 6 0x 7 0,x

5
3 7 0

� �
2

9x
5
3

�
2

9
˛x�5

3f – 1x 2 �

f 1x 2

Interval x 6 0 x � 0 x 7 0

f �(x)
�

�
� � does not exist

�

�
� �

f (x)
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Setting gives or 

Determine the sign of on the intervals determined by and x � 1.x � �1f – 1x 2 x � ; 1.6x2 � 6 � 0f – 1x 2 � 0

Interval x 6 �1 x � �1 �1 6 x 6 1 x � 1 x 7 1

f �(x) 7 0 � 0 6 0 � 0 7 0

Graph of f (x) concave up point of inflection concave down point of inflection concave up

IN SUMMARY

Key Ideas

• The graph of a function is concave up on an interval if is
increasing on the interval. The graph of a function is concave down on
an interval if is decreasing on the interval.

• A point of inflection is a point on the graph of where the function
changes from concave up to concave down, or vice versa. or is
undefined if is a point of inflection on the graph of 

Need to Know

• Test for concavity: If is a differentiable function whose second
derivative exists on an open interval I, then

• the graph of is concave up on I if for all values of x in I

• the graph of is concave down on I if for all values of x in I

• The second derivative test: Suppose that is a function for which
and the second derivative of exists on an interval containing c.

• If then is a local minimum value.

• If then is a local maximum value.

• If then the test fails. Use the first derivative test.f – 1c 2 � 0,

f 1c 2f – 1c 2 6 0,

f 1c 2f – 1c 2 7 0,

f 1x 2f – 1c 2 � 0,
f 1x 2f – 1x 2 6 0f 1x 2 f – 1x 2 7 0f 1x 2

f 1x 2
f 1x 2 .1c, f 1c 2 2 f – 1c 2 � 0

f 1x 2f ¿ 1x 2 f 1x 2 f ¿ 1x 2f 1x 2

Therefore, and are points of inflection on the graph of 

x
0 4

1

–1

(–1,     )4
1

–2–4–6 62

y = 1
x2 + 3

(–1,     )4
1

f 1x 2 .Q1, 14RQ�1, 14R
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Exercise 4.4

PART A
1. For each function, state whether the value of the second derivative is positive

or negative at each of points A, B, C, and D.

a. b.

2. Determine the critical points for each function, and use the second derivative
test to decide if the point is a local maximum, a local minimum, or neither.

a. c.

b. d.

3. Determine the points of inflection for each function in question 2. Then 
conduct a test to determine the change of sign in the second derivative.

4. Determine the value of the second derivative at the value indicated. State
whether the curve lies above or below the tangent at this point.

a. at c. at 

b. at d. at 

PART B
5. Each of the following graphs represents the second derivative, of a

function 

a. b.

is a linear function. is a quadratic function.

For each of the graphs above, answer the following questions:

i. On which intervals is the graph of concave up? On which intervals is
the graph concave down?

f 1x 2
f – 1x 2f – 1x 2

y

x

y= f ''(x)

0 2 31–1

y

x
0 2 31–1

y= f ''(x)

f 1x 2 : f – 1x 2 ,
t � �2s1t 2 �

2t

t � 4
x � �1g1x 2 � x2 �

1
x

w � 3p1w 2 �
w

�w2 � 1
x � 2f 1x 2 � 2x3 � 10x � 3

y � 1x � 3 23 � 8y �
25

x2 � 48

s � t � t�1y � x3 � 6x2 � 15x � 10

g (x)

A B

C

D

x
0

f (x)

x

A

B

C
D

0

K

NEL
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ii. List the x-coordinates of all the points of inflection.

iii. Make a rough sketch of a possible graph of , assuming that 

6. Describe how you would use the second derivative to determine a local
minimum or maximum.

7. In the algorithm for curve sketching in Section 4.3, reword step 4 to include
the use of the second derivative to test for local minimum or maximum values.

8. For each of the following functions,

i. determine any points of inflection 

ii. use the results of part i, along with the revised algorithm, to sketch each
function.

a. b.

9. Sketch the graph of a function with the following properties:

• when and when 

• when 

• and 

• when and when 

• when and when 

•

10. Find constants a, b, and c such that the function will
have a local extremum at and a point of inflection at . Sketch the
graph of 

PART C
11. Find the value of the constant b such that the function 

has a point of inflection at 

12. Show that the graph of has two points of inflection. Show that
the x-coordinate of one of these points lies midway between the x-intercepts.

13. a. Use the algorithm for curve sketching to sketch the function 

b. Explain why it is difficult to determine the oblique asymptote using  
a graphing calculator.

14. Find the inflection points, if any exist, for the graph of 
, and 4. What conclusion can you draw about the value of 

and the existence of inflection points on the graph of ?f
nfor n � 1, 2, 3

f 1x 2 � 1x � c 2n,

y �
x3 � 2x2 � 4x

x2 � 4
.

f 1x 2 � ax4 � bx3

x � 3.
f 1x 2 � �x � 1 �

b
x

y � f 1x 2 . 11, 5 212, 11 2 f 1x 2 � ax3 � bx2 � c

f 10 2 � �4

x 7 72 6 x 6 4f – 1x 2  7 0

4 6 x 6 7x 6 2f – 1x 2  6 0

f ¿ 15 2 � 0f ¿ 12 2 � 0

x 7 5f ¿ 1x 2  6 0

2 6 x 6 5x 6 2f ¿ 1x 2  7 0

g1w 2 �
4w2 � 3

w3f 1x 2 � x4 � 4x

f 10 2 � 2.f 1x 2
C

4 . 4 C O N C AV I T Y  A N D  P O I N T S  O F  I N F L E C T I O N  

A

T



C H A P T E R  4 207

Section 4.5—An Algorithm for Curve Sketching

You now have the necessary skills to sketch the graphs of most elementary 
functions. However, you might be wondering why you should spend time 
developing techniques for sketching graphs when you have a graphing calculator.
The answer is that, in doing so, you develop an understanding of the qualitative
features of the functions you are analyzing. Also, for certain functions,
maximum/minimum/inflection points are not obvious if the window setting is not
optimal. In this section, you will combine the skills you have developed. Some of
them use the calculus properties. Others were learned earlier. Putting all the skills
together will allow you to develop an approach that leads to simple, yet accurate,
sketches of the graphs of functions.

An Algorithm for Sketching the Graph of f(x)
Note: As each piece of information is obtained, use it to build the sketch.
1: Determine any discontinuities or limitations in the domain. For discontinuities,

investigate the function’s values on either side of the discontinuity.
2: Determine any vertical asymptotes.
3: Determine any intercepts.
4: Determine any critical numbers by finding where or where is 

undefined.
5: Determine the intervals of increase/decrease, and then test critical points to see

whether they are local maxima, local minima, or neither.
6: Determine the behaviour of the function for large positive and large negative

values of x. This will identify horizontal asymptotes, if they exist. Identify if
the functions values approach the horizontal asymptote from above or below.

7: Determine and test for points of inflection using the intervals 
of concavity.

8: Determine any oblique asymptotes. Identify if the functions values approach
the obliques asymptote from above or below.

9: Complete the sketch using the above information.

When using this algorithm, keep two things in mind:

1. You will not use all the steps in every situation. Use only the steps 
that are essential.

2. You are familiar with the basic shapes of many functions. Use this knowledge
when possible.

d2y
dx2

dy
dx

dy
dx � 0

y �

NEL
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INVESTIGATION Use the algorithm for curve sketching to sketch the graph of each of the
following functions. After completing your sketch, use graphing technology to
verify your results.
a. b.

EXAMPLE 1 Sketching an accurate graph of a polynomial function

Use the algorithm for curve sketching to sketch the graph of

Solution
This is a polynomial function, so there are no discontinuities and no asymptotes.
The domain is Analyze . Determine any intercepts.

x-intercept, y-intercept,

Now determine the critical points.
Analyze .

Setting we obtain

When we sketch the function, we can use approximate values and 

for and 

Analyze .

At , At ,

7 06 0
� 14� �14
� 18 � 4� �10 � 4

 f – 1�1 2 � �181�1 2 � 4f – a 5

9
b � �18 a 5

9
b � 4

x � �1x �
5

9

f – 1x 2 � �18x � 4
f–(x)

f Q59R.x �
5
9y � 1.6

x � 0.6

x �
5

9
 or x � �1

 �19x � 5 2 1x � 1 2 � 0
 �19x2 � 4x � 5 2 � 0

 �9x2 � 4x � 5 � 0

f ¿ 1x 2 � 0,
f ¿ 1x 2 � �9x2 � 4x � 5

f ¿(x)

11, 0 2a�
5

3
, 0 b ,10, 0 2 ,x � 0, x � �

5

3
, x � 1

 �x 13x � 5 2 1x � 1 2 � 0
10, 0 2 �x 13x2 � 2x � 5 2 � 0
y � 0 �3x3 � 2x2 � 5x � 0
x � 0y � 0

f (x)5x�R6.
f 1x 2 � �3x3 � 2x2 � 5x.

y �
x

x2 � 1
y � x4 � 3x2 � 2x
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Therefore, by the second derivative test gives a local maximum and 

gives a local minimum. Since this is a polynomial function, must be decreasing

when increasing when and decreasing when . For a 

point of inflection, and changes sign.

or 

Now we determine the sign of in, the intervals determined by 
A point of inflection occurs at about .

We can now draw our sketch.

EXAMPLE 2 Sketching an accurate graph of a rational function

Sketch the graph of 

Solution
Analyze .

is a rational function.
Determine any intercepts.
x-intercept, y-intercept,

10, 2 214, 0 2 y � 2x � 4

y �
�4

�2
x � 4 � 0

y �
0 � 4

0 � 0 � 2

x � 4

x2 � x � 2
� 0

x � 0y � 0

f 1x 2 f (x)

f 1x 2 �
x � 4

x2 � x � 2.

y

x
0

6

2 4 6

2

4

–2

–6

–4

–2–4–6

minimum (–1, –4)
point of
inflection
(–0.2, –1.2)

maximum (0.6, 1.6)

1�0.2, �1.2 2 x � �
2
9 .f – 1x 2x � �

2

9
�18x � 4 � 0

f – 1x 2 � 0

x 7 5
9�1 6 x 6 5

9x 6 �1,

f 1x 2 x � �1x �
5
9

Interval x 6 �
2
9

x � �
2
9

f �(x) 7 0 0 6 0

Graph of f (x) concave up point of inflection concave down

x 7 �
2
9

NEL
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Determine any asymptotes.
The function is not defined if 

and 
The domain is 
There are vertical asymptotes at and 

Using we examine function values near the asymptotes.

Sketch the information you have so far, as shown.

Analyze . Now determine the critical points.

if 

Since we are sketching, approximate values 7.2 and 0.8 are acceptable. These 
values give the approximate points and .10.8, 1.5 217.2, 0.1 2

x � 4 ; �10

x �
8 ; 2�10

2

�x2 � 8x � 6 � 0f ¿ 1x 2  � 0

 �
�x2 � 8x � 61x2 � x � 2 22

 �
1x2 � x � 2 21x2 � x � 2 22 �

12x2 � 9x � 4 21x2 � x � 2 22
 �

1

x2 � x � 2
�
1x � 4 2 12x � 1 21x2 � x � 2 22

 f ¿ 1x 2 � 11 2 1x2 � x � 2 2�1 � 1x � 4 2 1�1 2 1x2 � x � 2 2�212x � 1 2 f 1x 2 � 1x � 4 2 1x2 � x � 2 2�1

f ¿(x)

0

3

1 2 3

4

1

2

–1

–2

–1–2 4

(4, 0)

(0, 2)

x

x = –1 x = 2 

y

lim
xS2�   

f 1x 2 � �qlim
xS2�  

f 1x 2 � �q

lim
xS�1�

   
f 1x 2 � �qlim

xS�1�   
f 1x 2 � �q

f 1x 2 �
x � 4

x2 � x � 2,

x � �1.x � 2
5x�R 0  x � 2 and x � �16.x � �1x � 2

 1x � 2 2 1x � 1 2 � 0
 x2 � x � 2 � 0
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From the information obtained, we can see that is likely a local 
maximum and is likely a local minimum. To verify this using the second 
derivative test is a difficult computational task. Instead, verify using the first
derivative test, as follows.

gives the local minimum. gives the local maximum.
Now check the end behaviour of the function.

but always.

but  always.

Therefore, is a horizontal asymptote. The curve approaches from above 
on the right and below on the left.

There is a point of inflection beyond since the curve opens down at that
point but changes as x becomes larger. The amount of work necessary to 

determine the point is greater than the information we gain, so we leave it undone.
(If you wish to check it, it occurs for ) The finished sketch is given
below and, because it is a sketch, it is not to scale.

x

0 2

2

–2
–2 4 6 8

(4, 0)

(0, 2)

(7.2, 0.1)

(0.8, 1.5)

y

x � 10.4.

x � 7.2,

y � 0

y 6 0lim
xS�q  

f 1x 2 � 0

y 7 0lim
xS�q  

f 1x 2 � 0

x � 7.2x � 0.8

10.8, 1.5 2 17.2, 0.1 2

Interval 1��, �1 2 1�1, 0.8 2 10.8, 2 2 12, 7.2 2 17.2, q 2
�x2 � 8x � 6 � � � � �

(x2 � x � 2)2 � � � � �

f � (x) 6 0 6 0 7 0 7 0 6 0

f (x) decreasing decreasing increasing increasing decreasing

NEL
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Exercise 4.5

PART A
1. If a polynomial function of degree three has a local minimum, explain how

the function’s values behave as and as Consider all cases.

2. How many local maximum and local minimum values are possible for a 
polynomial function of degree three, four, or n? Explain.

3. Determine whether each function has vertical asymptotes. If it does, state the
equations of the asymptotes.

a. b. c. y �
3x � 2

x2 � 6x � 9
y �

5x � 4

x2 � 6x � 12
y �

x

x2 � 4x � 3

xS  �q.xS  �q

C

IN SUMMARY

Key Idea

• The first and second derivatives of a function give information about the
shape of the graph of the function.

Need to Know
Sketching the Graph of a Polynomial or Rational Function
1. Use the function to

• determine the domain and any discontinuities

• determine the intercepts

• find any asymptotes, and determine function behaviour relative to these
asymptotes

2. Use the first derivative to

• find the critical numbers

• determine where the function is increasing and where it is decreasing

• identify any local maxima or minima

3. Use the second derivative to
• determine where the graph is concave up and where it is 

concave down
• find any points of inflection

The second derivative can also be used to identify local maxima and minima.

4. Calculate the values of y that correspond to critical points and points of 
inflection. Use the information above to sketch the graph.

Remember that you will not use all the steps in every situation! Use only the steps
that are necessary to give you a good idea of what the graph will look like.
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PART B
4. Use the algorithm for curve sketching to sketch the following:

a. f.

b. g.

c. h.

d. i.

e. j.

5. Verify your results for question 4 using graphing technology.

6. Determine the constants a, b, c, and d so that the curve defined by
has a local maximum at the point and 

a point of inflection at the origin. Sketch the curve.

7. Given the following results of the analysis of a function, sketch a possible
graph for the function:

a. the horizontal asymptote is the vertical asymptote is
and and for and 

for 

b. the horizontal asymptote is the vertical
asymptote is and and for 

and for 

PART C
8. Sketch the graph of where k is any positive constant.

9. Sketch the curve defined by 

10. Find the horizontal asymptotes for each of the following:

a.

b.

11. Show that, for any cubic function of the form 
there is a single point of inflection, and the slope of the curve at that point 

is c �
b2

3a.

y � ax3 � bx2 � cx � d,

g1t 2 � �t2 � 4t � �t2 � t

f 1x 2 �
x

�x2 � 1

g1x 2 � x
1
3 1x � 3 2 23.f 1x 2 �

k � x
k2 � x2,

x 7 �4.f – 1x 2 6 0f ¿ 1x 2 7 0
x 6 �4;f – 1x 2 7 0f ¿ 1x 2 7 0x � �4,

y � 7,f 10 2 � 6, f 1�2 2 � 0

x 7 3.
f – 1x 2 7 0f ¿ 1x 2 6 0x 6 3;f – 1x 2 6 0f ¿ 1x 2 6 0x � 3,

y � 2,f 10 2 � 0,

12, 4 2y � ax3 � bx2 � cx � d

f 1x 2 � 1x � 4 2 23y �
2x

x2 � 25

y �
x2 � 3x � 6

x � 1
f 1x 2 � x4 � 4x3 � 8x2 � 48x

f 1x 2 �
x � 3

x2 � 4
y � 3 �

11x � 2 22
y �

6x2 � 2

x3f 1x 2 � � 4x3 � 18x2 � 3

f 1x 2 �
1

x2 � 4x
y � x3 � 9x2 � 15x � 30

A

K

T

NEL
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Investigate and ApplyCAREER LINK WRAP-UP

CHAPTER 4: PREDICTING STOCK VALUES

In the Career Link earlier in the chapter, you investigated a graphical model used
to predict stock values for a new stock. A brand new stock is also called an
initial public offering, or IPO. Remember that, in this model, the period
immediately after the stock is issued offers excess returns on the stock—that is,
the stock is selling for more than it is really worth.

One such model for a class of Internet IPOs predicts the percent overvaluation of

a stock as a function of time as where is the

overvaluation in percent and t is the time in months after the initial issue.

a. Use the information provided by the first derivative, second derivative, and
asymptotes to prepare advice for clients as to when they should expect a
signal to prepare to buy or sell (inflection point), the exact time when they
should buy or sell (local maximum/minimum), and any false signals prior to a
horizontal asymptote. Explain your reasoning. 

b. Make a sketch of the function without using a graphing calculator.

R1t 2R1t 2 � 250 a t212.718 23t b ,

C A R E E R  L I N K  W R A P - U P
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Key Concepts Review

In this chapter, you saw that calculus can help you sketch graphs of polynomial
and rational functions. Remember that concepts you learned in earlier studies are
useful, and that calculus techniques help with sketching. Basic shapes should
always be kept in mind. Use these, together with the algorithm for curve 
sketching, and always use your accumulated knowledge.

Basic Shapes to Remember

Sketching the Graph of a Polynomial or Rational Function
1. Use the function to

• determine the domain and any discontinuities

• determine the intercepts

• find any asymptotes, and determine function behaviour relative to these
asymptotes

2. Use the first derivative to

• find the critical numbers

• determine where the function is increasing and where it is decreasing

• identify any local maxima or minima

3. Use the second derivative to

• determine where the graph is concave up and where it is concave down

• find any points of inflection

The second derivative can also be used to identify local maxima and minima.

4. Calculate the values of y that correspond to critical points and points of
inflection. Use the information above to sketch the graph.

y

x
0 2 4

2
4

–2
–4

–2–4

y = 1
x2 – k

y

x
2
4

–2
–4

–4 0 42–2

y  = x
1

y

x
2
4

–2
–4

–4 0 4

cubic

2–2

y

x
0

3

1 2

4

1
2

–1–2

y = x2

NEL
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Review Exercise

1. For each of the following graphs, state

i. the intervals where the function is increasing

ii. the intervals where the function is decreasing

iii. the points where the tangent to the function is horizontal

a. b. 

2. Is it always true that an increasing function is concave up in shape? Explain.

3. Determine the critical points for each function. Determine whether the critical
point is a local maximum or local minimum and whether or not the tangent is
parallel to the x-axis.

a. c.

b. d.

4. The graph of the function has local extrema at points A, C, and E
and points of inflection at B and D. If a, b, c, d, and e are the x-coordinates of
the points, state the intervals on which the following conditions are true:

a. and 

b. and 

c. and 

d. and f – 1x 2 6 0f ¿ 1x 2 6 0

f – 1x 2 7 0f ¿ 1x 2 6 0

f – 1x 2 6 0f ¿ 1x 2 7 0

f – 1x 2 7 0f ¿ 1x 2 7 0

y � f 1x 2 g1x 2 � 1x � 1 2 13f 1x 2 � x4 � 8x3 � 18x2 � 6

h1x 2 �
x � 3

x2 � 7
f 1x 2 � �2x3 � 9x2 � 20

g(x)

x

4

–4

0–4 4 8

(1, –1)

(6.5, –1)

y

x
0 4 8 12

5

10

–5

–10

–4–8–12

(1, 20)

15

20

R E V I E W  E X E R C I S E

f(x)

xc

A

B

C

D

E

dba e
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5. For each of the following, check for discontinuities and state the equation of
any vertical asymptotes. Conduct a limit test to determine the behaviour of the
curve on either side of the asymptote.

a. c.

b. d.

6. Determine the point of inflection on the curve defined by Show
that the tangent line at this point crosses the curve.

7. Sketch a graph of a function that is differentiable on the interval 
and satisfies the following conditions:

• There are local maxima at and .

• The function f is decreasing on the intervals and 

• The derivative is positive for and for 

•

8. Each of the following graphs represents the second derivative, of a
function 

a. b.

is a quadratic function. is a cubic function.

i. On what intervals is the graph of concave up? On what intervals is
the graph concave down?

ii. List the x-coordinates of the points of inflection.

iii. Make a rough sketch of a possible graph for , assuming that g10 2 � �3.g1x 2
g1x 2 g– 1x 2g– 1x 2

g''(x)

x
0 2 4 6–2–4–6

g''(x)

x
0–1–2 1 2 3

g1x 2 : g– 1x 2 ,f 11 2 � �6

1 6 x 6 3.�3 � x 6 �2f ¿ 1x 2 3 � x � 5.�2 6 x 6 1

13, 4 21�2, 10 2
�3 � x � 5

y � x3 � 5.

g1x 2 �
5

x2 � x � 20
g1x 2 �

x � 5

x � 5

f 1x 2 �
x2 � 2x � 15

x � 3
y �

2x

x � 3

C H A P T E R  4NEL
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9. a. If the graph of the function has a horizontal tangent 

at point determine the values of a and b.

b. Sketch the function g.

10. Sketch each function using suitable techniques.

a. d.

b. e.

c. f.

11. a. Determine the conditions on parameter k such that the function 

will have critical points.

b. Select a value for k that satisfies the constraint established in part a, and
sketch the section of the curve that lies in the domain 

12. Determine the equation of the oblique asymptote in the form for
each function, and then show that .

a. b.

13. Determine the critical numbers and the intervals on which 
is increasing or decreasing.

14. Use the second derivative test to identify all maximum and minimum values
of on the interval 

15. Use the y-intercept, local extrema, intervals of concavity, and points of inflection
to graph 

16. Let and 

a. Determine the asymptotes for each function, and identify their type (vertical,
horizontal, or oblique).

b. Graph showing clearly the asymptotes and the intercepts.y � r 1x 2 ,
s1x 2 �

x3 � 2x
x � 2 .

r 1x 2 �
x2 � 2x � 8

x2 � 1  ,q1x 2 �
3x � 1

x2 � 2x � 3 ,p1x 2 �
3x3 � 5
4x2 � 1 ,

f 1x 2 � 4x3 � 6x2 � 24x � 2.

�4 � x � 3.f 1x 2 � x3 �
3
2x2 � 7x � 5

g1x 2 � 1x2 � 4 22f 1x 2 �
4x3 � x2 � 15x � 50

x2 � 3x
f 1x 2 �

2x2 � 7x � 5

2x � 1

lim
xS�q

3y � f 1x 2 4 � 0
y � mx � b

�x� � k.

f 1x 2 �
2x � 4
x2 � k2

f 1t 2 �
t2 � 3t � 2

t � 3
g1x 2 �

x2 � 1

4x2 � 9

h1x 2 �
x

x2 � 4x � 4
f 1x 2 �

3x � 1

x � 1

y � x1x � 4 23y � x4 � 8x2 � 7

12, �1 2 , g1x 2 �
ax � b1x � 1 2 1x � 4 2

R E V I E W  E X E R C I S E
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17. If determine the domain, intercepts, asymptotes, intervals of 

increase and decrease, and concavity. Locate any critical points and points of
inflection. Use this information to sketch the graph of 

18. Explain how you can use this graph of to sketch a possible graph of
the original function,

19. For show that and Use 

the function and its derivatives to determine the domain, intercepts, asymptotes,
intervals of increase and decrease, and concavity, and to locate any local
extrema and points of inflection. Use this information to sketch the graph of f.

20. The graphs of a function and its derivatives, and 
are shown on each pair of axes. Which is which? Explain how you can tell.

a. b. y

x
0 2 4

2

4

–2

–4

–2–4

D
E

F
y

x
0 2 4

1

2

–1

–2

–2–4

A

B

C

y � f –1x 2 ,y � f ¿1x 2 ,y � f 1x 2 ,
f –1x 2 �

1001x � 2 21x � 1 24 .f ¿1x 2 �
�51x � 1 21x � 1 23f 1x 2 �

5x1x � 1 22 ,

y

x
0 2 4

2

4

–2

–4

–2–4

y = f '(x)

y � f 1x 2 . y � f ¿1x 2 f 1x 2 .
f 1x 2 �

x3 � 8
x ,
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Chapter 4 Test

1. The graph of function is shown at the left.

a. Estimate the intervals where the function is increasing.

b. Estimate the intervals where 

c. Estimate the coordinates of the critical points.

d. Estimate the equations of any vertical asymptotes.

e. What is the value of on the interval 

f. If estimate the intervals where and 

g. Identify a point of inflection, and state the approximate ordered pair for
the point.

2. a. Determine the critical points of the function 

b. Classify each critical point in part a.

3. Sketch the graph of a function with the following properties:

• There are local extrema at and 

• There is a point of inflection at 

• The graph is concave down only when 

• The x-intercept is and the y-intercept is 6.

4. Check the function for discontinuities. Conduct 

appropriate tests to determine if asymptotes exist at the discontinuity values.
State the equations of any asymptotes and the domain of .

5. Sketch a graph of a function f with all of the following properties:

• The graph is increasing when and when .

• The graph is decreasing when .

•

• The graph is concave down when and when .

• The graph is concave up when and when .

6. Use at least five curve-sketching techniques to explain how to sketch the 

graph of the function Sketch the graph on graph paper.

7. The function has a critical point at 

a. Find the constants b and c.

b. Sketch the graph of using only the critical points and the second
derivative test.

f 1x 2
1�2, 6 2 .f 1x 2 � x3 � bx2 � c

f 1x 2 �
2x � 10
x2 � 9 .

x 7 9�2 6 x 6 3

3 6 x 6 9x 6 �2

f ¿ 1�2 2 � 0, f ¿ 14 2 � 0

x 7 4

�2 6 x 6 4x 6 �2

g1x 2
g1x 2 �

x2 � 7x � 101x � 3 2 1x � 2 2
�4,

x 6 1.

11, 4 2 . 13, 2 2 .1�1, 7 2
g1x 2 � 2x4 � 8x3 � x2 � 6x.

f – 1x 2 7 0.f ¿ 1x 2 6 0x � �6,

�4 6 x 6 4?f – 1x 2
f ¿ 1x 2 6 0.

y � f 1x 2
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Chapter 5

DERIVATIVES OF EXPONENTIAL AND 
TRIGONOMETRIC FUNCTIONS

The world’s population experiences exponential growth—the rate of growth
becomes more rapid as the size of the population increases. Can this be explained
in the language of calculus? Well, the rate of growth of the population is described
by an exponential function, and the derivative of the population with respect to
time is a constant multiple of the population at any time t. There are also many
situations that can be modelled by trigonometric functions, whose derivative also
provides a model for instantaneous rate of change at any time t. By combining the
techniques in this chapter with the derivative rules seen earlier, we can find the
derivative of an exponential or trigonometric function that is combined with other
functions. Logarithmic functions and exponential functions are inverses of each
other, and, in this chapter, you will also see how their graphs and properties are
related to each other.

CHAPTER EXPECTATIONS
In this chapter, you will

• define e and the derivative of Section 5.1

• determine the derivative of the general exponential function Section 5.2

• compare the graph of an exponential function with the graph of its derivative,
Sections 5.1, 5.2

• solve optimization problems using exponential functions, Section 5.3

• investigate and determine the derivatives of sinusoidal functions, Section 5.4

• determine the derivative of the tangent function, Section 5.5

• solve rate of change problems involving exponential and trigonometric function
models using their derivatives, Sections 5.1 to 5.5

y � bx,

y � ex,
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Review of Prerequisite Skills

In Chapter 5, you will be studying the derivatives of two classes of functions that
occur frequently in calculus problems: exponential functions and trigonometric
functions. To begin, we will review some of the properties of exponential and
trigonometric functions.

Properties of Exponents
•

•

•

•

•

Properties of the Exponential Function,
• The base b is positive and 
• The y-intercept is 1.
• The x-axis is a horizontal asymptote.
• The domain is the set of real numbers, R.
• The range is the set of positive real numbers.
• The exponential function is always increasing if 
• The exponential function is always decreasing if 
• The inverse of is 
• The inverse is called the logarithmic function and is written as 

Graphs of and y � bxy � logbx

logbx � y.
x � by.y � bx

0 6 b 6 1.
b 7 1.

b � 1.
y � bx

logb
 bm � m

blogbm � m

1bm 2n � bmn

bm

bn � bm�n, bn � 0

bmbn � bm�n

R E V I E W  O F  P R E R E Q U I S I T E  S K I L L S222

for b 7 1 for 0 6 b 6 1

y

x
2

4

–2
4

–4

0 2–4 –2

y = bx

y = x
y = logbx

y

x
2

4

–2
4

–4

0 2–4 –2

y = bx

y = logbxy = x

• If for then logbn � m.b 7 0,bm � n
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Sine and Cosine Functions Tangent Function 
f(x) sin x and f(x) cos x f(x) tan x���

C H A P T E R  5 223

u = 1 radian

u

r

r

r

Domain x�R

Range �1 � sin x � 1

�1 � cos x � 1

Periodicity sin 1x � 2p 2 � sin x

cos 1x � 2p 2 � cos x

y

x
1

2

–1

–2

0

y = sinx

y = cosx
2
p p 2p

2
3p

Transformations of Sinusoidal Functions
For and ,

• the amplitude is 

• the period is 

• the horizontal shift is d, and
• the vertical translation is c

2p
�k�

0a 0 y � a cos k1x � d 2 � cy � a sin k1x � d 2 � c

Radian Measure
A radian is the measure of an angle subtended at the centre of a circle by an arc
equal in length to the radius of the circle.
p radians � 180°

Domain e x�R � x � ;  
p

2
, ;  

3p
2

, ;  
5p
2

, p f
Range 5 y�R6
Periodicity tan 1x � p 2 � tan x

y

x
1

3

–1

5

–3

–5

0
2
p p 2p

2
3p

2
5p

y = tanx
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Exercise

1. Evaluate each of the following:

a. b. c. d.

2. Express each of the following in the equivalent logarithmic form:

a. c. e.

b. d. f.

3. Sketch the graph of each function, and state its x-intercept.

a. b.

4. Refer to the following figure. State the value of each trigonometric ratio
below.

a. b. c. tan ucos usin u

y

x

P(x, y)
r

u

y � 5x�3y � log10 1x � 2 2
ab � T10w � 4504�2 �

1

16

38 � zx3 � 354 � 625

a 2

3
b�2

27�2
332

2
53�2

Trigonometric Identities

Reflection Identities Cofunction Identities

sin ap
2

� x b � cos  xcos 1�u 2 � cos u

cos ap
2

� x b � sin  xsin 1�u 2 � �sin u

Reciprocal Identities Pythagorean Identities Quotient Identities

1 � cot2 u � csc2 ucot u �
1

tan u

cot u �
cos u

sin u
tan2 u � 1 � sec2 usec u �

1

cos u

tan u �
sin u

cos u
sin2 u � cos2 u � 1csc u �

1

sin u
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5. Convert the following angles to radian measure:

a. c. e. g.

b. d. f. h.

6. Refer to the following figure. State the value of each trigonometric ratio
below.

a. c. e.

b. d. f.

7. The value of or is given. Determine the values of the other
two functions if lies in the given interval.

a. c.

b. d.

8. State the period and amplitude of each of the following:

a. d.

b. e.

c. f.

9. Sketch the graph of each function over two complete periods.

a. b.

10. Prove the following identities:

a. b.

11. Solve the following equations, where . 

a. b. cos x � 1 � �cos x3 sin x � sin x � 1

x� 30, 2p 4
sin x

1 � sin2 x
� tan x sec xtan x � cot x � sec x csc x

y � 3  cos a x �
p

2
by � sin 2x � 1

y � 03 sin x 0y � �3  sin 1px 2 � 1

y � 5 sin a u �  
p

6
by � 2 sin 

x

2

y �
2

7
 cos 112x 2y � cos 2x

0 � u � psin u � 1,p � u �
3p

2
cos u � �

2

3
,

3p

2
� u � 2ptan u � �2,

p

2
� u � psin u �

5

13
,

u

tan ucos u,sin u,

sin 1�u 2sin ap
2

� u btan u

cos ap
2

� u bcos usin u

y

x

(b, a)
(a, b)

(1, 0)

(0, 1)

u

u

330°�120°30°45°

225°270°�90°360°
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InvestigateCAREER LINK

CHAPTER 5: RATE-OF-CHANGE MODELS IN MICROBIOLOGY

While many real-life situations can be modelled fairly well by polynomial
functions, there are some situations that are best modelled by other types of
functions, including exponential, logarithmic, and trigonometric functions.
Because determining the derivative of a polynomial function is simple, finding
the rate of change for models described by polynomial functions is also simple.
Often the rate of change at various times is more important to the person
studying the scenario than the value of the function is. In this chapter, you will
learn how to differentiate exponential and trigonometric functions, increasing
the number of function types you can use to model real-life situations and, in
turn, analyze using rates of change.

Case Study—Microbiologist

Microbiologists contribute their expertise to many fields, including medicine,
environmental science, and biotechnology. Enumerating, the process of counting
bacteria, allows microbiologists to build mathematical models that predict
populations after a given amount of time has elapsed. Once they can predict 
a population accurately, the model can be used in medicine, for example, to
predict the dose of medication required to kill a certain
bacterial infection. The data in the table shown was
used by a microbiologist to produce a polynomial-
based mathematical model to predict population p(t)
as a function of time t, in hours, for the growth of a
certain strain of bacteria:

p1t 2 � 1000 a1 � t �
1
2

t2 �
1
6

t3 �
1
24

t4 �
1

120
t5 b

Time (h) Population

0 1000

0.5 1649

1.0 2718

1.5 4482

2.0 7389

DISCUSSION QUESTIONS 

1. How well does the function fit the data? Use the data, the equation, a
graph, and/or a graphing calculator to comment on the “goodness of fit.”

2. Use and to determine the following:

a) the population after 0.5 h and the rate at which the population 
is growing at this time.

b) the population after 1.0 h and the rate at which the population 
is growing at this time.

3. What pattern did you notice in your calculations? Explain this pattern by
examining the terms of the equation to find the reason why. 

The polynomial function in this case study is an approximation of a special
function in mathematics, natural science, and economics, , where e has
a value of 2.718 28…. At the end of this chapter, you will complete a task on
rates of change of exponential growth in a biotechnology case study.

f 1x 2 � ex

p¿ 1t 2p1t 2
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Section 5.1—Derivatives of Exponential
Functions, 

Many mathematical relations in the world are nonlinear. We have already studied
various polynomial and rational functions and their rates of change. Another type of
nonlinear model is the exponential function. Exponential functions are often used to
model rapid change. Compound interest, population growth, the intensity of an
earthquake, and radioactive decay are just a few examples of exponential change.

In this section, we will study the exponential function and its derivative.
The number e is a special irrational number, like the number . It is called the
natural number, or Euler’s number in honour of the Swiss mathematician
Leonhard Euler (pronounced “oiler”), who lived from 1707 to 1783. We use a
rational approximation for e of about 2.718. The rules developed thus far have
been applied to polynomial functions and rational functions. We are now going to
show how the derivative of an exponential function can be found.

INVESTIGATION In this investigation, you will
• graph the exponential function and its derivative
• determine the relationship between the exponential function and its derivative

A.Consider the function Create a table similar to the one shown below.
Complete the column by using a graphing calculator to calculate the values
of for the values of x provided. Round all values to three decimal places.ex

f 1x 2 f 1x 2 � ex.

f 1x 2 � ex

p

y � ex

y � ex

x f (x) f’(x)

�2 0.135

�1

0

1

2

3

B. Graph the function 
C. Use a graphing calculator to calculate the value of the derivative at each

of the given points.
To calculate , press and scroll down to 8:nDeriv( under the 

MATH menu. Press and the display on the screen will be nDeriv(.

To find the derivative, key in the expression the variable x, and the x-value ex,

ENTER

MATHf ¿ 1x 2 f ¿ 1x 2f 1x 2 � ex.

To evaluate
powers of e, such
as , press

.ENTER2

2LN2ND

e�2

Tech Support
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at which you want the derivative, for example, to determine 

the display will be nDeriv( X, ). Press , and the approximate
value of will be returned.

D.What do you notice about the values of and ?
E. Draw the graph of the derivative function on the same set of axes as 

How do the two graphs compare?
F. Try a few other values of x to see if the pattern continues.
G.What conclusion can you make about the function and its derivative?

Properties of y ex

Since is an exponential function, it has the same properties as other 
exponential functions you have studied.

Recall that the logarithm function is the inverse of the exponential function. For
example, is the inverse of The function also has an
inverse, Their graphs are reflections in the line The function

can be written as and is called the natural logarithm function.

All the properties of exponential functions and logarithmic functions you are
familiar with also apply to and y � ln x.y � ex

y

x
0

12

4 8 12

4

8

–4

–12

–8

–4–8–12

y = ex

y = x

y = In x

y � ln xy � loge x
y � x.y � loge x.
y � exy � 2x.y � log2 x

y � ex
�

f 1x 2 � ex

f 1x 2 .f ¿ 1x 2 f ¿ 1x 2f 1x 2f ¿ 1�2 2 ENTER�2ex,

d
dx 1ex 2  at x � �2,

5 . 1  D E R I VAT I V E S  O F  E X P O N E N T I A L  F U N C T I O N S, y � e x228

y � ex y � ln x

•  The domain is .5x�R6 •  The domain is .5x�R 0  x 7 06
•  The range is .5 y�R 0  y 7 06 •  The range is .5 y�R6
•  The function passes through .10, 1 2 •  The function passes through .11, 0 2
•  .e ln x � x, x 7 0 •  .ln ex � x, x�R

•  The line is the horizontal
asymptote.

y � 0 •  The line is the vertical
asymptote.

x � 0
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Derivative of f(x)
For the function f ¿ 1x 2 � ex.f 1x 2 � ex,

� ex

From the investigation, you should have noticed that all the values of the 
derivative were exactly the same as those of the original function 
This is a very significant result, since this function is its own derivative—that is,

Since the derivative also represents the slope of the tangent at any
given point, the function has the special property that the slope of the
tangent at a point is the value of the function at this point.

y

x
0

12

4 8 12

4

8

–4

–12

–8

–4–8–12

f (x) = ex

(1, e1)

(2, e2)
The slope of the
tangent at  (2, e2) is
e2, and so on. 

The slope of the
tangent at  (1, e1)
is e1. 

f 1x 2 � ex
f 1x 2 � f ¿ 1x 2 . f 1x 2 � ex.f ¿ 1x 2

EXAMPLE 1 Selecting a strategy to differentiate a composite function involving ex

Determine the derivative of 

Solution
To find the derivative, use the chain rule.

� 3e3x

� e3x � 3

df 1x 2
dx

�
d1e3x 2
d 13x 2  d 13x 2

dx

f 1x 2 � e3x.

Derivative of a Composite Function Involving ex

In general, if f (x) (x), then (x) (x) (x) by the chain rule. g¿� egf ¿� eg
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EXAMPLE 2 Derivatives of exponential functions involving ex

Determine the derivative of each function.
a.

b.

Solution
a. To find the derivative of we use the chain rule.

(Chain rule)

b. Using the product rule,

(Product rule)

(Factor)

EXAMPLE 3 Selecting a strategy to determine the value of the derivative

Given determine 

Solution
First, find an expression for the derivative of 

(Chain rule)

Then 

Answers are usually left as exact values in this form. If desired, numeric 
approximations can be obtained from a calculator. Here, using the value of e
provided by the calculator, we obtain the answer rounded to four 
decimal places.

�16.3097,

f ¿ 1�1 2 � �6e.

� 6xex2

� 3ex212x 2
d13ex2 2
d1x2 2  

dx2

dx
f ¿1x 2 �

f ¿1x 2 .
f ¿1�1 2 .f 1x 2 � 3ex2

,

� ex12x � x2 2� 2xex � x2ex

f ¿ 1x 2 �
d1x2 2

dx
� ex � x2 �

dex

dx

� ex2�x12x � 1 2�
d1ex2�x 2

d1x2 � x 2 �
d1x2 � x 2

dx

dg1x 2
dx

�
d1ex2�x 2

dx

g 1x 2 � ex2�x,

f 1x 2 � x2ex

g 1x 2 � ex2�x

5 . 1  D E R I VAT I V E S  O F  E X P O N E N T I A L  F U N C T I O N S, y � e x230 NEL



EXAMPLE 4 Connecting the derivative of an exponential function to the slope 
of a tangent 

Determine the equation of the line tangent to where 

Solution
Use the derivative to determine the slope of the required tangent.

(Rewrite as a product)

(Product rule)

(Determine a common denominator)

(Simplify)

(Factor)

When When and the tangent is horizontal. 

Therefore, the equation of the required tangent is A calculator yields the 

following graph for and we see the horizontal tangent at The 

number in the display is an approximation to the exact number .

How does the derivative of the general exponential function compare
with the derivative of We will answer this question in Section 5.2.f 1x 2 � ex?

g 1x 2 � bx

e2

4Y � 1.847264

x � 2.y �
ex

x 2,

y �
e2

4 .

dy
dx � 0x � 2,y �

e2

4 .x � 2,

�
1�2 � x 2ex

x3

�
�2ex � xex

x3

�
�2ex

x3 �
xex

x3

�
�2ex

x3 �
ex

x2

dy

dx
� 1�2x�3 2ex � x�2ex

� x�2ex

y �
ex

x2
 
 

x � 2.y �
ex

x 2 ,
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Exercise 5.1

PART A
1. Why can you not use the power rule for derivatives to differentiate 

2. Differentiate each of the following:

a. c. e.

b. d. f.

3. Determine the derivative of each of the following:

a. c. e.

b. d. f.

4. a. If calculate 

b. If calculate 

c. If calculate 

5. a. Determine the equation of the tangent to the curve defined by 
at the point 

b. Use graphing technology to graph the function in part a., and draw the 
tangent at  

c. Compare the equation in part a. with the equation generated by graphing
technology. Do they agree?

10, 1 2 .10, 1 2 . y �
2ex

1 � ex

h¿ 1�1 2 .h1z 2 � z211 � e�z 2 , f ¿ 10 2 .f 1x 2 � e� 1 1
x�12, f ¿ 11 2 .f 1x 2 �

1
3 1e3x � e�3x 2 , g 1t 2 �

e2t

1 � e2tf 1x 2 � Vxexy � xe3x

h 1t 2 � et2 � 3e�tf 1x 2 �
e�x3

x
y � 2ex3

y � eVxy � e�3xs � e3t�5

y � e5�6x�x2
y � 2e10ty � e3x

y � ex?

5 . 1  D E R I VAT I V E S  O F  E X P O N E N T I A L  F U N C T I O N S, y � e x232
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IN SUMMARY

Key Ideas

• For 

In Leibniz notation, 

• For 

In Leibniz notation, .

• The slope of the tangent at a point on the graph of equals the value 
of the function at this point.

Need to Know

• The rules for differentiating functions, such as the product, quotient, and
chain rules, also apply to combinations involving exponential functions of the
form 

• e is called Euler's number or the natural number, where e 2.718.�

f1x 2 � eg1x2.

y � ex

d1g1x 22
dx

d1 eg1x22
dx

� d1eg1x22
d1g1x 22  

f ¿ 1x 2 � eg1x2 � g¿  1x 2 .f1x 2 � eg1x2,
d
dx 1ex 2 � ex.

f ¿ 1x 2 � ex.f1x 2 � ex,



PART B
6. Determine the equation of the tangent to the curve at the point where

Graph the original curve and the tangent.

7. Determine the equation of the tangent to the curve defined by at the
point 

8. Determine the coordinates of all points at which the tangent to the curve
defined by is horizontal.

9. If prove that 

10. a. For the function determine , and .

b. From the pattern in part a., state the value of 

11. Determine the first and second derivatives of each function.

a. b. c.

12. The number, N, of bacteria in a culture at time t, in hours, is 

a. What is the initial number of bacteria in the culture?

b. Determine the rate of change in the number of bacteria at time t.

c. How fast is the number of bacteria changing when ?

d. Determine the largest number of bacteria in the culture during the 
interval 

e. What is happening to the number of bacteria in the culture as time passes?

13. The distance s, in metres, fallen by a skydiver t seconds after jumping (and 

before the parachute opens) is 

a. Determine the velocity, v, at time t.

b. Show that acceleration is given by 

c. Determine This is the “terminal” velocity, the constant velocity

attained when the air resistance balances the force of gravity.

d. At what time is the velocity 95% of the terminal velocity? How far has the
skydiver fallen at that time?

14. a. Use a table of values and successive approximation to evaluate each 
of the following:

i. ii.

b. Discuss your results.

lim 
xS0

 11 � x 2 1xlim 
xSq
a1 �

1
x
b

vT � lim
tSq

 v.

a � 10 �
1
4v.

s � 160 Q14t � 1 � e�
t
4R.

0 � t � 50.

t � 20

N1t 2 � 1000 �30 � e� t
30�

y � ex14 � x 2y � xe2xy � �3ex

dny
dxn

 .

d3y
dx3

d2y
dx2

dy
dx,y � e�3x,

y– �
y

25.y �
5
2 1ex

5 � e� x
5 2 ,y � x2e�x

A11, e�1 2 . y � xe�x 

x � �1.
y � e�x
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PART C
15. Use the definition of the derivative to evaluate each limit.

a. b.

16. For what values of m does the function satisfy the following 
equation?

17. The hyperbolic functions are defined as and

a. Prove 

b. Prove 

c. Prove if 

Extension: Graphing the Hyperbolic Function
1. Use graphing technology to graph by using the definition 

CATALOG

2. Press for the list of CATALOG items, and select cosh( to
investigate if cosh is a built-in function.

3. In the same window as problem 1, graph and 

Investigate changes in the coefficient a in the equation to see if
you can create a parabola that will approximate the hyperbolic cosine function.

18. a. Another expression for e is 

Evaluate this expression using four, five, six, and seven consecutive terms
of this expression. (Note: 2! is read “two factorial”; and

b. Explain why the expression for e in part a. is a special case of 

What is the value of x?ex � 1 �
x1

1! �
x2

2! �
x3

3! �
x4

4! � p .

5! � 5 � 4 � 3 � 2 � 1. 2 2! � 2 � 1

e � 1 �
1
1! �

1
2! �

1
3! �

1
4! �

1
5! � p .

y � ax2 � 1

y � 1.05x2 � 1.y � 1.25x2 � 1

02ND

cosh x �
1
2 1ex � e�x 2 . y � cosh x

tanh x �
sinh x

cosh x
.

d1tanh x 2
dx

�
11cosh x 22

d1cosh x 2
dx

� sinh x.

d1sinh x 2
dx

� cosh x.

cosh x �
1
2 1ex � e�x 2 . sinh x �

1
2 1ex � e�x 2

d2y

dx2 �
dy

dx
� 6y � 0

y � Aemt

lim 
hS0

 
e2�h � e2

h
lim 
hS0

 
eh � 1

h
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Section 5.2—The Derivative of the General
Exponential Function, 

In the previous section, we investigated the exponential function and 
its derivative. The exponential function has a special property—it is its own 
derivative. The graph of the derivative function is the same as the graph of

In this section, we will look at the general exponential function 
and its derivative.

INVESTIGATION In this investigation, you will
• graph and compare the general exponential function and its derivative using

the slopes of the tangents at various points and with different bases
• determine the relationship between the general exponential function and its

derivative by means of a special ratio

A. Consider the function Create a table with the headings shown
below. Use the equation of the function to complete the column.

B. Graph the function f 1x 2 � 2x.

f 1x 2f 1x 2 � 2x.

y

x
0

10

2 4 6

6

4

8

2

–2
–2–4–6

y = bx

0 , b , 1 b . 1

y � bxy � ex.

y � ex

y � bx

x f (x) f �(x)
f �(x)
f (x)

�2

�1

0

1

2

3
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C. Calculate the value of the derivative at each of the given points to three
decimal places. To calculate , use the nDeriv( function. (See the 
investigation in Section 5.1 for detailed instructions.)

D. Draw the graph of the derivative function on the same set of axes as using
the given x values and the corresponding values of 

E. Compare the graph of the derivative with the graph of 

F. i. Calculate the ratio , and record these values in the last column of your table.

ii. What do you notice about this ratio for the different values of x?

iii. Is the ratio greater or less than 1?

G. Repeat parts A to F for the function 

H. Compare the ratio for the functions and 

I. Repeat parts A to F for the function using different values of b.
Does the pattern you found for and continue?

J. What conclusions can you make about the general exponential function and its
derivative?

Properties of y bx

In this investigation, you worked with the functions and and
their derivatives. You should have made the following observations:

• For the function the ratio is approximately equal to 0.69.

• The derivative of is approximately equal to 

• For the function the ratio is approximately equal to 1.10.

• The derivative of is approximately equal to 

The derivative of is an The derivative of is 
exponential function. an exponential function.
The graph of is a vertical The graph of is a vertical stretch
compression of the graph of of the graph of f 1x 2 .f 1x 2 . f ¿ 1x 2f ¿ 1x 2 f 1x 2 � 3xf 1x 2 � 2x

y

x
0

10

2 4 6

6

4

8

2

–2
–2–4–6

f(x) = 3x

f '(x) = 1.10 3 3x

y

x
0

10

2 4 6

6

4

8

2

–2
–2–4–6

f(x) = 2x

f '(x) = 0.69 3 2x

1.10 � 3x.f 1x 2 � 3x

f ¿ 1x 2
f 1x 2f 1x 2 � 3x,

0.69 � 2x.f 1x 2 � 2x

f ¿ 1x 2
f 1x 2f 1x 2 � 2x,

f 1x 2 � 3x,f 1x 2 � 2x
�

f 1x 2 � 3xf 1x 2 � 2x
f 1x 2 � bx

f 1x 2 � 3x.f 1x 2 � 2xf ¿ 1x 2
f 1x 2

f 1x 2 � 3x.

f ¿ 1x 2
f 1x 2

f 1x 2 .f ¿ 1x 2 . f 1x 2
f ¿ 1x 2 f ¿ 1x 2
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In general, for the exponential function , we can conclude that
• and are both exponential functions
• the slope of the tangent at a point on the curve is proportional to the value of

the function at this point
• is a vertical stretch or compression of , dependent on the value of b

• the ratio is a constant and is equivalent to the stretch/compression factor

We can use the definition of the derivative to determine the derivative of the
exponential function 

(Substitution)

(Properties of the exponential function)

(Common factor)

The factor is constant as and does not depend on h. Therefore,

Consider the functions from our investigation:

• For we determined that and so

• For we determined that and so

In the previous section, for , we determined that  and 

so 

Can we find a way to determine this constant of proportionality without using 
a table of values?

The derivative of might give us a hint at the answer to this question.
From the previous section, we know that 

We also know that or 
Now consider and ln 3.ln 2

ln e � 1.loge e � 1,

f ¿ 1x 2 � 1 � ex.
f 1x 2 � ex

lim
hS0

 
eh � 1

h � 1.

f ¿ 1x 2 � exf 1x 2 � ex

lim
hS0

 
3h � 1

h � 1.10.

f ¿ 1x 2 � 1.10 � 3xf 1x 2 � 3x,

lim
hS0

 
2h � 1

h � 0.69.

f ¿ 1x 2 � 0.69 � 2xf 1x 2 � 2x,

f ¿ 1x 2 � bx lim
hS0

 
bh � 1

h .

hS 0bx

 � lim
hS0

 
bx1bh � 1 2

h

 � lim
hS0

 
bx � bh � bx

h

 � lim
hS0

 
bx�h � bx

h

 f ¿ 1x 2 � lim
hS0

 
f 1x � h 2 � f 1x 2

h

f 1x 2 � bx.

f ¿ 1x 2
f 1x 2 f 1x 2f ¿ 1x 2
f ¿ 1x 2f 1x 2 f 1x 2 � bx
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and 

These match the constants that we determined in our investigation.

This leads to the following conclusion:

f ¿ 1x 2
f 1x 2ln 3 � 1.098 612ln 2 � 0.693 147

Derivative of f(x) bg(x)

For f ¿ 1x 2 � bg1x2 1ln b2 1g¿ 1x 22f 1x 2 � bg1x2, �

Derivative of f(x) bx

and if then f ¿ 1x 2 � 1ln b 2 � bxf 1x 2 � bx,lim 
hS0

bh � 1

h
� ln b

�

EXAMPLE 1 Selecting a strategy to determine derivatives involving bx

Determine the derivative of
a.
b.

Solution
a.

Use the derivative of 

b. To differentiate use the chain rule and the derivative of 

We have with 
Then 
Now,

� 3153x�2 2 ln 5
 f ¿ 1x 2 � 53x�2 � 1ln 5 2 � 3
g¿ 1x 2 � 3

g1x 2 � 3x � 2.f 1x 2 � 5g1x2f 1x 2 � 53x�2
f 1x 2 � bx.

f 1x 2 � 53x�2,
f ¿ 1x 2 � 1ln 5 2 � 5x

f 1x 2 � bx.
f 1x 2 � 5x

f 1x 2 � 53x�2
f 1x 2 � 5x

EXAMPLE 2 Solving a problem involving an exponential model

On January 1, 1850, the population of Goldrushtown was 50 000. The size of the
population since then can be modelled by the function 
where t is the number of years since January 1, 1850.
a. What was the population of Goldrushtown on January 1, 1900?
b. At what rate was the population of Goldrushtown changing on January 1,

1900? Was it increasing or decreasing at that time?

P1t 2 � 50  00010.98 2 t,
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Solution
a. January 1, 1900, is exactly 50 years after January 1, 1850, so we let 

The population on January 1, 1900, was approximately 18 208.
b. To determine the rate of change in the population, we require the derivative of P.

Hence, after 50 years, the population was decreasing at a rate of approximately
368 people per year. (We expected the rate of change to be negative, because
the original population function was a decaying exponential function since the
base was less than 1.)

30 000

40 000

50 000

P(t)

Time (years)

P(t) is a decreasing
function, P'(t) , 0.

Po
pu

la
ti

on

0
t

20 40 60 80

20 000

10 000

100

60 000

 � �367.861

 P¿ 150 2 � 50 00010.98 250ln10.98 2 P¿ 1t 2 � 50 00010.98 2 tln10.98 2
 � 18 208.484

 P150 2 � 50 00010.98 250

t � 50.

IN SUMMARY

Key Ideas

• If then 

In Leibniz notation, ln b.

• If then 

In Leibniz notation, .

Need to Know

•

• When you are differentiating a function that involves an exponential function,
use the rules given above, along with the sum, difference, product, quotient,
and chain rules as required.

lim
hS0

bh � 1
h

� ln b

d
dx

 1bg1x22 �
d1bg1x22
d1g1x 22  d1g1x 22dx

f ¿ 1x 2 � bg1x2 � ln b � g¿ 1x 2 .f1x 2 � bg1x2,
d
dx

 1bx 2 � bx �

f ¿ 1x 2 � bx � ln b.f1x 2 � bx,

NEL



5.2 T H E D E R I VAT I V E  O F  T H E  G E N E R A L  E X P O N E N T I A L  F U N C T I O N, y � b x240

Exercise 5.2

PART A
1. Differentiate each of the following functions:

a. d.

b. e.

c. f.

2. Determine the derivative of each function.

a. c.

b. d.

3. If determine the values of t so that 

PART B
4. Determine the equation of the tangent to at .

5. Determine the equation of the tangent to at 

6. A certain radioactive material decays exponentially. The percent, P, of the
material left after t years is given by 

a. Determine the half-life of the substance.

b. How fast is the substance decaying at the point where the half-life is reached?

7. Historical data show that the amount of money sent out of Canada for 
interest and dividend payments during the period from 1967 to 1979 can be
approximated by the model where t is measured in
years in 1967 and P is the total payment in Canadian dollars.

a. Determine and compare the rates of increase for the years 1968 and 1978.

b. Assuming this trend continues, compare the rate of increase for 1988 with
the rate of increase for 1998.

c. Check the Statistics Canada website to see if the rates of increase 
predicted by this model were accurate for 1988 and 1998.

8. Determine the equation of the tangent to the curve at the point on
the curve where Graph the curve and the tangent at this point.

PART C
9. The velocity of a car is given by Graph the function.

Describe the acceleration of the car.
v1t 2 � 12011 � 0.85t 2 .

x � 0.
y � 2�x2

21t � 0
P � 15 � 108 2e0.200 15 t,

P1t 2 � 10011.2 2�t.

11, 10 2 .y � 10x

x � 3y � 312x 2
f ¿ 1t 2 � 0.f 1t 2 � 103t�5 � e2t2

,

f 1x 2 �
V3x

x2y � x13 2 x2

v �
2t

t
y � x5 � 15 2 x

y � 40012 2 x�3s � 103t�5

y � 3x2�2y � 3.1x � x3

w � 1015�6n�n22y � 23x

A

K

T

C
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Section 5.3—Optimization Problems Involving
Exponential Functions

In earlier chapters, you considered numerous situations in which you were asked
to optimize a given situation. As you learned, to optimize means to determine
values of variables so that a function representing quantities such as cost, area,
number of objects, or distance can be minimized or maximized.

Here we will consider further optimization problems, using exponential function
models.

EXAMPLE 1 Solving an optimization problem involving an exponential model

The effectiveness of studying for an exam depends on how many hours a student
studies. Some experiments show that if the effectiveness, E, is put on a scale of 
0 to 10, then where t is the number of hours spent studying
for an examination. If a student has up to 30 h for studying, how many hours are 
needed for maximum effectiveness?

Solution
We wish to find the maximum value of the function on
the interval 

First find critical numbers by determining 

(Product and chain rules)

is defined for and for all values of t. So, when

Therefore, is the only critical number.

To determine the maximum effectiveness, we use the algorithm for finding
extreme values.

E130 2 � 0.5110 � 30e�1.5 2 � 8.3

E120 2 � 0.5110 � 20e�1 2 � 8.7

E10 2 � 0.5110 � 0e0 2 � 5

t � 20
1 �

t
20 � 0.

E¿ 1t 2 � 0e�
t

20 7  0t�R,E¿

� 0.5e�
t

20 a1 �
t

20
b

E¿ 1t 2 � 0.5 a e�
t

20 � t a�
1

20
e�

t
20 bb

E¿ 1t 2 .0 � t � 30.
E1t 2 � 0.5 310 � te�

t
20 4 ,

E1t 2 � 0.5 310 � te�
t

20 4 ,
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Therefore, the maximum effectiveness measure of 8.7 is achieved when a student
studies 20 h for the exam.
Examining the graph of the function confirms our result.

EXAMPLE 2 Using calculus techniques to analyze an exponential business model

A mathematical consultant determines that the proportion of people who will have
responded to the advertisement of a new product after it has been marketed for
t days is given by The area covered by the advertisement
contains 10 million potential customers, and each response to the advertisement
results in revenue to the company of $0.70 (on average), excluding the cost of
advertising. The advertising costs $30 000 to produce and a further $5000 per day
to run.
a. Determine , and interpret the result.

b. What percent of potential customers have responded after seven days of
advertising?

c. Write the function P(t) that represents the average profit after t days of 
advertising. What is the average profit after seven days?

d. For how many full days should the advertising campaign be run in order to
maximize the average profit? Assume an advertising budget of $200 000.

Solution
a. As , so This result 

means that if the advertising is left in place indefinitely (forever), 70% of the
population will respond.

b.
After seven days of advertising, about 53% of the population has responded.

c. The average profit is the difference between the average revenue received from all
customers responding to the ad and the advertising costs. Since the area covered
by the ad contains 10 million potential customers, the number of customers
responding to the ad after t days is 107 30.711 � e�0.2t 2 4  �  7 �  10611 � e�0.2t 2 .
f 17 2 � 0.711 � e�0.2172 2 � 0.53

lim
tSq

f 1t 2 � lim
tSq

0.711 � e�0.2t 2 � 0.7.e�0.2tS 0t S  q,

lim
tSq 

f 1t 2
f 1t 2 � 0.711 � e�0.2t 2 .

t
0

E (t)10

10 15 25

6

8

2

4

5

Maximum point (20, 8.7)

20 30

Time (h)

Ef
fe

ct
iv

en
es

s

E1t 2 � 0.5 310 � te�
t

20 4

NEL



C H A P T E R  5 243

The average revenue to the company from these respondents is

The advertising costs for t days are .
Therefore, the average profit earned after t days of advertising is given by

After seven days of advertising, the average profit is

d. If the total advertising budget is $200 000, then we require that

We wish to maximize the average profit function on the interval

For critical numbers, determine 

is defined for Let 

(Isolate )

(Take the ln of both sides)

(Solve)

To determine the maximum average profit, we evaluate.

(They’re losing money!)

The maximum average profit of $4 713 000 occurs when the ad campaign
runs for 26 days.

� 4 695 000

P134 2 � 4.9 � 10611 � e�0.21342 2 � 30 000 � 5000134 2� �30 000

P10 2 � 4.9 �  10611 � e0 2 � 30 000 � 0

� 4 713 000

P126 2 � 4.9 �  10611 � e�0.21262 2 � 30 000 � 5000126 2
 t � 26

 �0.2t � ln10.005 102 04 2 e�0.2t � 0.005 102 04

e�0.2t e�0.2t �
5000

9.8 �  105

 9.8 �  105e�0.2t � 5000 � 0

P¿ 1t 2 � 0.t�R .P¿ 1t 2 � 9.8 �  105e� 0.2t � 5000

P ¿ 1t 2 � 4.9 �  10610.2e� 0.2t 2 � 5000

P¿ 1t 2 .0 � t � 34 .
P1t 2t � 34

5000t � 170 000

30 000 � 5000t � 200 000

� 3 627 000

P17 2 � 4.9 �  10611 � e�0.2172 2 � 30 000 � 500017 2
� 4.9 �  10611 � e�0.2t 2 � 30 000 � 5000t

P1t 2 � R1t 2 � C1t 2
C1t 2 � 30 000 � 5000t

R1t 2 � 0.7 37 � 10611 � e�0.2t 2 4 � 4.9 � 10611 � e�0.2t 2 .
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Examining the graph of the function confirms our result.

P(t)

t
0

1 000 000

2 000 000

3 000 000

4 000 000

5 000 000

20–20 30–10 10

maximum point
(26, 4 713 000)

40

Time (days)

Pr
of

it
 ($

)

P 1t 2

IN SUMMARY

Key Ideas

• Optimizing means determining the values of the independent variable 
so that the values of a function that models a situation can be minimized 
or maximized.

• The techniques used to optimize an exponential function model are the same 
as those used to optimize polynomial and rational functions.

Need to Know

• Apply the algorithm introduced in Chapter 3 to solve an optimization problem:

1. Understand the problem, and identify quantities that can vary. Determine a
function in one variable that represents the quantity to be optimized.

2. Determine the domain of the function to be optimized, using the
information given in the problem.

3. Use the algorithm for finding extreme values (from Chapter 3) to find the
absolute maximum or minimum value of the function on the domain.

4. Use your result from step 3 to answer the original problem.

5. Graph the original function using technology to confirm your results.

NEL
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Exercise 5.3

PART A
1. Use graphing technology to graph each of the following functions. From the

graph, find the absolute maximum and absolute minimum values of the given
functions on the indicated intervals.

a. on 

b. on 

2. a. Use the algorithm for finding extreme values to determine the absolute
maximum and minimum values of the functions in question 1.

b. Explain which approach is easier to use for the functions in question 1.

3. The squirrel population in a small self-contained forest was studied by a
biologist. The biologist found that the squirrel population, P, measured in 
hundreds, is a function of time, t, where t is measured in weeks. The function
is 

a. Determine the population at the start of the study, when 

b. The largest population the forest can sustain is represented mathematically
by the limit as Determine this limit.

c. Determine the point of inflection.

d. Graph the function.

e. Explain the meaning of the point of inflection in terms of squirrel
population growth.

PART B
4. The net monthly profit, in dollars, from the sale of a certain item is given by the

formula where x is the number of items sold.

a. Determine the number of items that yield the maximum profit. At full
capacity, the factory can produce 2000 items per month.

b. Repeat part a., assuming that, at most, 500 items can be produced per
month.

5. Suppose that the monthly revenue in thousands of dollars, for the sale of x hundred
units of an electronic item is given by the function 
where the maximum capacity of the plant is 800 units. Determine the number of
units to produce in order to maximize revenue.

6. A rumour spreads through a population in such a way that t hours after the
rumour starts, the percent of people involved in passing it on is given by 

What is the highest percent of people involved in 

spreading the rumour within the first 3 h? When does this occur?

P1t 2 � 100Qe�t � e�4tR.

R1x 2 � 40x2e�0.4x � 30,

P1x 2 � 106 31 � 1x � 1 2e�0.001x 4 ,

t S  q.

t � 0.

P1t 2 �
20

1 � 3e�0.02t .

x� 3�4, 4 4m1x 2 � 1x � 2 2e�2x

0 � x � 10f 1x 2 � e�x � e�3x

K
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7. Small countries trying to develop an industrial economy rapidly often try to
achieve their objectives by importing foreign capital and technology. Statistics
Canada data show that when Canada attempted this strategy from 1867 to
1967, the amount of U.S. investment in Canada increased from about

to This increase in foreign investment can be
represented by the simple mathematical model 
where t represents the number of years (starting with 1867 as zero) and C
represents the total capital investment from U.S. sources in dollars.

a. Graph the curve for the 100-year period.

b. Compare the growth rate of U.S. investment in 1947 with the rate in 1967.

c. Determine the growth rate of investment in 1967 as a percent of the
amount invested.

d. If this model is used up to 1977, calculate the total U.S. investment and the
growth rate in this year.

e. Use the Internet to determine the actual total U.S. investment in 1977, and
calculate the error in the model.

f. If the model is used up to 2007, calculate the expected U.S. investment
and the expected growth rate.

8. A colony of bacteria in a culture grows at a rate given by where N is
the number of bacteria t minutes from the beginning. The colony is allowed to
grow for 60 min, at which time a drug is introduced to kill the bacteria. The
number of bacteria killed is given by where K bacteria are killed at
time t minutes.

a. Determine the maximum number of bacteria present and the time at which
this occurs.

b. Determine the time at which the bacteria colony is obliterated.

9. Lorianne is studying for two different exams. Because of the nature of
the courses, the measure of study effectiveness on a scale from 0 to 10 for the
first course is while the measure for the second course

is Lorianne is prepared to spend up to 30 h, in total,
studying for the exams. The total effectiveness is given by 
How should this time be allocated to maximize total effectiveness?

10. Explain the steps you would use to determine the absolute extrema of
on the interval .

11. a. For determine the intervals of increase and decrease.

b. Determine the absolute minimum value of f 1x 2 .f 1x 2 � x2ex,

x� 3�2, 2 4f 1x 2 � x � e2x

f 1t 2 � E1 � E2.
E2 � 0.5110 � te�

t
10 2 .E1 � 0.619 � te�

t
20 2 ,

K1t 2 � e
t
3,

N1t 2 � 2
t
5,

C1t 2 � 0.015 �  109e0.075 33t,
$280 305 �  106.$15 �  106

A

C

T
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12. Find the maximum and minimum values of each function. Graph each function.

a. c.

b. d.

13. The profit function of a commodity is Find the 
maximum value of the function if x is measured in hundreds of units and P is
measured in thousands of dollars.

14. You have just walked out the front door of your home. You notice that it closes
quickly at first and then closes more slowly. In fact, a model of the movement
of the door is given by , where d is the number of degrees
between the door frame and the door at t seconds.

a. Graph this relation.

b. Determine when the speed of the moving door is increasing and decreasing.

c. Determine the maximum speed of the moving door.

d. At what point would you consider the door closed?

PART C
15. Suppose that, in question 9, Lorianne has only 25 h to study for the two exams.

Is it possible to determine the time to be allocated to each exam? If so, how?

16. Although it is true that many animal populations grow exponentially for a
period of time, it must be remembered that the food available to sustain the
population is limited and the population will level off because of this. Over a
period of time, the population will level out to the maximum attainable value,
L. One mathematical model to describe a population that grows exponentially
at the beginning and then levels off to a limiting value, L, is the logistic 
model. The equation for this model is where the 

independent variable t represents the time and P represents the size of the
population. The constant a is the size of the population at L is the 
limiting value of the population, and k is a mathematical constant.

a. Suppose that a biologist starts a cell colony with 100 cells and finds that
the limiting size of the colony is 10 000 cells. If the constant 
draw a graph to illustrate this population, where t is in days.

b. At what point in time does the cell colony stop growing exponentially?
How large is the colony at this point?

c. Compare the growth rate of the colony at the end of day 3 with the growth
rate at the end of day 8. Explain what is happening.

k � 0.0001,

t � 0,

P �
aL

a � 1L � a 2e�kLt ,

d1t 2 � 200 t12 2�t

P1x 2 � xe�0.5x2
, where x 7 0.

y � 3xe�x � xy � xex � 3

y � 2xe2xy � ex � 2
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Mid-Chapter Review

1. Determine the derivative of each function.

a. c. e.

b. d. f.

2. A certain radioactive substance decays exponentially over time. The amount
of a sample of the substance that remains, P, after t years is given by

where P is expressed as a percent.

a. Determine the rate of change of the function,

b. What is the rate of decay when 50% of the original sample has decayed?

3. Determine the equation of the tangent to the curve at the point
where 

4. Determine the first and second derivatives of each function.

a. b. c.

5. Determine the derivative of each function.

a. c. e.

b. d. f.

6. The number of rabbits in a forest at time t, in months, is

a. What is the initial number of rabbits in the forest?

b. Determine the rate of change of the number of rabbits at time t.

c. How fast is the number of rabbits changing after one year?

d. Determine the largest number of rabbits in the forest during the first three
years.

e. Use graphing technology to graph versus . Give physical reasons why
the population of rabbits might behave this way.

7. A drug is injected into the body in such a way that the concentration, C, in
the blood at time t hours is given by the function At
what time does the highest concentration occur within the first 5 h?

8. Given for what values of does the function represent growth?
For what values of does the function represent decay?k

ky � c1ekx 2 ,
C1t 2 � 101e�2t � e�3t 2 .

tR

R1t 2 � 500 310 � e� t
10 4 .

f 1x 2 � 1x � 2 22 � 4xH1x 2 � 30015 23x�1y � 3.2110 20.2x

q1x 2 � 1.9x � x1.9f 1x 2 � x22xy � 82x�5

y � ex14 � x 2y � xe2xy � �3ex

x � 0.
y � 2 � xex

dP
dt .

P1t 2 � 100e�5t,

y �
ex � e�x

ex � e�xy � 1x � 1 22exy � 7e
1
7x

y � 1x � e�x 22y � x3e�2xy � 5e�3x
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9. The rapid growth in the number of a species of insect is given by
where t is the number of days.

a. What is the initial population ?

b. How many insects will there be after a week?

c. How many insects will there be after a month (30 days)?

10. If you have ever travelled in an airplane, you probably noticed that the air
pressure in the airplane varied. The atmospheric pressure, y, varies with the
altitude, x kilometres, above Earth. For altitudes up to 10 km, the pressure in
millimetres of mercury (mm Hg) is given by . What is the
atmospheric pressure at each distance above Earth?

a. 5 km b. 7 km c. 9 km

11. A radioactive substance decays in such a way that the amount left after t years
is given by . The amount, A, is expressed as a percent. Find the
function, , that describes the rate of decay. What is the rate of decay when
50% of the substance is gone?

12. Given find all the x values for which What is the 
significance of this?

13. Find the equation of the tangent to the curve at the point on the
curve where Graph the curve and the tangent at this point.

14. a. Determine an equation for A(t), the amount of money in the account 
at any time t.

b. Find the derivative of the function.

c. At what rate is the amount growing at the end of two years? At what rate
is it growing at the end of five years and at the end of 10 years?

d. Is the rate constant?

e. Determine the ratio of for each value that you determined for .

f. What do you notice?

15. The function is its own derivative. It is not the only function, however,
that has this property. Show that for every value of has the same
property.

c, y � c 1ex 2y � ex

A¿ 1t 2A¿ 1t 2
A1t 2

A¿ 1t 2
x � 1.

y � 5�x2

f ¿ 1x 2 7 0.f 1x 2 � xex,

A¿
A � 100e�0.3t

y � 760e�0.125x

1t � 0 2P1t 2 � 5000e0.02t,
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Section 5.4—The Derivatives of and

In this section, we will investigate to determine the derivatives of and

INVESTIGATION 1 A.Using a graphing calculator, graph , where x is measured in 

radians. Use the following settings:

•
•
Enter into Y1, and graph the function.

B. Use the CALC function (with value or selected) to compute y and 
respectively, for . Record these values in a table like the following
(correct to four decimal places):

y � sin x

dy
dx,

dy
dx

y � sin x
Yscl � 1Ymax � 3.1,Ymin � �3.1,

Xscl � p � 2Xmax � 9.4,Xmin � 0,

WINDOW

y � sin x

y � cos x.
y � sin x

y � cos x
y � sin x

C. Create another column, to the right of the column, with as the 
heading. Using your graphing calculator, graph with the same 
window settings as above.

D.Compute the values of for correct to four 
decimal places. Record the values in the column. 

E. Compare the values in the column with those in the cos x column, and
write a concluding equation.

d
dx 1sin x 2 cos x

x � 0, 0.5, 1.0, p , 6.5,cos x

y � cos x
cos xd

dx 1sin x 2

x sin x
d
dx

 (sin x)

0

0.5

1.0

:

:

:

6.5

To calculate at a

point, press 
and

enter the desired
x-coordinate of
your point. Then
press .ENTER

6TRACE

2ND

dy
dx

Tech Support

For help calculating
a value of a
function using a
graphing calculator,
see Technical
Appendix p. 598.

Tech Support
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INVESTIGATION 2 A.Using your graphing calculator, graph where x is measured in 

radians. Use the following settings:

•
•
Enter into Y1, and graph the function.

B. Use the CALC function (with value or selected) to compute y and 
respectively, for Record these values, correct to four decimal
places, in a table like the following:

y � cos x.

dy
dx,dy

dx

y � cos x
Yscl � 1Ymax � 3.1,Ymin � �3.1,

Xscl � p � 2Xmax � 9.4,Xmin � 0,

WINDOW

y � cos x,

x cos x d
dx

  (cos x)

0

0.5

1.0

:

:

:

6.5

C. Create another column to the right of the column with as the
heading. Using your graphing calculator, graph with the same 
window settings as above.

D.Compute the values of for correct to four
decimal places. Record the values in the column. 

E. Compare the values in the column with those in the column,
and write a concluding equation.

Investigations 1 and 2 lead to the following conclusions:

�sin xd
dx 1cos x 2 �sin x

x � 0, 0.5, 1.0, p , 6.5,�sin x

y � �sin x
�sin xd

dx 1cos x 2

d

dx
1cos x 2 � �sin x

d

dx
1sin x 2 � cos x

EXAMPLE 1 Selecting a strategy to determine the derivative of a sinusoidal function

Determine for each function.

a. b. y � x sin xy � cos 3x

dy
dx

Derivatives of Sinusoidal Functions

NEL



Solution

a. To differentiate this function, use the chain rule.

b. To find the derivative, use the product rule.

EXAMPLE 2 Reasoning about the derivatives of sinusoidal functions

Determine for each function.

a. b.

Solution
a. To differentiate this composite function, use the chain rule and change of 

variable.
Here, the inner function is and the outer function is 

Then,

b. Since we use the chain rule with where 

Then,

� 2 sin x cos x

� 12u 2 1cos x 2 
dy

dx
�

dy

du
 
du

dx

u � sin x.
y � u2,y � sin2 x � 1sin x 22,

� 2x cos x2

� 1cos u 2 12x 2 
dy

dx
�

dy

du
 
du

dx

y � sin u.u � x2,

y � sin2 xy � sin x2

dy
dx

 � sin x � x cos x

 � 11 2 � sin x � x cos x

 
dy

dx
�

dx

dx
� sin x � x 

d1sin x 2
dx

 y � x sin x

 � �3 sin 3x

 � �sin 3x � 13 2 
dy

dx
�

d1cos 3x 2
d13x 2 �

d13x 2
dx

 y � cos 3x

(Chain rule)

(Product rule)

(Chain rule)

(Substitute)

(Substitute)

(Chain rule)
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EXAMPLE 3 Differentiating a composite cosine function

Determine for 

Solution

EXAMPLE 4 Differentiating a combination of functions

Determine for 

Solution

 � esin x�cos x1cos x � sin x 2y¿ �
d1esin x�cos x 2

d1sin x � cos x 2 �
d1sin x � cos x 2

dx

 y � esin x�cos x

y � esin x�cos x.y¿

 � �3x2 sin 11 � x3 2 � �sin 11 � x3 2 13x2 2 
dy

dx
�

d 3cos 11 � x3 2 4
d11 � x3 2 �

d11 � x3 2
dx

 y � cos 11 � x3 2
y � cos 11 � x3 2 .dy

dx

Derivatives of Composite Sinusoidal Functions

If then 

In Leibniz notation,

If then 

In Leibniz notation,
d

dx
 1cos f 1x 22 � d1cos f 1x 22

d 1 f 1x 22 �
d 1 f 1x 22

dx
� �sin f 1x 2 � d 1 f 1x 22

dx
.

dy
dx � �sin f 1x 2 � f ¿  1x 2 .y � cos f 1x 2 ,
d

dx
 1sin f 1x 22 �

d1sin f 1x 22
d 1 f 1x 22 �

d 1 f 1x 22
dx

� cos f 1x 2 �
d 1 f 1x 22

dx
.

dy
dx � cos f 1x 2 � f ¿1x 2 .y � sin f 1x 2 ,

(Chain rule)

(Chain rule)

With practice, you will learn how to apply the chain rule without the intermediate
step of introducing the variable u. For for example, you can skip this

step and immediately write 
dy

dx � 1cos x2 2 12x 2 .y � sin x2,

NEL



EXAMPLE 5 Connecting the derivative of a sinusoidal function to the slope 
of a tangent

Determine the equation of the tangent to the graph of at 

Solution

When 

The point of tangency is 

The slope of the tangent at any point on the graph is given by

(Product and chain rules)

(Simplify)

At (Evaluate)

The equation of the tangent is

or 

EXAMPLE 6 Connecting the derivative of a sinusoidal function to its extreme values

Determine the maximum and minimum values of the function on
the interval .

Solution
By the algorithm for finding extreme values, the maximum and minimum values
occur at points on the graph where or at endpoints of the interval. 
The derivative of is

(Chain rule)

(Using the double angle identity)

Solving ,

or

so or 2px � 0,  
p

2
,  p,  

3p

2
,

4p 2x � 0, p, 2p, 3p,

 sin 2x � 0

 �sin 2x � 0

f ¿1x 2 � 0

 � �sin 2x

 � �2 sin x cos x

 f ¿1x 2 � 2 1cos x 2 1�sin x 2f 1x 2 f ¿ 1x 2 � 0

x� 30,  2p 4 f 1x 2 � cos2 x

y � �x.y �
p

2
� � a x �

p

2
b

� �1

dy

dx
� cos p � p1sin p 2x �

p

2
,

 � cos 2x � 2x sin 2x

 � 11 2 1cos 2x 2 � x1�sin 2x 2 12 2 
dy

dx
�

dx

dx
� cos 2x � x �

d1cos 2x 2
dx

Qp2 , �p2R.
y �

p
2  cos p � �

p
2 .x �

p
2 ,

x �
p
2 .y � x cos 2x
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We evaluate at the critical numbers. (In this example, the endpoints of the
interval are included.)

f 1x 2

IN SUMMARY

Key Idea

• The derivatives of sinusoidal functions are found as follows:

• and 

• If then 

• If then 

Need to Know

• When you are differentiating a function that involves sinusoidal functions, use
the rules given above, along with the sum, difference, product, quotient, and
chain rules as required.

dy
dx

� �sin f 1x 2 � f ¿ 1x 2 .y � cos f 1x 2 ,
dy
dx

� cos f 1x 2 � f ¿ 1x 2 .y � sin f 1x 2 ,
d 1cos x 2

dx
� �sin x

d 1sin x 2
dx

� cos x

x 0
p

2
p

3p
2

2p

xf 1x 2 � cos2 1 0 1 0 1

The maximum value is 1 when . The minimum value is 0 when

or 

The above solution is verified by our knowledge of the cosine function. For the
function ,
• the domain is 
• the range is 
For the given function ,
• the domain is 
• the range is 
Therefore, the maximum value is 1 and the minimum value is 0.

y
y = cos2 x

x
1

2

–1
0

2
p p 2p

2
3p

0 � cos2 x � 1
x�R

y � cos2 x
�1 � cos x � 1

x�R
y � cos x

3p
2 .x �

p
2

x � 0, p, or 2p
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Exercise 5.4

PART A
1. Determine for each of the following:

a. f.

b. g.

c. h.

d. i.

e. j.

2. Differentiate the following functions:

a. d.

b. e.

c. f.

PART B
3. Determine an equation for the tangent at the point with the given x-coordinate

for each of the following functions:

a. d.

b. e.

c. f.

4. a. If and explain why 

b. If and how are and related?

5. Differentiate each function.

a. c.

b. d. m1x 2 � 1x2 � cos2 x 23v1t 2 � �1 � cos t � sin2 t

h1x 2 � sin x sin 2x sin 3xv1t 2 � sin2 1�t 2
g¿1x 2f ¿1x 2g 1x 2 � 1 � cos2 x,f 1x 2 � sin2 x

f ¿1x 2 � g¿1x 2 .g 1x 2 � 1 � cos2 x,f 1x 2 � sin2 x

f 1x 2 � 2 sin x cos x, x �
p

2
f 1x 2 � cos 14x 2 , x �

p

4

x �
p

4
f 1x 2 � cos a2x �

p

3
b ,x � 0f 1x 2 � x � sin x,

x �
p

2
f 1x 2 � sin 2x � cos x,x �

p

3
f 1x 2 � sin x,

y � 2x3 sin x � 3x cos xy � cos 1sin 2x 2 y � ex1cos x � sin x 2y �
cos 2x

x

y �
sin x

1 � cos x
y � 2 sin x cos x

y � sin 
1
x

y � sin 3x � cos 4x

y � x2 � cos x � sin 
p

4
y � 2 cos 1�4x 2 y � 3 sin 13x � 2p 2y � sin 1x3 � 2x � 4 2 y � sin 1ex 2y � 2 cos 3x

y � 2x � 2 sin x � 2 cos xy � sin 2x

dy
dx

K

C
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6. Determine the absolute extreme values of each function on the given interval.
(Verify your results with graphing technology.)

a.

b.

c.

d.

7. A particle moves along a line so that, at time t, its position is 

a. For what values of t does the particle change direction?

b. What is the particle’s maximum velocity?

8. a. Graph the function 

b. Determine the coordinates of the point where the tangent to the curve of
is horizontal, on the interval 

9. Determine expressions for the derivatives of and .

10. Determine the slope of the tangent to the curve at point 

11. A particle moves along a line so that at time t, its position is 

a. When does the particle change direction?

b. What is the particle’s maximum velocity?

c. What is the particle’s minimum distance from the origin? What is its 
maximum distance from the origin?

12. An irrigation channel is constructed by bending a sheet of metal that is 3 m
wide, as shown in the diagram. What angle will maximize the cross-sectional
area (and thus the capacity) of the channel?

13. An isosceles triangle is inscribed in a circle of radius R. Find the value of 
that maximizes the area of the triangle.

PART C
14. If where A, B, and k are constants, show that

y– �  k2y � 0.
y � A cos kt � B sin kt,

2u

u

u

1 m

1 m

1 m

u

u

s � 4 sin 4t.

Qp6 , 12R.y � cos 2x

sec xcsc x

0 � x � p.f 1x 2
f 1x 2 � cos x � sin x.

s1t 2 � 8 sin 2t.

y � 3 sin x � 4 cos x, x� 30, 2p 4y � sin x � cos x, x� 30, 2p 4�p � x � py � x � 2 cos x,

0 � x � 2py � cos x � sin x,

A

T
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Section 5.5—The Derivative of 

In this section, we will study the derivative of the remaining primary trigonometric
function—tangent.

Since this function can be expressed in terms of sine and cosine, we can find its
derivative using the product rule.

EXAMPLE 1 Reasoning about the derivative of the tangent function

Determine for 

Solution

(Product rule)

(Chain rule)

(Using the Pythagorean identity)

Therefore,

EXAMPLE 2 Selecting a strategy to determine the derivative of a composite 
tangent function

Determine for 

Solution

(Chain rule)

 � 12x � 3 2sec2 1x2 � 3x 2 � sec2 1x2 � 3x 2 � 12x � 3 2 
dy

dx
�

d tan 1x2 � 3x 2
d1x2 � 3x 2 �

d1x2 � 3x 2
dx

 y � tan 1x2 � 3x 2
y � tan 1x2 � 3x 2 .dy

dx

d1tan x 2
dx

� sec2 x

 � sec2 x

 � 1 � tan2 x

 � 1 �
sin2 x

cos2 x

 � 1cos x 2 1cos x 2�1 � sin x 1�1 2 1cos x 2�21�sin x 2 
dy

dx
�

d 1sin x 2
dx

� 1cos x 2�1 � sin x �
d1cos x 2�1

dx

 � 1sin x 2 1cos x 2�1

 �
sin x
cos x

 y � tan x

y � tan x.dy
dx

y � tan x
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EXAMPLE 3 Determining the derivative of a combination of functions

Determine for .

Solution

(Chain rule)

EXAMPLE 4 Determining the derivative of a product involving the tangent function

Determine for 

Solution

(Product and chain rules)

 � tan 12x � 1 2 � 2x sec2 12x � 1 2 
dy

dx
� 11 2 tan 12x � 1 2 � 1x 2sec2 12x � 1 2 d12x � 1 2

dx

 y � x tan 12x � 1 2
y � x tan 12x � 1 2 .dy

dx

 
dy

dx
� 41sin x � tan x 231cos x � sec2 x 2 y � 1sin x � tan x 24

y � 1sin x � tan x 24dy
dx

Derivatives of Composite Functions Involving 

If then 

In Leibniz notation,
d

dx
 1tan f 1x 22 � d1tan f 1x 22

d1 f 1x 22  �
df1x 22

dx
� sec2 1 f 1x 22 �

d1 f 1x 22
dx

.

dy
dx � sec2 f 1x 2 � f ¿ 1x 2 .y � tan f 1x 2 , y � tan x

IN SUMMARY

Key Idea

• The derivatives of functions involving the tangent function are found as follows:

•

•

Need to Know

• Trigonometric identities can be used to write one expression as an equivalent
expression and then differentiate. In some cases, the new function will be
easier to work with.

 
d
dx
1tan f 1x 22 � sec2 f 1x 2 � f ¿ 1x 2

d1tan x 2
dx

� sec2 x
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Exercise 5.5

PART A
1. Determine for each of the following:

a. d. y �
x2

tan pxy � tan 3x

dy
dx

K

A

b. e.

c. f.

2. Determine an equation for the tangent to each function at the point with the
given x-coordinate.

a. b.

PART B
3. Determine for each of the following:

a. d.

b. e.

c. f.

4. Determine for each of the following:

a. b.

5. Determine all the values of x, for which the slope of the tangent
to is zero.

6. Determine the local maximum point on the curve , where 

7. Prove that is always increasing on the interval 

8. Determine the equation of the line that is tangent to where 

9. If you forget the expression that results when differentiating the tangent 
function, explain how you can derive this derivative using an identity.

PART C

10. Determine the derivative of 

11. Determine , where .f 1x 2 � cot 4xf – 1x 2 cot x.

x �
p
4 .y � 2 tan x,

�
p
2 6 x 6 p2 .y � sec x � tan x

�
p
2 6 x 6 p2 .

y � 2x � tan x

f 1x 2 � sin x tan x
0 � x � 2p,

y �  tan2 xy � sin x tan x

d2y
dx2

y � etan�xy � tan2 1cos x 2 y � sin3 x tan xy � 3 tan 1x2 � 1 2 4�2

y � 1tan x � cos x 22y � tan 1sin x 2y¿

x � 0f 1x 2 � 6 tan x � tan 2x,x �
p

4
f 1x 2 � tan x,

y � 3 sin 5x tan 5xy � tan2 1x3 2 y � tan 1x2 2� tan2 xy � 2 tan x � tan 2x

T

C

NEL5 . 5  T H E  D E R I VAT I V E  O F  y � tan x260



C H A P T E R  5 261

CHAPTER 5: RATE-OF-CHANGE MODELS IN MICROBIOLOGY

Investigate and ApplyCAREER LINK WRAP-UP

A simplified model for bacterial growth is where P(t) is the population
of the bacteria colony after t hours, is the initial population of the colony (the
population at ), and r determines the growth rate of the colony. The model is
simple because it does not account for limited resources, such as space and
nutrients. As time increases, so does the population, but there is no bound on the
population. While a model like this can describe a population for a short period of
time or can be made to describe a population for a longer period of time by
adjusting conditions in a laboratory experiment, in general, populations are better
described by more complex models.

To determine how the population of a particular type of bacteria will grow over
time under controlled conditions, a microbiologist observes the initial population
and the population every half hour for 8 h. (The microbiologist also controls the
environment in which the colony is growing to make sure that temperature and
light conditions remain constant and ensures that the amount of nutrients
available to the colony as it grows is sufficient for the increasing population.)

After analyzing the population data, the microbiologist determines that the
population of the bacteria colony can be modelled by the equation 

a. What is the initial population of the bacteria colony?

b. What function describes the instantaneous rate of change in the bacteria
population after t hours?

c. What is the instantaneous rate of change in the population after 1 h? What is
the instantaneous rate of change after 8 h?

d. How do your answers for part c. help you make a prediction about how long
the bacteria colony will take to double in size? Make a prediction for the
number of hours the population will take to double, using your answers for 
part c. and/or other information.

e. Determine the actual doubling time—the time that the colony takes to grow to
twice its initial population. (Hint: Solve for t when .)

f. Compare your prediction for the doubling time with the calculated value. If your
prediction was not close to the actual value, what factors do you think might
account for the difference?

g. When is the instantaneous rate of change equal to 500 bacteria per hour?

P1t 2 � 1000

P1t 2 � 500 e0.1t.

t � 0
P0

P1t 2 � P0ert,
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Key Concepts Review

In this chapter, we introduced a new base for exponential functions, namely the
number e, where We examined the derivatives of the exponential
functions along with the primary trigonometric functions. You should now be able
to apply all the rules of differentiation that you learned in Chapter 2 to expressions
that involve the exponential, sine, cosine, and tangent functions combined with
polynomial and rational functions.

We also examined some applications of exponential and trigonometric functions.
The calculus techniques that are used to determine instantaneous rates of
change, equations of tangent lines, and absolute extrema for polynomial and
rational functions, can also be used for exponential and trigonometric 
functions.

Derivative Rules for Exponential Functions

•  and 

•  and 
d

dx
 1bg1x2 2 � bg1x2 1ln b 2g¿ 1x 2d

dx
 1bx 2 � bx ln b

d

dx
 1eg1x2 2 � eg1x2 � g¿ 1x 2d

dx
 1ex 2 � ex

e �  2.718 281.

Derivative Rules for Primary Trigonometric Functions

•  and 

•  and 

•  and 
d

dx
 1tan f 1x 22 � sec2 f 1x 2 � f ¿ 1x 2d

dx
 1tan x 2 � sec2 x

d

dx
 1cos f 1x 22 � �sin f 1x 2 � f ¿ 1x 2d

dx
 1cos x 2 � �sin x

d

dx
 1sin f 1x 22 � cos f 1x 2 � f ¿ 1x 2d

dx
 1sin x 2 � cos x
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Review Exercise

1. Differentiate each of the following:

a. d.

b. e.

c. f.

2. Determine for each of the following:

a. c. e.

b. d. f.

3. Differentiate each of the following:

a. d.

b. e.

c. f.

4. a. Given the function solve the equation 

b. Discuss the significance of the solution you found in part a.

5. a. If find 

b. Explain what this number represents.

6. Determine the second derivative of each of the following:

a. b.

7. If prove that 

8. Determine the equation of the tangent to the curve defined by 
that is parallel to the line represented by 

9. Determine the equation of the tangent to the curve at the point
where 

10. An object moves along a line so that, at time t, its position is 

where s is the displacement in metres. Calculate the object’s velocity at t �
p
4 .

s �
sin t

3 � cos 2 t ,

x �
p
2 .

y � x sin x

3x � y � 9 � 0.
y � x � e�x

dy
dx � 1 � y2.y �

e2x � 1
e2x � 1,

y � xe10xy � xex � ex

f ¿Q12R.f 1x 2 � xe�2x,

f ¿ 1x 2 � 0.f 1x 2 �
ex

x ,

y � cos2 2xy �
1

2 � cos x

y � 1sin 2x 2e3xy � tan 3x

y � x tan 2xy � 3 sin 2x � 4 cos 2x

y �
5Vx

x
y � 1x4 2  2xy � 43x2

y �
4x

4xy � 15x 2 15x 2y � 10x

dy
dx

s �
et � 1

et � 1
y � e2x�3

y � xexy � 2x � 3ex

y � e�3x2�5xy � 6 � ex
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11. The number of bacteria in a culture, N, at time t is given by 

a. When is the rate of change of the number of bacteria equal to zero?

b. If the bacterial culture is placed in a colony of mice, the number of mice
that become infected, M, is related to the number of bacteria present by the

equation After 10 days, how many mice are infected
per day?

12. The concentrations of two medicines in the bloodstream t hours after 
injection are and 

a. Which medicine has the larger maximum concentration?

b. Within the first half hour, which medicine has the larger maximum 
concentration?

13. Differentiate.

a. c.

b. d.

14. Differentiate.

a. d.

b. e.

c. f.

15. Determine .

a. d.

b. e.

c. f.

16. Determine the equation of the tangent to the curve at 

17. An object is suspended from the end of a spring. Its displacement from the
equilibrium position is at time t. Calculate the velocity and 

acceleration of the object at any time t, and show that d
2s

dt2 � 100p2s � 0.

s � 8 sin 110pt 2
Qp2 , 0R.y � cos x

y � cos x sin2 xy � sin ap
2

� x b y � cos2 xy � x2 sin x

y � cos x sin xy � sin 2x

y¿

y � �2110 23xy � 152 22x

y � 41e 2 xy � 10.47 2 x y � 512 2 xy � 5x

y � 11 � e5x 25y � xe

y � eex
y � 12 � 3e�x 23

c21t 2 � t2e�t.c11t 2 � te�t

M1t 2 � �3 N � 1000 .

2000�30 � te� t
20�.N1t 2 �
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18. The position of a particle is given by at time t. What are the 

maximum values of the displacement, the velocity, and the acceleration?

19. The hypotenuse of a right triangle is 12 cm in length. Calculate the measures
of the unknown angles in the triangle that will maximize its perimeter.

20. A fence is 1.5 m high and is 1 m from a wall. A ladder must start from the
ground, touch the top of the fence, and rest somewhere on the wall. Calculate
the minimum length of the ladder.

21. A thin rigid pole needs to be carried horizontally around a corner joining two 
corridors, which are 1 m and 0.8 m wide. Calculate the length of the longest
pole that can be carried around this corner.

22. When the rules of hockey were developed, Canada did not use the metric 
system. Thus, the distance between the goal posts was designated to be six feet
(slightly less than 2 m). If Sidney Crosby is on the goal line, three feet outside
one of the goal posts, how far should he go out (perpendicular to the goal line)
to maximize the angle in which he can shoot at the goal?
Hint: Determine the values of x that maximize in the following diagram.

23. Determine 

a. b. f 1x 2 � 21cos x 2 1sec2 x 2f 1x 2 � 4 sin2 1x � 2 2f ¿¿ 1x 2

36

u
x

u

1

0.8

u

u
y

x

12
y

x
u

s � 5 cos Q2t �
p
4R
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Chapter 5 Test

1. Determine the derivative for each of the following:

a. d.

b. e.

c. f.

2. Determine the equation of the tangent to the curve defined by that is 
parallel to the line defined by 

3. Determine the equation of the tangent to at .

4. The velocity of a certain particle that moves in a straight line under the
influence of forces is given by where k is a positive constant
and is in centimetres per second.

a. Show that the acceleration of the particle is proportional to a constant
multiple of its velocity. Explain what is happening to the particle.

b. What is the initial velocity of the particle?

c. At what time is the velocity equal to half the initial velocity? What is the
acceleration at this time?

5. Determine 

a. b.

6. Determine the absolute extreme values of , where .

7. Calculate the slope of the tangent line that passes through , where
Express your answer to two decimal places.

8. Determine all the maximum and minimum values of 

9.

a. Determine all critical number for f(x) on the given interval.

b. Determine the intervals where f(x) is increasing and where 
it is decreasing.

c. Determine all local maximum and minimum values of f(x) 
on the given interval.

d. Use the information you found above to sketch the curve.

f 1x 2 � 2 cos x �sin 2x  where x� 3�p, p 4 y � xex � 3ex.

x � 2.
y � 5x

x� 30, p 4f 1x 2 � sin2 x

f 1x 2 � cos x cot xf 1x 2 � cos2 x

f –1x 2 .

v1t 2 v1t 2 � 10e�kt,

10, 1 2y � ex � sin x

�6x � y � 2.
y � 2e3x

y � tan�1 � xy �
e3x � e�3x

2

y � sin3 1x2 2y � 3x2�3x

y � 2 sin x � 3 cos 5xy � e�2x2

dy
dx
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C H A P T E R S  1 – 5

Cumulative Review of Calculus

1. Using the limit definition of the slope of a tangent, determine the slope of the
tangent to each curve at the given point.

a. c.

b. d.

2. The position, in metres, of an object is given by where 
t is the time in seconds.

a. Determine the average velocity from to 

b. Determine the instantaneous velocity at 

3. If represents the slope of the tangent to at 

what is the equation of 

4. An object is dropped from the observation deck of the Skylon Tower in
Niagara Falls, Ontario. The distance, in metres, from the deck at t seconds is
given by 

a. Determine the average rate of change in distance with respect to time 
from to 

b. Determine the instantaneous rate of change in distance with respect 
to time at 2 s.

c. The height of the observation deck is 146.9 m. How fast is the object 
moving when it hits the ground?

5. The model estimates the population of fish in a 
reservoir, where P represents the population, in thousands, and t is the 
number of years since 2000.

a. Determine the average rate of population change between 2000 and 2008.

b. Estimate the rate at which the population was changing at the start of 2005.

6. a. Given the graph of at the left, determine the following:

i. iii.

ii. iv.

b. Does exist? Justify your answer.

7. Consider the following function:

Determine where is discontinuous, and justify your answer.f 1x 2
f 1x 2 � • x2 � 1,  if x 6 2

2x � 1, if x � 2

�x � 5,  if x 7 2

lim
 xS4

f 1x 2 lim
 xS6

f 1x 2lim
 xS2 �

f 1x 2 lim
 xS2 �

f 1x 2f 12 2 f 1x 2

P 1t 2 � 2t2 � 3t �1

t � 3.t � 1

d 1t 2 � 4.9t2.

f 1x 2? x � 4,y � f 1x 2lim
 hS0

 
14 � h 2 3 � 64

h

t � 3.

t � 4.t � 1

s 1t 2 � 2t2 � 3t � 1,

f 1x 2  �  25x, 11, 32 212, 2 2f 1x 2 �
2

x � 1
,

f 1x 2 � �x � 3, 16, 3 212, 15 2f 1x 2 � 3x2 � 4x � 5,
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8. Use algebraic methods to evaluate each limit (if it exists).

a. d.

b. e.

c. f.

9. Determine the derivative of each function from first principles.

a. b.

10. Determine the derivative of each function.

a. d.

b. e.

c. f.

11. Determine the equation of the tangent to at the point 

12. Determine the slope of the tangent to at the point where the
curve intersects the line 

13. In 1980, the population of Littletown, Ontario, was 1100. After a time t, in
years, the population was given by 

a. Determine the function that describes the rate of change 
of the population at time t.

b. Determine the rate of change of the population at the start of 1990.

c. At the beginning of what year was the rate of change of the population 
110 people per year?

14. Determine and for each function.

a. c.

b. d.

15. Determine the extreme values of each function on the given interval.

a. c.

b. d. f 1x 2 � 2 sin 4x � 3, x� 30, p 41 � x � 9f 1x 2 � x �
1

�x
,

x� 30, 4 4f 1x 2 �
ex

1 � ex
 
,�2 � x � 6f 1x 2 � 1 � 1x � 3 22,

f 1x 2 � x4 �
1

x4f 1x 2 �
�2

x2

f 1x 2 �
4

Vx
f 1x 2 � x5 � 5x3 � x � 12

f –f ¿

p¿ 1t 2 , p 1t 2 � 2t2 � 6t � 1100.

y � 3x.
y � x2 � 9x � 9

11 , 2 2 .y �
181x � 2 2 2

y � 3x2 � 12x � 1 23 45y �
2x

x � 3

y �
14x2 � 1 2513x � 2 23y � �2x 3 � 1

y � 1x2 � 3 2214x5 � 5x � 1 2y � x3 � 4x2 � 5x � 2

f 1x 2 �
1
x

f 1x 2 � 3x2 � x � 1

lim
 xS0

Vx � 4 � V4 � x
x

lim
 xS�3

1
x �

1
3

x � 3

lim
 xS2

x � 2

x3 � 8
lim
 xS3

x � 3

Vx � 6 � 3

lim
 xS2

x2 � 4

x2 � x � 2
lim
 xS0

2x2 � 1

x � 5
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16. The position, at time t, in seconds, of an object moving along a line is given
by for 

a. Determine the velocity and the acceleration at any time t.

b. When is the object stationary? When is it advancing? When is it retreating?

c. At what time, t, is the velocity not changing?

d. At what time, t, is the velocity decreasing?

e. At what time, t, is the velocity increasing?

17. A farmer has 750 m of fencing. The farmer wants to enclose a rectangular
area on all four sides, and then divide it into four pens of equal size with the
fencing parallel to one side of the rectangle. What is the largest possible area
of each of the four pens?

18. A cylindrical metal can is made to hold 500 mL of soup. Determine the
dimensions of the can that will minimize the amount of metal required.
(Assume that the top and sides of the can are made from metal of the same
thickness.)

19. A cylindrical container, with a volume of 4000 cm3, is being constructed to
hold candies. The cost of the base and lid is $0.005 cm2, and the cost of the
side walls is $0.0025 cm2. Determine the dimensions of the cheapest possible
container.

20. An open rectangular box has a square base, with each side measuring 
x centimetres.

a. If the length, width, and depth have a sum of 140 cm, find the depth in
terms of x.

b. Determine the maximum possible volume you could have when constructing
a box with these specifications. Then determine the dimensions that produce
this maximum volume.

21. The price of x MP3 players is where If the total
revenue, is given by determine the value of x that
corresponds to the maximum possible total revenue.

22. An express railroad train between two cities carries 10 000 passengers per
year for a one-way fare of $50. If the fare goes up, ridership will decrease
because more people will drive. It is estimated that each $10 increase in the
fare will result in 1000 fewer passengers per year. What fare will maximize
revenue?

23. A travel agent currently has 80 people signed up for a tour. The price of 
a ticket is $5000 per person. The agency has chartered a plane seating 
150 people at a cost of $250 000. Additional costs to the agency are incidental
fees of $300 per person. For each $30 that the price is lowered, one new person
will sign up. How much should the price per person be lowered to maximize
the profit for the agency?

R 1x 2 � xp 1x 2 ,R 1x 2 , x�N.p 1x 2 � 50 � x2,

	
	

0 � t � 8.s 1t 2 � 3t3 � 40.5t2 � 162t
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24. For each function, determine the derivative, all the critical numbers, and the
intervals of increase and decrease.

a. c.

b. d.

25. For each of the following, determine the equations of any horizontal, vertical,
or oblique asymptotes and all local extrema:

a. b.

26. Use the algorithm for curve sketching to sketch the graph of each function.

a. b.

27. Determine the derivative of each function.

a. c.

b. d.

28. Determine the equation of the tangent to the curve at 

29. In a research laboratory, a dish of bacteria is infected with a particular 

disease. The equation models the number of bacteria, N,

that will be infected after d days.

a. How many days will pass before the maximum number of bacteria 
will be infected?

b. Determine the maximum number of bacteria that will be infected.

30. Determine the derivative of each function.

a. d.

b. e.

c. f.

31. A tool shed, 250 cm high and 100 cm deep, is built against a wall. Calculate
the shortest ladder that can reach from the ground, over the shed, to the wall
behind.

32. A corridor that is 3 m wide makes a right-angle turn, as shown on the left.
Find the longest rod that can be carried horizontally around this corner.
Round your answer to the nearest tenth of a metre.

y � sin 1cos x2 2y � �x2 � sin 3x

y � tan x2 � tan2 xy � 1sin 2x � 1 24 y �
sin x

cos x � 2
y � 2 sin x � 3 cos 5x

N 1d 2 � 115d 2e�
d
5 

x � 1.y � e2x�1

y � esin xf 1x 2 � xe3x

y � 63x�8f 1x 2 � 1�4 2e5x�1

y �
3x

x2 � 4
f 1x 2 � 4x3 � 6x2 � 24x � 2

y �
4x3

x2 � 1
y �

8

x2 � 9

y �
x

x � 2
y � 6x2 � 16x � 40

y � 2x3 � 24xy � �5x2 � 20x � 2
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Chapter 6

INTRODUCTION TO VECTORS

Have you ever tried to swim across a river with a strong current or run into a head
wind? Have you ever tried sailing across a windy lake? If your answer is yes, then
you have experienced the effect of vector quantities. Vectors were developed in the
late nineteenth century as mathematical tools for studying physics. In the following
century, vectors became an essential tool for anyone using mathematics including
social sciences. In order to navigate, pilots need to know what effect a crosswind
will have on the direction in which they intend to fly. In order to build bridges,
engineers need to know what load a particular design will support. In this chapter,
you will learn more about vectors and how they represent quantities possessing
both magnitude and direction.

CHAPTER EXPECTATIONS
In this chapter, you will 

• represent vectors as directed line segments, Section 6.1

• recognize a vector as a quantity with both magnitude and direction, Section 6.1

• perform mathematical operations on geometric vectors, Sections 6.2, 6.3

• determine some properties of the operations performed on vectors, Section 6.4

• determine the Cartesian representation of a vector in two- and 
three-dimensional space, Sections 6.5, 6.6, 6.7, 6.8 

• perform mathematical operations on algebraic vectors in two- and 
three-dimensional space, Sections 6.6, 6.7, 6.8

NEL



Review of Prerequisite Skills

In this chapter, you will be introduced to the concept of a vector, a mathematical
entity having both magnitude and direction. You will examine geometric and
algebraic representations of vectors in two- and three-dimensional space. Before
beginning this introduction to vectors, you may wish to review some basic facts
of trigonometry.

TRIGONOMETRIC RATIOS In a right-angled triangle, as shown,

THE SINE LAW

THE COSINE LAW

SOLVING A TRIANGLE

• To solve a triangle means to find the measures of the sides and angles whose
values are not given.

• Solving a triangle may require the use of trigonometric ratios, the Pythagorean
theorem, the sine law, and/or the cosine law.

a2 � b2 � c2 � 2bc cos A  or  cos A �
b2 � c2 � a2

2bc

a

sin A
�

b

sin B
�

c

sin C

 tan u �
opposite
adjacent

     �
a

b

 cos u �
adjacent

hypotenuse
�

b
c

 sin u �
opposite

hypotenuse
�

a
c

a2 � b2 � c2.
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Exercise

1. State the exact value of each of the following:

a. sin 60° c. cos 60° e. sin 135°

b. tan 120° d. cos 30° f. tan 45°

2. In , , , and . State the exact value of tan A.

3. Solve , to one decimal place.

a. b.

4. In , , , and . Determine the values of XZ,
YZ, and to two digit accuracy.

5. In , , , and . Determine the measures of the
angles to the nearest degree.

6. An aircraft control tower, T, is tracking two airplanes at points A, 3.5 km from
T, and B, 6 km from T. If , determine the distance between the
two airplanes to two decimal places.

7. Three ships are at points P, Q, and R such that 2 km, 7 km, and
. What is the distance between Q and R, to two decimal places.

8. Two roads intersect at an angle of 48º. A car and truck collide at the 
intersection, and then leave the scene of the accident. The car travels at 
100 km h down one road, while the truck goes 80 km h down the other road.
Fifteen minutes after the accident, a police helicopter locates the car and pulls
it over. Twenty minutes after the accident, a
police cruiser pulls over the truck. How far
apart are the car and the truck at this time?  

9. A regular pentagon has all sides equal and all
central angles equal. Calculate, to the nearest
tenth, the area of the pentagon shown.

>>
�QPR � 142°

PR �PQ �

�ATB � 70°

ST � 5RT � 7RS � 4^  RST

�Z,
�Y � 70°�X � 60°XY � 6^  XYZ

A C

B

5

10
8

C

B A

22.0
37.0

^  ABC

AC � 10�B � 90°AB � 6^  ABC

5 cm
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CHAPTER 6: FIGURE SKATING

InvestigateCAREER LINK

Figure skaters are exceptional athletes and artists. Their motion while skating 
is also an illustration of the use of vectors. The ice they skate on is a nearly
frictionless surface—so any force applied by the skater has a direct impact on
speed, momentum, and direction. Vectors can be used to describe a figure
skater’s path on the ice. When the skater starts moving in a direction, she will
continue moving in that direction and at that speed until she applies a force to
change or stop her motion. This is more apparent with pairs figure skaters. 
To stay together, each skater must skate with close to the same speed as their
partner in the same direction. If one skater uses less force or applies the force in
a different direction, the skaters will either bump into each other or separate
and fly away from each other. If they don’t let go of each other, the opposing
forces may cause them to spin.  

Case Study—Throwing a Triple Salchow

The Triple Salchow throw is one of the more difficult moves in pairs figure
skating. Both partners skate together in one direction with a lot of speed. Next,
the male skater plants his feet to throw his partner and add his momentum to
that of the female skater. She applies force with one skate to jump into the air.
In order to make herself spin, she applies force at an angle to the initial direction
and spins three times in the air before landing. There are three main vectors at
work here. These vectors are the initial thrust of both skaters, the force the male
skater applies to the female skater, and the vertical force of the jump. 

Vector
Magnitude

(size of the force)

Both skaters’
initial thrust (l )

60

Female skater’s
change in direction
to cause spin (m)

40

Female skater’s
vertical leap (n)

20

DISCUSSION QUESTIONS

1. What operation on vectors l and m do you think should
be done to find the resulting thrust vector (a) for the
female skater? 

2. If we performed the same operation as in problem 1 to
the vectors a and n, what would the resulting vector
represent? You may assume that the angle between a
and n is 90º.

3. Can you think of a three-dimensional figure that would
represent all of the vectors l, m, and n at the same
time, as well as the vectors found in the previous two
problems? Give as complete a description as possible
for this figure, including any properties you notice. 
For example, is it constructed from any familiar 
two-dimensional objects?

n m

l
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Section 6.1—An Introduction to Vectors

In mathematics and science, you often come in contact with different quantities.
Some of these quantities, those whose magnitude (or size) can be completely
specified by just one number, are called scalars. Some examples of scalars are age,
volume, area, speed, mass, and temperature. On the other hand, some quantities
(such as weight, velocity, or friction) require both a magnitude and a direction for
a complete description and are called vectors.

Defining the Characteristics of Vectors
A vector can be represented by a directed line segment. A directed line 
segment has a length, called its magnitude, and a direction indicated by 
an arrowhead.

The diagram below can help to make the distinction between a vector and a scalar.
If an airplane is travelling at a speed of 500 km h, this description is useful, but
for navigation and computational purposes, incomplete. If we add the fact that 
the airplane is travelling in a northeasterly direction, we now have a description 
of its velocity because we have specified both its speed and direction. This 
defines velocity as a vector quantity. If we refer to the speed of the airplane, we are
describing it with just a single number, which defines speed as a scalar quantity.

Scale: 1 cm is equivalent to 100 km h

In the diagram, is an example of a vector. In this case, it is a line segment
running from A to B with its tail at A and head at B. Its actual size, or magnitude,
is denoted by . The magnitude of a vector is always non-negative. The 
vector could be used to represent the velocity of any airplane heading in a
northeasterly direction at 500 km h (using a scale of 1 cm to 100 km h,
i.e., ). The direction of the “arrow” represents the
direction of the airplane, and its length represents its speed.
@AB
! @ � 5 cm � 500 km>h >>AB
! @AB

! @AB
!

>

>

A

B

AB

A

B

BA W E

S

N
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What is a Vector?

A vector is a mathematical quantity having both magnitude and direction.

Opposite Vectors

Two vectors that are opposites have the same magnitude but point in opposite
directions.

and are opposites, and . In this case, and 
the vectors are parallel but point in opposite directions. Vectors can also be 
represented with lower-case letters. In the diagram above, vectors and 
have the same magnitude, i.e., , but point in opposite directions, so 
and are also opposites.�v

! v
!0 v! 0 � 0�v

! 0 �v
!

v
!

@AB
! @ � @BA

! @AB
!
� �BA

!
BA
!

AB
!

v
BA

–v
A B

No mention has yet been made of using coordinate systems to represent vectors. 
In the diagram below, it is helpful to note that is a vector having its tail
at the origin and head at ; this vector has magnitude 2, i.e., . Also,
observe that and . The vectors and are opposites.

x

y

–1
–1

–2

–3

1

1

2

3

–2 2–3 30
(–2, 0) (2, 0)

–a = (–2, 0),  ) –a ) = 2 a = (2, 0),  )  a  ) = 2

�a
!

a
!0�a

! 0 � 2�a
!
� 1�2, 0 2 0a! 0 � 212, 0 2 a

!
� 12, 0 2

In the diagram on the previous page, is a vector pointing from B to A. The
vector represents an airplane travelling in a southwesterly direction at 500 km h.
Note that the magnitudes of the two vectors are equal, i.e., , but
that the vectors themselves are not equal because they point in opposite
directions. For this reason, we describe these as opposite vectors.

@AB
! @ � @BA

! @ >BA
! BA

!
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It is not always appropriate or necessary to describe a quantity by both a magnitude
and direction. For example, the description of the area of a square or rectangle does
not require a direction. In referring to a person’s age, it is clear what is meant by
just the number. By their nature, quantities of this type do not have a direction 
associated with them and, thus, are not vectors.

Vectors are equal, or equivalent, if they have the same direction and the same
magnitude. This means that the velocity vector for an airplane travelling in an
easterly direction at 400 km h could be represented by any of the three vectors in
the following diagram. 

Scale: 1 cm is equivalent to 100 km h

Notice that any one of these vectors could be translated to be coincident with
either of the other two. (When vectors are translated, it means they are picked up
and moved without changing either their direction or size.) This implies that the
velocity vector of an airplane travelling at 400 km h in an easterly direction from
Calgary is identical to that of an airplane travelling at 400 km h in an easterly
direction from Toronto.

Note that, in the diagram above, we have also used lower-case letters to represent 
the three vectors. It is convenient to write the vector as for example, and in
this case p

!
� q
!
� r
!
.

p
!
,AB

!

>>
>

W E

S

N

B

C

E

D

F

A
q

p

r

>

Equal Vectors

Two vectors and are equal (or equivalent) if and only if

1. and are parallel to each other, and the direction from A to B is the
same as the direction from C to D

2. the magnitude of equals the magnitude of i.e., @AB
! @ � @CD

! @CD
!
,AB

!

CD
!

AB
!

CD
!

AB
!

C
A

B D
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EXAMPLE 1 Connecting vectors to two-dimensional figures

Rhombus ABCD is drawn and its two diagonals AC and BD are drawn as shown.
Name vectors equal to each of the following.
a. b. c. d.

Solution
A rhombus is a parallelogram with its opposite sides parallel and the four sides equal
in length. Thus, and and . Note 
that because these vectors have different directions, even though they have
equal magnitudes, i.e., .

Since the diagonals in a rhombus bisect each other, and .
Note also that, if the arrow had been drawn from C to D instead of from D to C,
the vectors and would be opposites and would not be equal, even though
they are of the same length. If these vectors are opposites, then the relationship
between them can be expressed as . This implies that these vectors
have the same magnitude but opposite directions.

In summary: a. b. c. d.

In our discussion of vectors thus far, we have illustrated our ideas with geometric
vectors. Geometric vectors are those that are considered without reference to
coordinate axes. The ability to use vectors in applications usually requires us to
place them on a coordinate plane. These are referred to as algebraic vectors;
they will be introduced in the exercises and examined in detail in Section 6.5.
Algebraic vectors will become increasingly important in our work.

AE
!
� EC

!
EB
!
� DE

!
DA
!
� CB

!
AB
!
� DC

!

AB
!
� �CD

!
CD
!

AB
!

EB
!
� DE

!
AE
!
� EC

!
@AB
! @ � @DA

! @AB
!
� DA

! @AB
! @ � @DC

! @ � @DA
! @ � @CB

! @DA
!
� CB

!
AB
!
� DC

!

AE
!

EB
!

DA
!

AB
!

E

D

C

B

A

IN SUMMARY

Key Ideas

• A vector is a mathematical quantity having both magnitude and direction, 
for example velocity. 

• A scalar is a mathematical quantity having only magnitude, for example, speed.

Need to Know

• represents a vector running from A to B, with its tail at A and head at B.

• represents the magnitude of a vector and is always non-negative.

• Two vectors and are opposite if they are parallel and have the same 
magnitude but opposite directions. It follows that and 

• Two vectors and are equal if they are parallel and have the same 
magnitude and the same direction. It follows that and 

.AB
!
� CD

! @AB
! @ � @CD

! @CD
!

AB
! AB

!
� �BA

!
.@AB

! @ � @BA
! @BA

!
AB
!@AB

! @AB
!
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Exercise 6.1

PART A

1. State whether each statement is true or false. Justify your decision.

a. If two vectors have the same magnitude, then they are equal.

b. If two vectors are equal, then they have the same magnitude.

c. If two vectors are parallel, then they are either equal or opposite vectors.

d. If two vectors have the same magnitude, then they are either equal or 
opposite vectors.

2. For each of the following, state whether the quantity is a scalar or a vector
and give a brief explanation why: height, temperature, weight, mass, area,
volume, distance, displacement, speed, force, and velocity.

3. Friction is considered to be a vector because friction can be described as
the force of resistance between two surfaces in contact. Give two examples
of friction from everyday life, and explain why they can be described as
vectors.

PART B

4. Square ABCD is drawn as shown below with the diagonals intersecting at E.

a. State four pairs of equivalent vectors.

b. State four pairs of opposite vectors.

c. State two pairs of vectors whose magnitudes are equal but whose 
directions are perpendicular to each other.

E

B C

DA
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5. Given the vector as shown, draw a vectorAB
!

a. equal to 

b. opposite to 

c. whose magnitude equals but is not equal to 

d. whose magnitude is twice that of and in the same direction

e. whose magnitude is half that of and in the opposite directionAB
!AB
! AB

!@AB
! @AB

!AB
!

6. Using a scale of 1 cm to represent 10 km h, draw a velocity vector to represent
each of the following:

a. a bicyclist heading due north at 40 km h

b. a car heading in a southwesterly direction at 60 km h

c. a car travelling in a northeasterly direction at 100 km h

d. a boy running in a northwesterly direction at 30 km h

e. a girl running around a circular track travelling at 15 km h heading
due east

7. The vector shown, represents the velocity of a car heading due north at 
100 km h. Give possible interpretations for each of the other vectors shown.

a. b. c. d. e.

8. For each of the following vectors, describe the opposite vector.

a. an airplane flies due north at 400 km h

b. a car travels in a northeasterly direction at 70 km h

c. a bicyclist pedals in a northwesterly direction at 30 km h

d. a boat travels due west at 25 km h> >>>

> v
!
,

>> >
>>

>

v

W E

S

N

B

A

K

C
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9. a. Given the square-based prism shown where and 
state whether each statement is true or false. Explain.

i) ii) iii) iv) 

b. Calculate the magnitude of and . 

10. James is running around a circular track with a circumference of 1 km at a
constant speed of 15 km h. His velocity vector is represented by a vector
tangent to the circle. Velocity vectors are drawn at points A and C as shown.
As James changes his position on the track, his velocity vector changes.

a. Explain why James’s velocity can be represented by a vector tangent 
to the circle.

b. What does the length of the vector represent?

c. As he completes a lap running at a constant speed, explain why James’s
velocity is different at every point on the circle.

d. Determine the point on the circle where James is heading due south.

e. In running his first lap, there is a point at which James is travelling in a 
northeasterly direction. If he starts at point A how long would it have taken
him to get to this point?

f. At the point he has travelled of a lap, in what direction would James 
be heading? Assume he starts at point A.

PART C

11. is a vector whose tail is at and whose head is at 

a. Calculate the magnitude of .

b. Determine the coordinates of point D on vector if and
.

c. Determine the coordinates of point E on vector if and
.

d. Determine the coordinates of point G on vector if and
.GH

!
� �AB

! G13, 1 2GH
!
,

EF
!
� AB

! F13, �2 2EF
!
,

CD
!
� AB

! C1�6, 0 2CD
!
,

AB
! 1�1, 3 2 .1�4, 2 2AB

!

3
8

>

BH
!

BD
!
, BE
!
,

AH
!
� BG

!@AD
! @ � @DC

! @@EA
! @ � @CG

! @AB
!
� GH

!

AE � 8 cm,AB � 3 cm

D

C A

S

EW

B
N

T

A

B

DA

C

F

E H

G

C H A P T E R  6



NEL6 . 2 V E C TO R  A D D I T I O N  282

Section 6.2—Vector Addition

In this section, we will examine ways that vectors can be used in different physical
situations. We will consider a variety of contexts and use them to help develop
rules for the application of vectors.

Examining Vector Addition
Suppose that a cargo ship has a mechanical problem and must be towed into port
by two tugboats. This situation is represented in the following diagram. 

The force exerted by the first tugboat is denoted by and that of the second 
tugboat as They are denoted as vectors because these forces have both 
magnitude and direction. is the angle between the two forces shown in the 
diagram, where the vectors are placed tail to tail.

In considering this situation, a number of assumptions have been made:

1. The direction of the force exerted by each of the tugboats is indicated 
by the direction of the arrows.

2. The magnitude of the force exerted by each of the two tugboats is proportional
to the length of the corresponding force vector. This means that the longer the
force vector, the greater the exerted force.

3. The forces that have been exerted have been applied at a common point 
on the ship.

What we want to know is whether we can predict the direction the ship will move
and with what force. Intuitively, we know that the ship will move in a direction
somewhere between the direction of the forces, but because (the 
magnitude of the second force is greater than that of the first force), the boat
should move closer to the direction of rather than The combined magnitude 
of the two forces should be greater than either of or but not equal to their
sum, because they are pulling at an angle of to each other, i.e. they are not pulling
in exactly the same direction.
There are several other observations to be made in this situation. The actions of
the two tug boats are going to pull the ship in a way that combines the force 
vectors. The ship is going to be towed in a constant direction with a certain force,
which, in effect, means the two smaller force vectors can be replaced with just

u

@ f2! @@ f1! @ f1!.f2
!

@ f2! @ 7 @ f1! @

u

f2
!
.

f1
!

f1

f2

θ
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The Parallelogram Law for Adding Two Vectors

To determine the sum of the two vectors and complete the parallelogram
formed by these two vectors when placed tail to tail. Their sum is the vector

the diagonal of the constructed parallelogram,

a
!
� b
!
� AB

!
� BD

!
� AD

!
.

AD
!
,

b
!
,a

!

1808 – u
a

a + b

a

b
A

C D

B

b

u

a

b
A

C

B
u

one vector. To find this single vector to replace and the parallelogram 
determined by these vectors is constructed. The main diagonal of the parallelogram
is called the resultant or sum of these two vectors and represents the combined
effect of the two vectors. The resultant of and has been shown in the 
following diagram as the diagonal, of the parallelogram.

The length (or magnitude) of each vector representing a force is proportional to
the actual force exerted. After the tugboats exert their forces, the ship will head in
the direction of with a force proportional to the length of OG

!
.OG

!

GF

HO

OG = f1 + f2 

f2

f1

u

f1

f2

u

OG
!
,

f2
!

f1
!

f2
!
,f1

!
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Consider the triangle formed by vectors and It is important to note 
that This means that the magnitude of the sum is less
than or equal to the combined magnitudes of and The magnitude of is
equal to the sum of the magnitudes of and only when these three vectors lie
in the same direction.

In the tugboat example, this means the overall effect of the two tugboats is less
than the sum of their individual efforts. If the tugs pulled in the same direction,

b
!

a
! a

!
� b
!

b
!
.a

! a
!
� b
!@a!� b

! @ � 0a! 0 � @b! @ . a
!
� b
!
.b

!
a
!
,
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the overall magnitude would be equal to the sum of their individual magnitudes. If
they pulled in opposite directions, the overall magnitude would be their difference.

284

EXAMPLE 1 Selecting a strategy to determine the magnitude of a resultant vector

Given vectors and such that the angle between the two vectors is 
and determine 

Solution
If it is stated that the angle between the vectors is , this means that the vectors are
placed tail to tail and the angle between the vectors is . In this problem, the angle
between the vectors is given to be so the vectors are placed tail to tail as shown.

To calculate the value of draw the diagonal of the related parallelogram. 
From the diagram, Note that the angle between 
and is the supplement of 

Now, (Cosine law)

(Substitution)

Therefore,

When finding the sum of two or more vectors, it is not necessary to draw 
a parallelogram each time. In the following, we show how to add vectors 
using the triangle law of addition.

@a!� b
! @ � V19 � 4.36.

@a!� b
! @ 2 � 19

@a!� b
! @ 2 � 13 � 213 2 12 2 a�1

2
b@a!� b

! @ 2 � 32 � 22 � 213 2 12 2cos 120°

@a!� b
! @ 2 � 0a! 0 2 � @b! @ 2 � 2 0a! 0 @b! @ cos1�ABC 260°.120°,BC

! AB
!

AB
!
� BC

!
� a
!
� b
!
� AC

!
.

@a!� b
! @ ,

1208

a
) AB ) = ) a ) = 3  and  ) AD ) = ) b ) = 2

a + b

608
A

D C

B

bb

608
A

D

B

b

a

60°,
u

u

�a
!
� b
!
�.@b! @ � 2,

0a! 0 � 3,60°,b
!

a
!
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Two force vectors acting
in opposite directions

f1

f2

Two force vectors acting
in the same direction

f1 f2
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A way of thinking about the sum of two vectors is to imagine that, if you start at
point A and walk to point B and then to C, you end up in the exact location as 
if you walked directly from point A to C. Thus,

The Zero Vector
An observation that comes directly from the triangle law of addition is that when 
two opposite vectors are added, the resultant is the zero vector. This means that the
combined effect of a vector and its opposite is the zero vector. In symbols,

The zero vector has a magnitude of 0, i.e., and no defined direction.

EXAMPLE 2 Representing a combination of three vectors using the triangle law 
of addition

Suppose you are given the vectors and as shown below. Using these three
vectors, sketch 

b

c

a

a
!
� b
!
� c
!
.

c
!

b
!
,a

!
,

@0! @ � 0,

AB + BA = 0

A

B

B

A

AB
!
� BA

!
� 0
!
.

AB
!
� BC

!
� AC

!
.

Triangle Law of Addition

In the diagram, the sum of the vectors and is found by translating the tail
of vector to the head of vector This could also have been done by translating so 
that its tail was at the head of In either case, the sum of the vectors and is AC

!
.b

!
a
!

b
!
.

a
!

a
!
.b

! a
!
� b
!
,b

!
,a

!

C

    a + b
b

BA a

b

a
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Solution

To draw the required vector, first draw the opposite of and then place the
vectors head to tail as shown. It should be emphasized that actually means

Note that the required resultant vector is also the resultant
vector of by the triangle law of addition.1a

!
� b

!
2 � c

! a
!
� b

!
� c

!
a
!
� 1�b

!
2 .

a
!
� b

!b
!
,�b

!
,

c

a

–ba – b + c

a – b

b

c

a

The Difference of Two Vectors,

In the diagram above, the difference between vectors and is found by
adding the opposite vector to using the triangle law of addition.

Another way to think about is to arrange the vectors tail to tail. In this
case, is the vector that must be added to to get This is illustrated in
the following diagram. Using the vectors above, the difference vector is the
same as the one produced by adding the opposite.

a
!
.b

!
a
!
� b

! a
!
� b

!
a
!

b
! b

!
a
!

a + (–b) = a – b

–b

a

b

a

a
!
� b

!

The concept of addition and subtraction is applied in Example 3.
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b
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EXAMPLE 3 Representing a single vector as a combination of vectors

In the rectangular box shown below, and 

Express each of the following vectors in terms of and 

a. b. c. d. e. f.

Solution

a. is the opposite of so 

b. is the same as so 

c. In rectangle OABC, is the diagonal of the rectangle, so 

d. Since and or 

e. Since and or 

f. Since and 

In the next example, we demonstrate how vectors might be used in a situation
involving velocity.

EXAMPLE 4 Solving a problem using vectors

An airplane heads due south at a speed of and meets a wind from the west
at What is the resultant velocity of the airplane (relative to the ground)?

Solution
Let represent the air speed of the airplane (velocity of the airplane without 
the wind).

Let represent the velocity of the wind.

Let represent the ground speed of the airplane (the resultant velocity of the 
airplane with the wind taken into account relative to a fixed point on the ground).
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The vectors are drawn so that their lengths are proportionate to their speed. 
That is to say,

In order to calculate the resultant ground velocity,
the vectors are arranged head-to-tail as shown.
The resultant ground velocity, is the
hypotenuse of a right triangle.

So,

Since we are calculating the resultant ground velocity, we must also determine
the new direction of the airplane. To do so, we must determine .

Thus, and .

This means that the airplane is heading at a speed of The
wind has not only thrown the airplane off course, but it has also caused it to
speed up. When we say the new direction of the airplane is , this means
that the airplane is travelling in a south direction, toward the east. This is
illustrated in the following diagram.

Other ways of stating this would be or a bearing of (i.e.,
rotated clockwise from due North).

In calculating the velocity of an object, such as an airplane, the velocity must
always be calculated relative to some fixed object or some frame of reference. 
For example, if you are walking forward in an airplane at your velocity 
relative to the airplane is in the same direction as the airplane, but relative
to the ground, your velocity is in the same direction as the airplane plus
the velocity of the airplane relative to the ground. If the airplane is travelling 
forward at then your velocity relative to the ground is in the805 km>h800 km>h,

5 km>h5 km>h 5 km>h,

161.6°161.6°E71.6°S

18.4°

161.6°
W E
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S18.4°E
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u � tan�1 a 1

3
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IN SUMMARY

Key Ideas

• To determine the sum of any two vectors and , arranged tail-to-tail,
complete the parallelogram formed by the two vectors. Their sum is the
vector that is the diagonal of the constructed parallelogram. 

• The sum of the vectors and is also found by translating the tail of vector
to the head of vector . The resultant is the vector from the tail of to the

head of .

Need to Know

• When two opposite vectors are added, the resultant is the zero vector.

• The zero vector has a magnitude of 0 and no defined direction.

• To think about , arrange the vectors tail to tail. is the vector that

must be added to to get . This is the vector from the head of to the

head of . This vector is also equivalent to 

a – b

b

a

a
!
� Q�b

!R.a
!

b
!

a
!

b
! a

!
� b
!

a
!
� b
!

a
a + 

b

b

b
! a

!
a
!

b
! b

!
a
!

a + b
a

b

b
!

a
!

same direction as the airplane. In our example, the velocities given are measured
relative to the ground, as is the final velocity. This is often referred to as the
ground velocity.
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Exercise 6.2

PART A

1. The vectors and are drawn as shown below. Draw a vector equivalent 
to each of the following.

a. b. c. d.

2. Given ABC, draw appropriate arrows on the sides of the triangle and 
give a single vector equivalent for each of the following:

a. b. c. d.

3. Given the vectors and construct vectors equivalent to each 
of the following.

a. b. c. d.

4. Vectors and are as shown.

a. Construct 

b. Construct 

c. Compare your results from parts a. and b.

Qa!� b
!R � c
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b c
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� c
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� c
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5. Each of the following vector expressions can be simplified and written as 
a single vector. Write the single vector corresponding to each expression 
and illustrate your answer with a sketch.

a. b.

6. Explain why equals in the following diagram.

7. The rectangular box shown is labelled with and 

Express each of the following vectors in terms of and 

a. b. c. d. e. f. g. h.

8. In the diagram, and represent adjacent sides of a parallelogram. 

a. Draw vectors that are equivalent to and 
b. To calculate the formula 

is used. Show, by drawing the vector that the formula for 
calculating is the same.

PART B

9. In still water, Maria can paddle at the rate of The current in which
she paddles has a speed of 

a. At what velocity does she travel downstream?

b. Using vectors, draw a diagram that illustrates her velocity going
downstream.

c. If Maria changes her direction and heads upstream instead, what is her
speed? Using vectors, draw a diagram that illustrates her velocity going
upstream.

4 km>h.
7 km>h.

�y
!
� x
!
�

y
!
� x
!
,

�x
!
� y
!
�2 � �x

!
�2 � �y

!
�2 � 2�x

!
��y
!
�cos u�x

!
� y
!
�,

y
!
� x
!
.x

!
� y
!

D

C
B

A

u

x

y

y
!

x
!

PO
!

XR
!

QZ
!

OQ
!

XY
!

OB
!

XB
!

BY
! z

!
.y

!
,x

!
,

OZ
!
� z
!
.OY

!
� y
!
,OX

!
� x
!
,

R

S

T

Q
M

t

y

x

z

MQ
!1x!� y

!2 � 1z!� t
!2 PS

!
� RQ

!
� RS

!
� PQ

!
PQ
!
� RQ

!
� RS

!

P

Z R

Q

Y

BX

O

z

x

y
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10. a. In the example involving a ship being towed by the two tugboats, draw 
, and 

b. Show that 

11. A small airplane is flying due north at when it encounters a wind of
from the east. What is the resultant ground velocity of the airplane?

12. and If the angle between these vectors is determine 
and calculate the angle between and 

13. and are two unit vectors (vectors with magnitude 1) with an angle 
of between them. Calculate 

14. ABCD is a parallelogram whose diagonals BD and AC meet at the point E. 
Prove that 

PART C

15. M is the midpoint of line segment PQ, and R is the midpoint of TS. If 
and as shown, prove that 

16. Two nonzero vectors, and are such that Show that 
and must represent the sides of a rectangle.

17. The three medians of PQR meet at a common point G. The point G
divides each median in a 2:1 ratio. Prove that 

G

RQ

P

GP
!
� GQ

!
� GR

!
� 0
!
.

^

b
!

a
! @a!� b

! @ � @a!� b
! @ .b

!
,a

!

T

R
S

QMP

b
b

aa

2RM
!
� TP

!
� SQ

!
.TR

!
� RS

!
� b
!
,PM

!
� MQ

!
� a
!

EA
!
� EB

!
� EC

!
� ED

!
� 0
!
.

@AB
!
� AC

! @ .150°
AC
!

AB
!

y

x

x
!
� y
!
.x

!
�x
!
� y
!
�

90°,�y
!
� � 24.�x

!
� � 7

80 km>h 150 km>h@ f1!� f2
! @ � V @ f1! @ 2 � @ f2! @ � 2 @ f1! @ @ f2! @ cos u.

f1
!
� f2
!
.uf2

!
,f1

!
,

A

K

T
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Section 6.3—Multiplication of a Vector 
by a Scalar

In this section, we will demonstrate the effect of multiplying a vector, by a
number k to produce a new vector, The number k used for multiplication is
called a scalar and can be any real number. Previously, the distinction was made
between scalars and vectors by saying that scalars have magnitude and not direction,
whereas vectors have both. In this section, we are giving a more general meaning to
the word scalar so that it means any real number. Since real numbers have magnitude
(size) but not direction, this meaning is consistent with our earlier understanding.

Examining Scalar Multiplication
Multiplying by different values of k can affect the direction and magnitude of 
a vector, depending on the values of k that are chosen. The following example
demonstrates the effect on a velocity vector when it is multiplied by different
scalars.

EXAMPLE 1 Reasoning about the meaning of scalar multiplication

An airplane is heading due north at The airplane’s

velocity is represented by Draw the vectors , and and give 
an interpretation for each.

Scale: 1 cm is equivalent to 

Solution
We interpret the vectors in the following way:

the velocity vector for an airplane heading due north at 

the velocity vector for an airplane heading due south at 

the velocity vector for an airplane heading due north at 

the velocity vector for an airplane heading due south at 500 km>h�
1
2v
!
:

500 km>h1
2 v
!
:

1000 km>h�v
!
:

1000 km>hv
!
:

250 km>h
�

1
2v
!1

2v
!
,�v

!
v
!
.

1000 km>h.

a
!

ka
!
.

a
!
,
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The previous example illustrates how multiplication of a vector by different
values of a scalar k can change the magnitude and direction of a vector. The
effect of multiplying a vector by a scalar is summarized as follows.

Multiplication of a Vector by a Scalar 

For the vector where k is a scalar and is a nonzero vector:

1. If then is in the same direction as with magnitude 

For two different possibilities will be considered and are illustrated
in the following diagram:

For the vector is shortened, and the direction stays the same. If 

is as shown above, then is half the length of the original vector 

and in the same direction, i.e.,

For the vector is lengthened, and the direction stays the same. If 

is as shown above, then is one and a half times as long as and in the 

same direction, i.e.,

2. If then is in the opposite direction as with magnitude 
Again, two situations will be considered for 

For the vector is shortened and changes to the opposite 

direction. If is as shown above, then is half the length of the 

original vector but in the opposite direction, i.e., In the 

situation where the vector is lengthened and changes to the

opposite direction. If is as shown above, then is one and a half times as 

long as but in the opposite direction, i.e., 0�3
2a
! 0 � 3

2�a
!
�.a

!
�

3
2a
!

a
!

k 6 �1,

0�1
2a
! 0 � 1

2�a
!
�.a

!
�

1
2a
!

a
!

�1 6 k 6 0,

–1 , k , 0 k , –1

a ka ka

k 6 0.
�k��a
!
�.a

!
ka
!

k 6 0,

0 32a
! 0 � 3

2�a
!
�.

a
!3

2a
!

a
!

k 7 1,

0 12a
! 0 � 1

2�a
!
�.

1
2a
!

a
!

0 6 k 6 1,

ka

0 , k , 1 k . 1

kaa

k 7 0,

k�a
!
�.a

!
ka
!

k 7 0,

a
!

ka
!
,
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Collinear Vectors
A separate comment should be made about the cases and 

If we multiply any vector by the scalar 0, the result is always the zero vector,

i.e., Note that the right side of this equation is a vector, not a scalar.

When we multiply a vector by i.e., we normally write this as When
any vector is multiplied by its magnitude is unchanged but the direction
changes to the opposite. For example, the vectors and have the same
magnitude (length) but are opposite.

The effect of multiplying a vector, by different scalars is shown below.

When two vectors are parallel or lie on the same straight line, these vectors are
described as being collinear. They are described as being collinear because they
can be translated so that they lie in the same straight line. Vectors that are not
collinear are not parallel. All of the vectors shown above are scalar multiples of 
and are collinear. When discussing vectors, the terms parallel and collinear are used
interchangeably.

a
!

2.3a 2a2a –0.2a 21 a10––0.7aa

a
!
,

4a
!

�4a
!�1,

�a
!
.1�1 2a!,�1,

0a
!
� 0
!
.

a
!

k � �1.k � 0

Two vectors u and v are collinear if and only if it is possible to find 
a nonzero scalar k such that u

!
� kv
!
.

In the following example, we combine concepts learned in the previous section
with those introduced in this section.

EXAMPLE 2 Selecting a strategy to determine the magnitude and direction 
of a vector

The vectors and are unit vectors (vectors with magnitude 1) that make 
an angle of with each other. 
a. Calculate the value of 
b. Determine the direction of 2x

!
� y
!
.

�2x
!
� y
!
�.

30°
y
!

x
!
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Solution
a.

To calculate the value of construct by drawing and 
head-to-tail and then adding them.

Using the cosine law,

Therefore, .

b. To determine the direction of  
we will calculate using the sine law 
and describe the direction relative to
the 
direction of 

Therefore, has a direction of rotated clockwise relative to 

In many practical situations that involve velocities, we use specialized notation 
to describe direction. In the following example, we use this notation along with
scalar multiplication to help illustrate its meaning.

EXAMPLE 3 Representing velocity using vectors

An airplane is flying in the direction at an airspeed of 
The velocity vector for this airplane is represented by 

a. Draw a sketch of and state the direction of this vector.

b. For the vector state its direction and magnitude.
3
2v
!
,

�
1
3v
!

v
!
.

240 km>h.N30°E

x
!
.23.8°2x

!
� y
!

u � 23.8°

u � sin�1 a sin 30°

1.24
b

sin u
1

�
sin 30°

1.24

sin u@�y
! @ �

sin 30°@2x
!
� y
! @

x
!
.

u

2x
!
� y
!
,

�2x
!
� y
!
� � 1.24

�2x
!
� y
!
� � V5 � 2V3

�2x
!
� y�2 � 5 � 2V3

�2x
!
� y
!
�2 � 22 � 12 � 212 2 11 2V3

2

�2x
!
� y
!
�2 � �2x

!
�2 � ��y

!
�2 � 2�2x

!
�� �y
!
� cos 30°

�y
!

2x
!

2x
!
� y
!

�2x
!
� y
!
�,

2x

30°

–y2x–y
30˚

y

x
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�
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Solution
a.

Scale: 1 cm is equivalent to

The vector represents a speed of and points 

in the opposite direction as The direction for this vector can be described 
as .

b. The velocity vector represents a speed of 

in the same direction as 

It is sometimes useful to multiply the nonzero vector by the scalar . When we 

multiply by , we get the vector This vector of length one and called a 

unit vector, which points in the same direction as 

The concept of unit vector will prove to be very useful when we discuss
applications of vectors.

EXAMPLE 4 Using a scalar to create a unit vector

Given that and and the angle between and is , determine
the unit vector in the same direction as u

!
� v
!
.

120°v
!

u
!

�v
!
� � 5�u

!
� � 4

=
1
3 = 1

3 3(  )= 1

1
3 x

=3x

x

1
3

x x

x
!
.

x
!
.1

�x
!
�

1
�x
!
�x

!
1
�x
!
�x

!
v
!
.

3
2 1240 km>h 2 � 360 km>h3

2v
!

S30 °W, or a bearing of 210 °W60 °S,
v
!
.

1
3 1240 km>h 2 � 80 km>h�

1
3v
!

40 km>h
60°

30°

30°

W E

S

N

v

1
3 v–
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Solution
Draw a sketch and determine .

Using the cosine law,

To create a unit vector in the same direction as multiply by the scalar equal 

to . In this case, the unit vector is 1
�21

 1u!� v
!2 �

1
�21

 u
!
�

1
�21

 v
!
.10u! � v

! 0 u
!
� v
!
,

�u
!
� v
!
� � V21

�u
!
� v
!
�2 � 21

�u
!
� v
!
�2 � 42 � 52 � 214 2 15 2  cos 60°

�u
!
� v
!
�2 � �u

!
�2 � �v

!
�2 � 2�u

!
��v
!
� cos u

�u
!
� v
!
�

IN SUMMARY

Key Idea

• For the vector where k is a scalar and is a nonzero vector:

• If then is in the same direction as with magnitude 

• If then is in the opposite direction as with magnitude 

Need to Know

• If two or more vectors are nonzero scalar multiples of the same vector, then
all these vectors are collinear.

• is a vector of length one, called a unit vector, in the direction of the 

nonzero vector 

• is a unit vector in the opposite direction of the nonzero vector x
!
.�

1
�x
!� x
!

x
!
.

1
�x
!� x
!

�k��a
!
�.a

!
ka
!

k 6 0,

k�a
!
�.a

!
ka
!

k 7 0,

a
!

ka
!

u

u v

v

1

1208

608

Exercise 6.3

PART A

1. Explain why the statement is not meaningful.a
!
� 2 @b! @
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2. An airplane is flying at an airspeed of Using a scale of 1 cm 
equivalent to draw a velocity vector to represent each of the following:

a. a speed of heading in the direction 

b. a speed of heading in the direction 

c. a speed of heading in an easterly direction

d. a speed of 300 km/h heading on a bearing of 

3. An airplane’s direction is Explain why this is the same as or 
a bearing of .

4. The vector has magnitude 2, i.e., Draw the following vectors 
and express each of them as a scalar multiple of 

a. a vector in the same direction as with twice its magnitude

b. a vector in the same direction as with one-half its magnitude

c. a vector in the opposite direction as with two-thirds its magnitude

d. a vector in the opposite direction as with twice its magnitude

e. a unit vector in the same direction as 

PART B

5. The vectors and are shown below. Draw a diagram for each 
of the following.

a. b. c. d.

6. Draw two vectors, and that do not have the same magnitude and are 
noncollinear. Using the vectors you drew, construct the following:

a. b. c. d. e.

7. Three collinear vectors, and are such that and 

a. Determine integer values for m and n such that How many
values are possible for m and n to make this statement true?

b. Determine integer values for d, e, and f such that Are
these values unique?

da
!
� eb
!
� f c
!
� 0
!
.

mc
!
� nb

!
� 0
!
.

a
!
�

1
2c
!
.a

!
�

2
3b
!

c
!
,b

!
,a

!
,

2a
!
� 3b

!
2a
!
� 3b

!
�3b
!

3b
!

2a
!

b
!
,a

!
�2x
!
� y
!

�2x
!
� y
!

x
!
� 3y
!

x
!
� 3y
!

x

y

y
!

x
!

v
!

v
!

v
!

v
!

v
!

v
!
.

�v
!
� � 2.v

!
65°

N65°EE25°N.

345°

100 km>h E15°S450 km>h N45°E150 km>h50 km>h,
300 km>h.
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8. The two vectors and are collinear and are chosen such that 
Draw a diagram showing different possible configurations for these 
two vectors.

9. The vectors and are perpendicular. Are the vectors and also 
perpendicular? Illustrate your answer with a sketch.

10. If the vectors and are noncollinear, determine which of the following
pairs of vectors are collinear and which are not.

a. b. c. d.

11. In the discussion, we defined Using your own scale, draw your own 
vector to represent 

a. Sketch and describe this vector in your own words.

b. Sketch and describe this vector in your own words.

12. Two vectors, and are such that Draw a possible sketch 
of these two vectors. What is the value of m, if ?

13. The points B, C, and D are drawn on line segment AE dividing it into four
equal lengths. If write each of the following in terms of and 

a. b. c. d. e.

14. The vectors and are unit vectors that make an angle of with each
other. Calculate the value of and the direction of 

15. The vectors and are unit vectors that make an angle of with each
other. Calculate the value of and the direction of 

16. Prove that is a unit vector pointing in the same direction as 

(Hint: Let and then find the magnitude of each side 

of this equation.)

17. In a median is drawn from vertex A to the midpoint of BC,

which is labelled D. If and prove that AD
!
�

1
2b
!
�

1
2c
!
.AC

!
� c
!
,AB

!
� b
!

^ABC,

b
!
�

1
�a
!
�a
!

a
!
.1

�a
!
�a
!

2x
!
� y
!
.�2x

!
� y
!
�

30°y
!

x
!

2x
!
� y
!
.�2x

!
� y
!
�

90°y
!

x
!

AE
!@AC

! @@ED
! @BC

!
EC
!

AD = a

B C D EA

�a
!
�.a

!
AD
!
� a
!
,

@b! @ � m�a
!
�

2a
!
� �3b

!
.b

!
,a

!

�
1
�x
!
�x
!

1
�x
!
�x
!

x
!
.

1
�x
!
�x
!
.

�b
!
, 2b
!

5a
!
, �3

2b
!

2a
!
, 3b
!

2a
!
, �3a

!

b
!

a
!

�2b
!

4a
!

b
!

a
!

�a
!
� � @b! @ .b

!
a
!
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18. Let PQR be a triangle in which M is the midpoint of PQ and N is the 
midpoint of PR. If and find vector expressions for 
and in terms of and What conclusions can be drawn about MN and
QR? Explain.

19. Draw rhombus ABCD where For each of the following, name two
vectors and in your diagram such that

a. c.

b. d.

PART C

20. Two vectors, and are drawn such that Considering 
determine all possible values for m and n such that

a. and are collinear

b. and are noncollinear

21. ABCDEF is a regular hexagon such that and 

a. Express in terms of and 

b. Prove that BE is parallel to CD and that 

22. ABCD is a trapezoid whose diagonals AC and BD intersect at the point E. 

If prove that 

A B

E
D C

AE
!
�

3
5AB
!
�

2
5AD
!
.AB

!
�

2
3DC
!
,

A

B E

F

C D

@BE
! @ � 2 @CD

! @ .b
!
.a

!
CD
! BC

!
� b
!
.AB

!
� a
!

y
!

x
!

y
!

x
!

mx
!
� ny
!
� 0
!
,

�x
!
� � 3�y

!
�.y

!
,x

!

u
!
� 0.5v

!
u
!
� 2v
!

u
!
� �v

!
u
!
� v
!

v
!

u
! AB � 3 cm.

P

RQ

M N

b
!
.a

!
QR
! MN

!
PN
!
� b
!
,PM

!
� a
!
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Section 6.4—Properties of Vectors

In previous sections, we developed procedures for adding and subtracting
vectors and for multiplying a vector by a scalar. In carrying out these
computations, certain assumptions were made about how to combine vectors
without these rules being made explicit. Although these rules will seem
apparent, they are important for understanding the basic structure underlying
vectors, and for their use in computation. Initially, three specific rules for 
dealing with vectors will be discussed, and we will show that these rules are
similar to those used in dealing with numbers and basic algebra. Later,
we demonstrate an additional three rules.

Properties of Vector Addition
1. Commutative Property of Addition: When we are dealing with numbers, the

order in which they are added does not affect the final answer. For example,
if we wish to add and , the answer is the same if it is written as 
or as . In either case, the answer is 5. This property of being able to
add numbers, in any chosen order, is called the commutative property of
addition for real numbers. This property also works for algebra, because
algebraic expressions are themselves numerical in nature. We make this
assumption when simplifying in the following example:

. Being able to switch the
order like this allows us to carry out addition without concern for the
order of the terms being added.

This property that we have identified also holds for vectors, as can be seen 
in the following diagram:

From triangle ABC, using the vector addition rules,

From triangle ADC,

So, .

Although vector addition is commutative, certain types of vector operations 
are not always commutative. We will see this when dealing with cross products
in Chapter 7.

b
!
� a
!

AC
!
� a
!
� b
!
�

AC
!
� AD

!
� DC

!
� b
!
� a
!

AC
!
� AB

!
� BC

!
� a
!
� b
!

A

C

D

B

a a + 

b

b a

b

5x � 3y2x � 3y � 3x � 2x � 3x � 3y �

3 � 2
2 � 332
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2. Associative Property of Addition: When adding numbers, the associative
property is used routinely. If we wish to add 3, 5 and 8, for example, we can do
this as or as . Doing it either way, we get the answer
16. In doing this calculation, we are free to associate the numbers however we
choose. This property also holds when adding algebraic expressions, such as

.

In adding vectors, we are free to associate them in exactly the same way as we
do for numbers or algebraic expressions. For vectors, this property is stated as 

.

We will use the following diagram and addition of vectors to demonstrate the
associative property.

In the diagram, , , and . From triangle PRQ,

, and then from triangle PSR, .

Similarly, from triangle SQR, and then from triangle PQS,

. So .

It is interesting to note, just as we did with the commutative property, that 
the associative property holds for the addition of vectors but does not hold 
for certain kinds of multiplication.

3. Distributive Property of Addition: The distributive property is something we
have used implicitly from the first day we thought about numbers or algebra. 
In calculating the perimeter of a rectangle with width w and length l, we write
the perimeter as . In this case, the 2 has been 
distributed across the brackets to give 2w and 2l.

P � 21w � l 2 � 2w � 2l

PS
!
� 1a!� b

!2 � c
!
� a
!
� 1b!� c

!2PS
!
� PQ

!
� QS

!
� a
!
� 1b!� c

!2QS
!
� b
!
� c
!
PS
!
� PR

!
� RS

!
� 1a!� b

!2 � c
!

PR
!
� a
!
� b
! RS

!
� c
!

QR
!
� b
!

PQ
!
� a
!

(b +  c)

(a  +  b)

c

b

a

Q

R

S

P

PS = (a  +  b)  +  c = a  +  (b +  c)

a
!
� b
!
� c
!
� 1a!� b

!2 � c
!
� a
!
� 1b!� c

!2
2x � 3x � 7x � 12x � 3x 2 � 7x � 2x � 13x � 7x 2 � �2x

3 � 15 � 8 213 � 5 2 � 8
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Demonstrating the distributive law for vectors depends on being able to
multiply vectors by scalars and on the addition law for vectors.

In this diagram, we started with and and then multiplied each of 
them by k, a positive scalar, to give the vectors and , respectively. 
In , and in . 
However, the two triangles are similar, so . Since

, we have shown that the distributive law is true
for and any pair of vectors.

Although we chose k to be a positive number, we could have chosen any real
number for k.

k 7 0
EF
!
� k1a!� b

!2 � ka
!
� kb
! EF

!
� k1a!� b

!2EF
!
� ka
!
� kb
!

^DEF,BC
!
� a
!
� b
!

^ABC,
kb
!

ka
!b

!
a
!

A

C

B

a
a + b

b

ka + kbka

D E

F

kb

EXAMPLE 1 Selecting appropriate vector properties to determine 
an equivalent vector

Simplify the following expression: .

Solution

(Distributive property)

(Commutative property)

(Distributive property for scalars)

� 5a
!
� 5c
!

� 5a
!
� 0
!
� 5c
!

� 16 � 1 2a!� 13 � 3 2b!� 13 � 2 2c!� 6a
!
� a
!
� 3b

!
� 3b

!
� 3c
!
� 2c
!

� 6a
!
� 3b

!
� 3c
!
� a
!
� 3b

!
� 2c
!

312a
!
� b
!
� c
!2 � 1a!� 3b

!
� 2c
!2

312a
!
� b
!
� c
!2 � 1a!� 3b

!
� 2c
!2

Properties of Vector Addition

1. Commutative Property of Addition:
2. Associative Property of Addition:
3. Distributive Property of Addition: , k�Rk1a!� b

!2 � ka
!
� kb
!1a!� b

!2 � c
!
� a
!
� 1b!� c

!2a
!
� b
!
� b
!
� a
!
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In doing the calculation in Example 1, assumptions were made that are implicit
but that should be stated. 

It is important to be aware of all these properties when calculating, but the properties
can be assumed without having to refer to them for each simplification.

EXAMPLE 2 Selecting appropriate vector properties to create new vectors

If , , and , determine each 

of the following in terms of , , and .

a. b. c.

Solution

a.

b.

c.

As stated previously, it is not necessary to state the rules as we simplify, and 
furthermore, it is better to try to simplify without writing in every step.

The rules that were developed in this section will prove useful as we move ahead.
They are necessary for our understanding of linear combinations, which will be
dealt with later in this chapter.

 � �9j
!
� 23k

! � 3i
!
� 4j
!
� k
!
� 2j
!
� 10k

!
� 3i
!
� 3j
!
� 12k

!x
!
� 2y
!
� 3z
!
� 13i

!
� 4j
!
� k
!2 � 21j!� 5k

!2 � 31�i
!
� j
!
� 4k
!2 � 3i

!
� 5j
!
� 6k
! � 3i

!
� 4j
!
� j
!
� k
!
� 5k
! x

!
� y
!
� 13i

!
� 4j
!
� k
!2 � 1j!� 5k

!2 � 3i
!
� 3j
!
� 4k
! � 3i

!
� 4j
!
� j
!
� k
!
� 5k
!x

!
� y
!
 � 13i

!
� 4j
!
� k
!2 � 1j!� 5k

!2
x
!
� 2y
!
� 3z
!

x
!
� y
!

x
!
� y
!

k
!

j
!

i
! z

!
� �i

!
� j
!
� 4k
!

y
!
� j
!
� 5k
!

x
!
� 3i
!
� 4j
!
� k
!

Further Laws of Vector Addition and Scalar Multiplication

1. Adding :
2. Associative Law for Scalars:
3. Distributive Law for Scalars: 1m � n 2a!� ma

!
� na

!
m1na
!2 � 1mn 2a!� mna

!
a
!
� 0
!
� a
!

0
!

C H A P T E R  6
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Exercise 6.4

PART A

1. If is an operation on a set, S, the element x, such that , is called
the identity element for the operation .

a. For the addition of numbers, what is the identity element?

b. For the multiplication of numbers, what is the identity element?

c. For the addition of vectors, what is the identity element?

d. For scalar multiplication, what is the identity element?

2. Illustrate the commutative law for two vectors that are perpendicular.

3. Redraw the following three vectors and illustrate the associative law.

4. With the use of a diagram, show that the distributive law, ,
holds where .k 6 0, k�R

k1a!� b
!2 � ka

!
� kb
!

b
a

c

*
a * x �  a*

IN SUMMARY

Key Idea

• Properties used to evaluate numerical expressions and simplify algebraic
expressions also apply to vector addition and scalar multiplication.

Need to Know

• Commutative Property of Addition: 

• Associative Property of Addition: 

• Distributive Property of Addition: , 

• Adding : 

• Associative Law for Scalars: 

• Distributive Law for Scalars: 1m � n 2a!� ma
!
� na

!
m1na

!2 � 1mn 2a!� mna
!

a
!
� 0
!
� a
!

0
! k�Rk1a!� b

!2 � ka
!
� kb

!1a!� b
!2 � c

!
� a
!
� 1b!� c

!2a
!
� b
!
� b
!
� a
!

C
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PART B

5. Using the given diagram, show that the following 
is true. 

6. ABCDEFGH is a rectangular prism.

a. Write a single vector that is equivalent to .

b. Write a vector that is equivalent to .

c. Is it true that ? Explain.

7. Write the following vector in simplified form:

8. If and , express each of the following 

in terms of , and .

a. b. c.

9. If and , express and in terms of and .

10. If , , and , show that .

11. A cube is constructed from the three vectors , , and , as shown below.

a. Express each of the diagonals , , , and in terms of , , and .

b. Is ? Explain.

PART C

12. In the trapezoid TXYZ, . If the diagonals meet at O, find an 

expression for in terms of and .TZ
!

TX
!

TO
! TX

!
� 2ZY

!

@AG
! @ � @BH

! @ c
!

b
!

a
!

DF
!

CE
!

BH
!

AG
!

H G

C

BA

D

E F

c
b

a

c
!

b
!

a
!

a
!
� �

1
3b
!

y
!
� z
!
� b
!

x
!
� y
!
� a
!

x
!
�

2
3y
!
�

1
3z
!

b
!

a
!

y
!

x
!

�x
!
� 5y
!
� 6b

!
2x
!
� 3y
!
� a
!

21a!� 3b
!2 � 31�2a

!
� 7b

!2a
!
� 5b

!
2a
!
� 3b

! k
!

i
!
, j
! b

!
� �2i

!
� 3j
!
� k
!

a
!
� 3i
!
� 4j
!
� k
!
312a
!
� 4b

!
� 2c
!2 � 1a!� 3b

!
� 3c
!231a!� 2b

!
� 5c
!2 �

@HB
! @ � @GA

! @ EG
!
� GD

!
� DE

!EG
!
� GH

!
� HD

!
� DC

!

� RQ
!
� SR

!
� 1TS

!
� PT

!2� RQ
!
� 1SR

!
� TS

!2 � PT
!PQ

!
� 1RQ

!
� SR

!2 � TS
!
� PT

!

E F

G

CD

A

H

B

A

T

K

R

S

T

P

Q
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Mid-Chapter Review

1. ABCD is a parallelogram, and .

a. Determine which vectors (if any) are equal to , and .

b. Explain why .

2. The diagram below represents a rectangular prism. State a single vector equal
to each of the following.

a. c. e.
b. d. f.

3. Two vectors, and , have a common starting point with an angle of 

between them. The vectors are such that and .

a. Calculate .

b. Calculate the angle between and .

4. Determine all possible values for t if the length of the vector is .

5. PQRS is a quadrilateral where A, B, C, and D are the midpoints of SP, PQ,
QR, and RS, respectively. Prove, using vector methods, that ABCD is 
a parallelogram.

6. Given that and and the angle between vectors and is
determine:

a.
b. the direction of relative to 
c. the unit vector in the direction of 
d. 05u

!
� 2v
! 0 u

!
� v
!u

!
u
!
� v
!0u!� v

! 060°
v
!

u
!0v! 0 � 100u! 0 � 8

4�y
!
�x

!
� ty
!

a
!
� b
!

a
!

@a!� b
! @ @b! @ � 4�a

!
� � 3

120°b
!

a
!

PW
!
� WR

!
� RQ

!1RQ
!
� RS

!2 � VU
!

RQ
!
� QV

! PW
!
� VP

!
PW
!
� WS

!
RQ
!
� RS

!
SR

W

V

T

UP

Q

@PD
! @ � @BC

! @ AP
!

AB
!
,  BA
!
,  AD
!
,  CB
!

BA

D C

P

@PD
! @ � @DA

! @
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7. The vectors and are distinct unit vectors that are placed in a tail-to-tail
position. If these two vectors have an angle of between them, determine

.

8. The vector is collinear (parallel) to but in the opposite direction. Express
the magnitude of in terms of the magnitudes of and .

9. ABCD is a parallelogram. If and , express , and 

in terms of and .

10. If A, B, and C are three collinear points with B at the midpoint of AC, and O is

any point not on the line AC, prove that . (Hint: .)

11. ABCD is a quadrilateral with , , and . Express 

and in terms of and .

12. An airplane is heading due south at a speed of 500 km h when it encounters 
a head wind from the south at 40 km h. What is the resultant ground velocity
of the airplane?

13. PQRST is a pentagon. State a single vector that is equivalent to each 
of the following:

a. b. c.

14. The vectors and are given below. Use these vectors to sketch each of the
following.

a. b. c. d.

15. PQRS is a quadrilateral with , , and .

Express and in terms of and .b
!

a
!

RS
!

PS
! QS

!
� 3b

!
� 3a

!
QR
!
� 3b

!
PQ
!
� 2a

!

b
!
� a
!

2�b
!
� a
!3

2a
!
� 2b

!1
3a
!
� b
!

a

b

b
!

a
!

TP

Q

R

S

PR
!
� 1PT

!
� ST

!2PQ
!
� QR

!
� TR

!
PQ
!
� QR

!
� RT

!

> >y
!

x
!

BC
!

BD
!

AC
!
� 3x
!
� y
!

CD
!
� 2y
!

AB
!
� x
!

AB
!
� BC

!
OA
!
� OC

!
� 2OB

!

y
!

x
!

AC
! BC

!
,  DC
!
,  BD
!

DA
!
� y
!

AB
!
� x
!

n
!

m
!

m
!
� n
! n

!
m
!

�2p
!
� q
!
�

60°
q
!

p
!
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Section 6.5—Vectors in and 

In the introduction to this chapter, we said vectors are important because of their
application to a variety of different areas of study. In these areas, the value of using
vectors is derived primarily from being able to consider them in coordinate form, or
algebraic form, as it is sometimes described. Our experience with coordinate systems
in mathematics thus far has been restricted to the xy-plane, but we will soon begin to
see how ideas in two dimensions can be extended to higher dimensions and how this
results in a greater range of applicability.

Introduction to Algebraic Vectors
Mathematicians started using coordinates to analyze physical situations in about the
fourteenth century. However, a great deal of the credit for developing the methods
used with coordinate systems should be given to the French mathematician Rene
Descartes (1596–1650). Descartes was the first to realize that using a coordinate
system would allow for the use of algebra in geometry. Since then, this idea has
become important in the development of mathematical ideas in many areas. For our
purposes, using algebra in this way leads us to the consideration of ideas involving
vectors that otherwise would not be possible.

At the beginning of our study of algebraic vectors, there are a number of ideas
that must be introduced and that form the foundation for what we are doing. After
we start to work with vectors, these ideas are used implicitly without having 
to be restated each time.

One of the most important ideas that we must consider is that of the unique
representation of vectors in the xy-plane. The unique representation of the vector 

is a matter of showing the unique representation of the point P because is
determined by this point. The uniqueness of vector representation will be first
considered for the position vector which has its head at the point and
its tail at the origin shown on the x-axis below. The x-axis is the set of real
numbers, R, which is made up of rational and irrational numbers.

The point P is a distance of a units away from the origin and occupies exactly
one position on the x-axis. Since each point P has a unique position on this axis,
this implies that is also unique because this vector is determined by P.OP

!

y

O(0, 0) P(a, 0)
x

–1–2 3210

OP

O10, 0 2 P1a, 0 2OP
!
,

OP
!

OP
!

R3R2
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The xy-plane is often referred to as which means that each of the x- and 
y-coordinates for any point on the plane is a real number. In technical terms,
we would say that 

Points and Vectors in 
In the following diagram, can also be represented in component form by 
the vector defined as This is a vector with its tail at and its head 
at Perpendicular lines have been drawn from P to the two axes to help 
show the meaning of in relation to a is called the x-component and b is 
the y-component of Again, each of the coordinates of this point is a unique
real number and, because of this, the associated vector, has a unique location
in the xy-plane.

Points and Vectors in 
All planes in are flat surfaces that extend infinitely far in all directions and are
said to be two-dimensional because each point is located using an x and a y or two
coordinates. It is also useful to be able to represent points and vectors in three
dimensions. The designation is used for three dimensions because each of the
coordinates of a point and its associated vector is a real
number. Here, O(0, 0, 0) is the origin in three dimensions. As in each point 
has a unique location in which again implies that each position vector 
is unique in 

In placing points in we choose three axes called the x-, y-, and z-axis.
Each pair of axes is perpendicular, and each axis is a copy of the real
number line. There are several ways to choose the orientation of the
positive axes, but we will use what is called a right-handed system. 
If we imagine ourselves looking down the positive z-axis onto the 
xy-plane so that, when the positive x-axis is rotated 90° counterclockwise
it becomes coincident with the positive y-axis, then this is called a 
right-handed system. A right-handed system is normally what is used to
represent and we will use this convention in this book.R3,

R3,
R3.

OP
!

R3,
R2,

OP
!
� 1a, b, c 2 ,P1a, b, c 2 ,R3

R2
R3

y 

 

2

1

3

–1

x

2 4–2 0
O

b

a

P(a, b)

OP
!
,

OP
!
.

OP
!
.1a, b 2P1a, b 2 . O10, 0 21a, b 2 .OP

!R2

R2 � 5 1x, y 2 , where x and y are real numbers6.R2,

y

x

xy-plane

z



NEL6 . 5 V E C TO R S  I N  R 2 A N D  R 3312

Right-Handed System of Coordinates

Each pair of axes determines a plane. The xz-plane is determined by the x- and 
z-axes, and the yz-plane is determined by the y- and z-axes. Notice that, when we
are discussing, for example, the xy-plane in this plane extends infinitely far in
both the positive and negative directions. One way to visualize a right-handed
system is to think of the y- and z-axes as lying in the plane of a book, determining
the yz-plane, with the positive x-axis being perpendicular to the plane of the book
and pointing directly toward you.

R3,

x

z

y

yz–plane

xz–plane
z

C

E

F

x

y

B (a, b, 0)

O (0, 0, 0)

D

P (a, b, c)

A(a, 0, 0)

positive y-axis

positive z-axis

positive x-axis
x

y

z

Each point in has its location determined by an ordered triple. In the
diagram above, the positive x-, y-, and z-axes are shown such that each pair of
axes is perpendicular to the other and each axis represents a real number line. 
If we wish to locate we move along the x-axis to then in a
direction perpendicular to the xz-plane, and parallel to the y-axis, to the point

From there, we move in a direction perpendicular to the xy-plane and
parallel to the z-axis to the point This point is a vertex of a right 
rectangular prism.

P1a, b, c 2 .B1a, b, 0 2 . A1a, 0, 0 2 ,P1a, b, c 2 ,
R3P1a, b, c 2
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Notice that the coordinates are signed, and so, for example, if we are locating the
point we would proceed along the negative x-axis.

A source of confusion might be the meaning of because it may be
confused as either being a point or a vector. When referring to a vector, it
will be stated explicitly that we are dealing with a vector and will be written as

where a, b, and c are the x-, y-, and z-components respectively of
the vector. In the diagram, this position vector is formed by joining the origin

to When dealing with points, will be named
specifically as a point. In most situations, the distinction between the two should
be evident from the context.

EXAMPLE 1 Reasoning about the coordinates of points in 

In the diagram on the previous page, determine the coordinates of C, D, E, and F.

Solution
C is on the xz-plane and has coordinates D is on the z-axis and has 
coordinates E is on yz-plane and has coordinates and F is on
the y-axis and has coordinates 

In the following example, we show how to locate points with the use of a
rectangular box (prism) and line segments. It is useful, when we first start
labelling points in to draw the box to gain familiarity with the coordinate
system.

EXAMPLE 2 Connecting the coordinates of points and vector components in 

a. In the following diagram, the point is located in What are the
coordinates of A, B, C, D, E, and F?

b. Draw the vector OP
!
.

R3.P16, 2, 4 2 R3

R3,

10, b, 0 2 . 10, b, c 2 ,10, 0, c 2 , 1a, 0, c 2 ,
R3

P1a, b, c 2P1a, b, c 2 .O10, 0, 0 21a, b, c 2 ,OP
!
�

P1a, b, c 2A1�2, 0, 0 2

D E

C
F

BA

z

y

x

P(6, 2, 4)

O(0, 0, 0)
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Solution
a. is a point on the positive x-axis, is a point on the xy-plane,

is a point on the xz-plane, is a point on the positive z-axis,
is a point on the yz-plane, and is a point on the positive 

y-axis.

b. The vector is the vector associated with the point It is the vector 
with its tail at the origin and its head at and is named 

EXAMPLE 3 Connecting the coordinates of points and vector components in 

a. In the following diagram, the point T is located in What are the coordinates
of and S?

b. Draw the vector 

Solution
a. The point is a point on the positive y-axis. The point is

on the yz-plane. The point is on the negative z-axis. The pointR10, 0, �2 2 Q10, 2, �2 2P10, 2, 0 2

OT
!
.

P, Q, R, M, N,
R3.

R3

OP
!
� 16, 2, 4 2 .P16, 2, 4 2 P1a, b, c 2 .OP

!

F10, 2, 0 2E10, 2, 4 2 D10, 0, 4 2C16, 0, 4 2 B16, 2, 0 2A16, 0, 0 2

z

y

x N T (–3, 2, –2)

SM

QR

O(0, 0, 0) P

D(0, 0, 4) E(0, 2, 4)

C(6, 0, 4)
F(0, 2, 0)

B(6, 2, 0)A(6, 0, 0)

O(0, 0, 0)

P(6, 2, 4)

z

y

x
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is on the negative x-axis. The point is on the 
xz-plane. The point is on the xy-plane.

b. The vector is the vector associated with the point and is a 
vector with O as its tail and T as its head and is named 

When working with coordinate systems in it is possible to label planes using
equations, which is demonstrated in the following example.

EXAMPLE 4 Representing planes in with equations

The point is shown in 
a. Write an equation for the xy-plane.

b. Write an equation for the plane
containing the points P, M, Q, and T.

c. Write a mathematical description of
the set of points in rectangle PMQT.

d. What is the equation of the plane
parallel to the xy-plane passing
through 

Solution
a. Every point on the xy-plane has a z-component of 0, with every point on the plane

having the form where x and y are real numbers. The equation is 

b. Every point on this plane has a y-component equal to with every point
on the plane having the form where x and z are real numbers. 
The equation is 

c. Every point in the rectangle has a y-component equal to with every point
in the rectangle having the form where x and z are real numbers
such that and 

d. Every point on this plane has a z-component equal to with every point
on the plane having the form where x and y are real numbers. 
The equation is z � �5.

1x, y, �5 2 , �5,

�5 � z � 0.0 � x � 2
1x, �3, z 2 , �3,

y � �3.
1x, �3, z 2 , �3,

z � 0.1x, y, 0 2 ,
R10, 0, �5 2?

R3.Q12, �3, �5 2 R3

R3,

OT
!
� 1�3, 2, �2 2 .T 1�3, 2, �2 2OT

!

S1�3, 2, 0 2 N1�3, 0, �2 2M1�3, 0, 0 2

R(0, 0, –2)

S(–3, 2, 0)M(–3, 0, 0)

Q(0, 2, –2)

z

y

x
T (–3, 2, –2)

O(0, 0, 0)

N(–3, 0, –2)

P (0, 2, 0)

R(0, 0, –5)

M(2, –3, 0)

P(0, –3, 0)

N(2, 0, –5)Q(2, –3, –5)

O(0, 0, 0)

z

y

x
T(0, –3, –5)

S(2, 0, 0)
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There is one further observation that should be made about placing points on
coordinate axes. When using to describe the plane, which is two-dimensional,
the exponent, n, in is 2. Similarly, in three dimensions, the exponent is 3. The
exponent in corresponds to the number of dimensions of the coordinate system.Rn

Rn
R2

IN SUMMARY

Key Idea

• In or the location of every point is unique. As a result, every vector
drawn with its tail at the origin and its head at a point is also unique. This
type of vector is called a position vector.

Need to Know 

• In is a point that is a units from along the x-axis and 
b units parallel to the y-axis.

• The position vector has its tail located at and its head at 

• In is a point that is a units from along the x-axis,
b units parallel to the y-axis, and c units parallel to the z-axis. The position 
vector has its tail located at and its head at 

• In the three mutually perpendicular axes form a right-handed system.R3,

OP
!
� 1a, b, c 2 P 1a, b, c 2 .O 10, 0, 0 2OP

!

O 10, 0, 0 2P 1a, b, c 2R3,

OP
!
� 1a, b 2 P 1a, b 2 .O 10, 0 2OP

!

O 10, 0 2P 1a, b 2R2,

R3,R2

Exercise 6.5

PART A

1. In is it possible to locate the point Explain.

2. a. Describe in your own words what it means for a point and its associated
vector to be uniquely represented in 

b. Suppose that and What are the
corresponding values for a, b, and c? Why are we able to be certain that
the determined values are correct?

3. a. The points and are located at the same point in 
What are the values of a, b, and c?

b. Write the vector corresponding to OA
!
.

R3.B1a, �3, 8 2A15, b, c 2
OP
!
� 1�4, b, �8 2 .OP

!
� 1a, �3, c 2 R3.

PQ12,V�1, 3R?R3,
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4. In each of the components for each point or vector is a real number. If 
we use the notation where I represents the set of integers, explain why 

would not be an acceptable vector in Why is 
an acceptable vector in ?

5. Locate the points and using coordinate
axes that you construct yourself. Draw the corresponding rectangular box
(prism) for each, and label the coordinates of its vertices.

6. a. On what axis is located? Name three other points on this axis.

b. Name the vector associated with point A.

7. a. Name three vectors with their tails at the origin and their heads on the z-axis.

b. Are the vectors you named in part a. collinear? Explain.

c. How would you represent a general vector with its head on the z-axis and
its tail at the origin?

8. Draw a set of x-, y-, and z-axes and plot the following points:

a. c. e.

b. d. f.

PART B

9. a. Draw a set of x-, y-, and z-axes and plot the following points:
and 

b. Determine the equation of the plane containing the points A, B, and C.

10. Plot the following points in using a rectangular prism to illustrate each
coordinate.

a. c. e.

b. d. f.

11. Name the vector associated with each point in question 10, express it in
component form, and show the vectors associated with each of the points 
in the diagrams.

12. and represent the same point in 

a. What are the values of a and c?

b. Does 

13. Each of the points and represent general points
on three different planes. Name the three planes to which each corresponds.

R10, y, z 2Q1x, 0, z 2 ,P1x, y, 0 2 ,@OP
! @ � @OQ

! @ ? Explain.

R3.Q12, 6, 11 2P12, a � c, a 2

F11, �1, �1 2D11, 1, 1 2B1�2, 1, 1 2 E11, �1, 1 2C11, �2, 1 2A11, 2, 3 2
R3,

C10, 1, �4 2 .B11, 1, �4 2 , A13, 2, �4 2 ,
F10, 2, 3 2D12, 3, 0 2B10, �2, 0 2 E12, 0, 3 2C10, 0, �3 2A11, 0, 0 2

OA
!A10, �1, 0 2

C14, 4, �2 2A14, �4, �2 2 , B1�4, 4, 2 2 ,R3
OP
!

I3.OP
!
� 1�2, 4, �V3 2I3,

R3,

K
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14. a. What is the equation of the plane that contains the points 
and Explain your answer.

b. Explain why the plane that contains the points M, N, and P also contains 

the vectors and 

15. The point is located in as shown on the coordinate axes
below.

a. Determine the coordinates of points A, B, C, D, E, and F.

b. What are the vectors associated with each of the points in part a.?

c. How far below the xy-plane is the rectangle DEPF?

d. What is the equation of the plane containing the points B, C, E, and P?

e. Describe mathematically the set of points contained in rectangle BCEP.

16. Draw a diagram on the appropriate coordinate system for each 
of the following vectors:

a. c. e.

b. d. f.

PART C

17. Draw a diagram illustrating the set of points

18. Show that if 

19. If determine the coordinates of point A

such that OP
!
� AB

!
.

OP
!
� 1�2, 3, 6 2  and B14, �2, 8 2 ,OP

!
� 15, �10, �10 2 , then @OP

! @ � 15.

0 � x � 1, 0 � y � 1, 0 � z � 16.5 1x, y, z 2�R3 0
OJ
!
� 1�2, �2, 0 2OM

!
� 1�1, 3, �2 2OD

!
�  1�3 ,4 2 OF

!
� 10, 0, 5 2OC

!
� 12, 4, 5 2OP

!
�  14, �2 2

R3P1�2, 4, �7 2 OP
!
.ON

!
,OM

!
,

P17, 0, 9 2?N14, 0, 6 2 , M11, 0, 3 2 ,

F

ED

C

BA

P(–2, 4, –7)

O

z

x

y

C

A

T
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Representation of Vectors in 

The position vector can be represented as either or
, where is the origin, is any point on the plane,

and and are the standard unit vectors for . Standard unit vectors, and ,
are unit vectors that lie along the x- and y-axes, respectively, so 

. Every vector in , given in terms of its components, can also be 
written uniquely in terms of and For this reason, vectors and are also 
called the standard basis vectors in R2.

j
!

i
!

j
!
.i

! R2and j
!
� 10, 1 2 i

!
� 11, 0 2 j

!
i
!

R2j
!

i
! P1a, b 2O10, 0 2OP
!
� ai
!
� bj
! OP

!
� 1a, b 2OP

!
R2

Section 6.6—Operations with Algebraic 
Vectors in

In the previous section, we showed how to locate points and vectors in both two
and three dimensions and then showed their connection to algebraic vectors. 
In , we showed that was the vector formed when we joined the
origin, , to the point . We showed that the same meaning could be 
given to where the point was in and is the
origin. In this section, we will deal with vectors in and show how a different
representation of leads to many useful results.

Defining a Vector in in Terms of Unit Vectors

A second way of writing 
is with the use of the unit vectors 
and . 
The vectors and 
have magnitude 1 and lie along the
positive x- and y-axes, respectively, as
shown on the graph. 

Our objective is to show how can be written in terms of and . In the 

diagram, and, since is just a scalar multiple of , we can write 

. In a similar way, . Using the triangle law of addition,

. Since , it follows that .

This means that can also be written as . Notice
that this result allows us to write all vectors in the plane in terms of and and,
just as before, their representation is unique.

j
!

i
!OP

!
� �3i

!
� 8j
!

OP
!
� 1�3, 8 2 1a, b 2 � ai

!
� bj
!

OP
!
� 1a, b 2OP

!
� OA

!
� OB

!
� ai
!
� bj
!OB
!
� bj
!

OA
!
� ai
! i

!
OA
!

OA
!
� 1a, 0 2 j

!
i
!

OP
!

j
!
� 10, 1 2i

!
� 11, 0 2j

! i
!OP

!
� 1a, b 2R2

OP
!
� 1a, b 2 R2

O10, 0, 0 2R3P1a, b, c 2OP
!
� 1a, b, c 2 , P1a, b 2O10, 0 2 OP

!
� 1a, b 2R2

R2

y

2

x

2 4–4 –2 0

3

1

–1

P(a, b)

A(a, 0)

B(0, b)

O

i

aij
bj
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EXAMPLE 1 Representing vectors in in two equivalent forms

a. Four position vectors, ,
, and 

are shown. Write each 
of these vectors using the unit vectors 

and .
b. The vectors 

, and 
have been written using the unit vectors 

and . Write them in component 
form .

Solution
a. , , ,

b. , , , and 

The ability to write vectors using and allows us to develop many of the same
results with algebraic vectors that we developed with geometric vectors.

Addition of Two Vectors Using Component Form
We start by drawing the position vectors, and ,
where A and D are any two points in . For convenience, we choose these 
two points in the first quadrant. We rewrite each of the two position vectors,

and .

Adding these vectors gives 

� OC
!� 1a � c, b � d 2� 1a � c 2 i!� 1b � d 2 j!� ai
!
� ci
!
� bj
!
� dj
!OA

!
� OD

!
� ai
!
� bj
!
� ci
!
� dj
!OD

!
� 1c, d 2 � ci

!
� dj
!

OA
!
� 1a, b 2 � ai

!
� bj
!

R2
OD
!
� 1c, d 2OA

!
� 1a, b 2

j
!

i
!

OD
!
� 1V2, �4 2OC

!
� 1�5, 2 2OB

!
� 11, 5 2OA

!
� 1�1, 0 2 OS

!
� 2i
!
� j
!

OR
!
� �4i

!
� j
!

OQ
!
� �3i

!
OP
!
� i
!
� 2j
!

1a, b 2j
!

i
!

OD
!
� V2i

!
� 4j
!

OC
!
� �5i

!
� 2j
!OA
!
� �i,

!
  OB
!
� i
!
� 5j
!
,

j
!

i
!
OS
!
� 12, �1 2 , OR

!
� 1�4, �1 2OQ

!
� 1�3, 0 2 , OP

!
� 11, 2 2R2

y

 

2

x

2 31–4 –2–3 –1

–2

0

3

1

–1

Q(–3, 0)

R(–4, –1) S(2, –1)

P(1, 2)

Oj i

D(c, d )

C(a + c, b + d )
A(a, b)

O

y

x
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To find , it was necessary to use the commutative and distributive properties 
of vector addition, along with the ability to write vectors in terms of the unit
vectors and .

To determine the sum of two vectors, and , add their
corresponding x- and y-components. 
So,

The process is similar for subtraction.

Scalar Multiplication of Vectors Using Components
When dealing with geometric vectors, the meaning of multiplying a vector by a
scalar was shown. The multiplication of a vector by a scalar in component form
has the same meaning. In essence, if , we wish to know how the
coordinates of are determined, where m is a real number. This can be 
determined by using various distributive properties for scalar multiplication of
vectors along with the representation of a vector.

In algebraic form,

To multiply an algebraic vector by a scalar, each component of the algebraic 
vector is multiplied by that scalar.

� 1ma, mb 2� 1ma 2 i!� 1mb 2 j!� m1ai
!
� bj
!2mOP

!
� m1a, b 2i
!
,  j
!

mOP
! OP

!
� 1a, b 2

OA
!
� OD

!
� 1a, b 2 � 1c, d 2 � 1a � c, b � d 2

1a � c, b � d 2 � OC
!

OA
!
� OD

!
� 1a, b 2 � 1c, d 2 �

OD
!
� 1c, d 2OA

!
� 1a, b 2j

!
i
!
OC
!

Adding Two Vectors in Multiplying a Vector by a Scalar in 

To determine the sum of two algebraic vectors, To multiply an algebraic vector by a scalar,
add their corresponding x- and y-components. multiply both x- and y-components by the scalar.

R2R2

0

P(a, b)

y

x

mOP = (ma, mb), m . 0

mOP = (ma, mb), m , 0

y

x

OC = OA + OD = (a + c, b + d)

A(a, b)

D(c, d )

C(a + c, b + d )

O(0, 0)
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EXAMPLE 2 Representing the sum and difference of two algebraic vectors in 

Given and , determine the components 
of and and illustrate each of these vectors on the graph.

Solution

From the diagram, we can see that and represent the diagonals of the
parallelogram. It should be noted that the position vector, , is a vector that 
is equivalent to diagonal . The vector is described as a position 
vector because it has its tail at the origin and is equivalent to , since their 
magnitudes are the same and they have the same direction.

Vectors in Defined by Two Points
In considering the vector , determined by the points and

, an important consideration is to be able to find its related
position vector and to calculate . In order to do this, we use the 
triangle law of addition. From the diagram on the left,
and . 
Thus, the components of the algebraic vector are found by subtracting
the coordinates of its tail from the coordinates of its head.

To determine , use the Pythagorean theorem. 

The formula for determining is the same as the formula for
finding the distance between two points.

@AB
! @@AB

! @ � V1x2 � x1 22 � 1y2 � y1 22@AB
! @

1x2 � x1, y2 � y1 2AB
!
� OB

!
� OA

!
� 1x2, y2 2 � 1x1, y1 2 � OA

!
� AB

!
� OB

!
,

@AB
! @B1x2, y2 2 A1x1, y1 2AB

!R2

BA
!OD

!
� a
!
� b
!

BA
! OD

!BA
!

a
!
� b
!

a
!
� b
!
� OA

!
� OB

!
� 11, 3 2 � 14, �2 2 � 11 � 4, 3 � 2 2 � 1�3, 5 2 � OD

!
a
!
� b
!
� OA

!
� OB

!
� 11, 3 2 � 14, �2 2 � 11 � 4, 3 � 1�2 2 2 � 15, 1 2 � OC

!

a
!
� b
!
,a

!
� b
! OB

!
� b
!
� 14, �2 2a

!
� OA

!
� 11, 3 2 R2

2

4

x

y

5–5

–2

0

b

aa – b

a + b

D(–3, 5)

A(1, 3)

C(5, 1)

B(4, –2)

a – b

y

x

B(x2, y2)
A(x1, y1)

P(x2 – x1, y2 – y1 )

0

OP is the position vector
for AB.
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EXAMPLE 3 Using algebraic vectors to solve a problem

, , and are three points in .

a. Calculate the value of , the perimeter of triangle ABC.

b. Calculate the value of .

Solution
a. Calculate a position vector for each of the three sides.

, ,
and 

, ,

and 
The perimeter of the triangle is approximately 37.56.

b. Since , and 
then . Note that .

EXAMPLE 4 Selecting a strategy to combine two vectors

For the vectors and , determine and .

Solution 
Method 1: (Component Form)
Since , . Similarly, .

The sum is .

The difference is .

Method 2: (Standard Unit Vectors)

The sum is
.

The difference is
.

Thus, and

.�x
!
� y
!
� � V62 � V36 � 6

�x
!
� y
!
� � V1�2 22 � 1�6 22 � V40 � 6.32

x
!
� y
!
� 12i

!
� 3j
!2 � 1�4i

!
� 3j
!2 � 12 � 4 2 i!� 1�3 � 3 2 j!� 6i

!

x
!
� y
!
� 12i

!
� 3j
!2 � 1�4i

!
� 3j
!2 � 12 � 4 2 i!� 1�3 � 3 2 j!� �2i

!
� 6j
!

x
!
� y
!
� 12, �3 2 � 1�4, �3 2 � 16, 0 2x

!
� y
!
� 12, �3 2 � 1�4, �3 2 � 1�2, �6 2y

!
� 1�4, �3 2x

!
� 12, �3 2x

!
� 2i
!
� 3j
!

�x
!
� y
!
��x

!
� y
!
�y

!
� �4i

!
� 3j
!

x
!
� 2i
!
� 3j
!

@AC
! @ � @CA

! @ � 15.56@AC
! @ � 15.56�242,

@AC
! @ � �112 � 112 �AC

!
� �CA

!
� 111, 11 2 ,AB

!
� BC

!
� AC

!

@CA
! @ � V1�11 22 � 1�11 22 � V121 � 121 � V242 � 15.56

@BC
! @ � V32 � 1�4 22 � V25 � 5@AB

! @ � V82 � 152 � V289 � 17

CA
!
� 1�3 � 8, 7 � 18 2 � 1�11, �11 2BC

!
� 18 � 5, 18 � 22 2 � 13, �4 2AB

!
� 15 � 1�3 2 , 22 � 7 2 � 18, 15 2

@AB
!
� BC

! @@AB
! @ � @BC

! @ � @CA
! @ R2C18, 18 2B15, 22 2A1�3, 7 2

Position Vectors and Magnitudes in 

If and are two points, then the vector 
is its related position vector , and .V1x2 � x1 22 � 1y2 � y1 22@AB

! @ �OP
! AB

!
� 1x2 � x1, y2 � y1 2B1x2, y2 2A1x1, y1 2 R2
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EXAMPLE 5 Calculating the magnitude of a vector in 

If , , and , calculate .

Solution

Thus, Pa!� 3b
!
�

1

2
 c
! P � �252 � 1�19 22 � �625 � 361 � �986 � 31.40

� 15, �6 2 � 121, �9 2 � 1�1, �4 2 � 125, �19 2a
!
� 3b

!
�

1

2
 c
!
� 15, �6 2 � 31�7, 3 2 �

1

2
12, 8 2

0a!� 3b
!
�

1
2 c
! 0c

!
� 12, 8 2b

!
� 1�7, 3 2a

!
� 15, �6 2 R2

IN SUMMARY

Key Ideas

• In , and . Both are unit vectors on the x- and y-axes,
respectively.

• , 

• The vector between two points with its tail at and head at 
is determined as follows: 

• The vector is equivalent to the position vector since their directions 

and magnitude are the same: 

Need to Know

• If and , then

• mOP
!
� m1a, b 2 � 1ma, mb 2OA

!
� OD

!
� 1a � c, b � d 2 . OD

!
� 1c, d 2 � ci

!
� dj
!

OA
!
� 1a, b 2 � ai

!
� bj
!

@ AB
! @ � V1x2 � x1 22 � 1y2 � y1 22OP

!
AB
!

AB
!
� OB

!
� OA

!
� 1x2, y2 2 � 1x1, y1 2 � 1x2 � x1, y2 � y1 2

B1x2, y2 2A1x1, y1 2@OP
! @ � Va2 �  b2OP

!
� 1a, b 2 � ai

!
� bj
!

j
!
� 10, 1 2i

!
� 11, 0 2R2

Exercise 6.6

PART A
1. For and , draw a coordinate plane and place the points 

on the graph.

a. Draw vectors and and give vectors in component form equivalent
to each of these vectors.

b. Determine and .

c. Calculate and state the value of .@BA
! @@AB

! @ @OB
! @@OA

! @ BA
!
,AB

!

B12, 5 2A1�1, 3 2
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2. Draw the vector on a graph, where point A has coordinates .

a. Draw the vectors , where .

b. Which of these vectors have the same magnitude?

3. For the vector , calculate .

4. a. If , determine the values of a and b.

b. Calculate after finding b.

5. If and , calculate each of the following:

a. and b. and 

PART B

6. Find a single vector equivalent to each of the following:

a. b. c.

7. Given and , find a vector equivalent to each of the 
following:
a.

b.

c.

8. Using and given in question 7, determine each of the following:

a. b. c. d.

9. a. For each of the vectors shown below, determine the components 
of the related position vector.

b. Determine the magnitude of each vector.

�3y
!
� 2x
!
��2x

!
� 3y
!
��x

!
� y
!
��x

!
� y
!
�

y
!

x
!

21x!� 3y
!2 � 31y!� 5x

!2�1x!� 2y
!2 � 31�x

!
� 3y
!23x

!
� y
!

y
!
� �i

!
� 5j
!

x
!
� 2i
!
� j
!

�1

2
16, �2 2 �

2

3
16, 15 2�314, �9 2 � 912, 3 221�2, 3 2 � 12, 1 2

@a!� b
! @@a!� b

! @@b! @�a
!
�

b
!
� 1�40, �9 2a

!
� 1�60, 11 20 1�3, b 2 0ai
!
� 5j
!
� 1�3, b 2 @OA

! @OA
!
� 3i
!
� 4j
!

m �
1
2, �1

2 , 2, and �2mOA
! 16, 10 2OA

!

K

y

4

6

8

x

4 62 8 10–8–10 –4–6 –2

–6

–8

0
–2

B(–4, 4)

A(–8, 2)

E(–1, –4)

G(1, –2) H(6, –2)

C(2, 1)

D(4, 5)

F(–7, 0)

2

–4
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10. Parallelogram is determined by the vectors and 
.

a. Determine , , and .

b. Verify that .

11. has vertices at , , and .

a. Sketch and label each of the points on a graph.

b. Calculate each of the lengths , , and .

c. Verify that triangle ABC is a right triangle.

12. A parallelogram has three of its vertices at , , and .

a. Draw a grid and locate each of these points.

b. On your grid, draw the three locations for a fourth point that would make 
a parallelogram with points A, B, and C.

c. Determine all possible coordinates for the point described in part b.

13. Determine the value of x and y in each of the following:

a.

b.

14. Rectangle ABCD has vertices at , , , and .

a. Draw a sketch of the points A, B, and D, and locate point C on your graph.

b. Explain how you can determine the coordinates of point C.

15. and are points on the x- and y-axes, respectively.

a. Find the coordinates of point on the x-axis such that .

b. Find the coordinates of a point on the y-axis such that .

PART C
16. Find the components of the unit vector in the direction opposite to , where

and .

17. Parallelogram OPQR is such that and .

a. Determine the angle between the vectors and .

b. Determine the acute angle between the diagonals and .RP
!

OQ
!OP
!

OR
! OR

!
� 1�8, �1 2OP

!
� 1�7, 24 2OQ

!
� 12, �21 2OP

!
� 111, 19 2 PQ

!

@QB
! @ � @QA

! @@PA
! @ � @PB

! @P1a, 0 2B10, 2 2A15, 0 2
D18, 11 2C1x, y 2B1�6, 9 2A12, 3 2�21x, x � y 2 � 316, y 2 � 16, 4 231x, 1 2 � 512, 3y 2 � 111, 33 2

C12, 8 2B17, �2 2A1�1, 2 2
@CB
! @@AC

! @@AB
! @

C1�4, 11 2B16, 6 2A12, 3 2^ABC

@OA
! @ � @BC

! @ BC
!

BA
!

OC
!OB

!
� 111, �6 2 OA

!
� 16, 3 2OBCA

C

A

T
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Section 6.7—Operations With Vectors in 

The most important applications of vectors occur in In this section, results
will be developed that will allow us to begin to apply ideas in 

Defining a Vector in in Terms of Unit Vectors
In the vectors and were chosen as basis vectors. In the vectors and

were chosen as basis vectors. These are vectors that each have magnitude 1, but
now we introduce as a vector that lies along the positive z-axis. If we use the
same reasoning applied for two dimensions, then it can be seen that each vector

can be written as Each of the vectors 
and are shown below, as well as 

From the diagram, , and Using the triangle law
of addition, . Since we conclude that

This result is analogous to the result derived 
for R2.
OP
!
� ai
!
� bj
!
� ck
!
� 1a, b, c 2 . OP

!
� 1a, b, c 2 ,OP

!
� ai
!
� bj
!
� ck
! OC

!
� ck
!
.OB

!
� bj
!
,OA

!
� ai
!

O

C(0, 0, c)

B(0, b, 0)

A(a, 0, 0)

P(a, b, c)

1

1

1

y

x

z

ck

bj

ai

k

j
i

OP
!
� 1a, b, c 2 .k

! i
!
,  j
!
,OP

!
� ai
!
� bj
!
� ck
!
.OP

!
� 1a, b, c 2 k

!k
! i

!
, j
!
,R3,j

!
i
!

R2,
R3

R3.
R3.

R3

Representation of Vectors in 

The position vector, , whose tail is at the origin and whose head is located at
point P, can be represented as either or 
where is the origin, is a point in , and , , and are 
the standard unit vectors along the x-, y- and z- axes, respectively. This means 
that and . Every vector in can be 
expressed uniquely in terms of and k

!
.j

!
,i
!
,

R3k
!
� 10, 0, 1 2j

!
� 10, 1, 0 2 ,i

!
� 11, 0, 0 2 ,

k
!

j
!

i
!

R3P1a, b, c 2O10, 0, 0 2 OP
!
� ai
!
� bj
!
� ck
!
,OP

!
� 1a, b, c 2OP

!
R3
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EXAMPLE 1 Representing vectors in R3 in two equivalent forms 

a. Write each of the vectors 

and using the standard unit vectors.

b. Express each of the following vectors in component form:
and 

Solution
a. and 

b. and 

In we showed how to add two algebraic vectors. The result in is analogous
to this result.

Addition of Three Vectors in 

Writing each of the three given position vectors in terms of the standard basis
vectors, and 

Using the parallelogram law of addition, and 

Substituting,

Therefore,

 � 1 f � p � m, g � q � n, h � s � r 2� 1 f � p � m 2 i!� 1g � q � n 2 j!� 1h � s � r 2k! � 1 fi!� pi
!
� mi

!2 � 1gj
!
� qj
!
� nj
!2 � 1hk

!
� sk
!
� rk
!2OP

!
� 1 fi!� gj

!
� hk
!2 � 11pi

!
� qj
!
� sk
!2 � 1mi

!
� nj
!
� rk
!22

OP
!
� OD

!
� 1OB

!
� OC

!2 . OQ
!
� OB

!
� OC

!
.OP

!
� OD

!
� OQ

!
OD
!
� f i
!
� gj
!
� hk
!
.OC

!
� mi

!
� nj
!
� rk
!
,OB

!
� pi
!
� qj
!
� sk
!
,

E
A

z

y

x

D (f, g, h)

C (m, n, r) B (p, q, s)

Q

O

P

R3

R3R2,

ON
!
� 11, �1, �7 2OM

!
� 12, 0, �6 2 ,OS

!
� 10, 0, 3 2 ,OP

!
� 11, �2, �1 2 , OS

!
� 3i
!

OR
!
� �2j

!
,OQ

!
� �3i

!
� j
!
� 5k
!
,OP

!
� 2i
!
� j
!
� 3k
!
,

ON
!
� i
!
� j
!
� 7k
!
.OM

!
� 2i
!
� 6k
!
,OS

!
� 3k
!
,

OP
!
� i
!
� 2j
!
� k
!
,

OS
!
� 13, 0, 0 2OR

!
� 10, �2, 0 2 , OQ

!
� 1�3, 1, �5 2 ,OP

!
� 12, 1, �3 2 ,

(Commutative and
associative properties

of vector addition)

(Distributive property
of scalars)
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This result demonstrates that the method for adding algebraic vectors in is the
same as in Adding two vectors means adding their respective components. It
should also be noted that the result for the subtraction of vectors in is analo-
gous to the result in If and then 

In the shape that was used to generate the result for the addition of three vectors
was not a parallelogram but a parallelepiped, which is a box-like shape with pairs of
opposite faces being identical parallelograms. From our diagram, it can be seen that
parallelograms ODAB and CEPQ are copies of each other. It is also interesting to note
that the parallelepiped is completely determined by the components of the 
three position vectors and That is to say, the coordinates of all the ver-
tices of the parallelepiped can be determined by the repeated application of the
Triangle Law of Addition.

For vectors in we showed that the multiplication of an algebraic vector by a
scalar was produced by multiplying each component of the vector by the scalar. 
In this result also holds, i.e.,

EXAMPLE 2 Selecting a strategy to determine a combination of vectors in R3

Given and determine each of the
following:

a. b.

Solution
a. Method 1 (Standard Unit Vectors)

Method 2 (Components)
Converting to component form, we have and

Therefore,

 � �i
!
� j
!
� 7k
! � 1�1, �1, 7 2 � 1�2 � 0 � 1, 4 � 2 � 3, 2 � 3 � 2 2 � 1�2, 4, 2 2 � 10, �2, 3 2 � 11, �3, 2 2 2a

!
� b
!
� c
!
� 21�1, 2, 1 2 � 10, 2, �3 2 � 11, �3, 2 2c

!
� 11, �3, 2 2 . a

!
� 1�1, 2, 1 2 , b!� 10, 2, �3 2 ,

 � 1�1, �1, 7 2 � �i
!
� j
!
� 7k
! � �2i

!
� i
!
� 4j
!
� 2j
!
� 3j
!
� 2k
!
� 3k
!
� 2k
! � �2i

!
� 4j
!
� 2k
!
� 2j
!
� 3k
!
� i
!
� 3j
!
� 2k
! 2a

!
� b
!
� c
!
� 21�i

!
� 2j
!
� k
!2 � 12j

!
� 3k
!2 � 1i!� 3j

!
� 2k
!2

a
!
� b
!
� c
!

2a
!
� b
!
� c
!

c
!
� i
!
� 3j
!
� 2k
!
,b

!
� 2j
!
� 3k
!
,a

!
� �i

!
� 2j
!
� k
!
,

mOP
!
� m1a, b, c 2 � 1ma, mb, mc 2 , m�R.R3,

R2,

OD
!
.OB

!
, OC
!
,

R3,

OA
!
� OB

!
� 1a1, a2, a3 2 � 1b1, b2, b3 2 � 1a1 � b1, a2 � b2, a3 � b3 2 .OB

!
� 1b1, b2, b3 2 ,OA

!
� 1a1, a2, a3 2R2.

R3
R2.

R3

C H A P T E R  6
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b. Using components,

Vectors in Defined by Two Points
Position vectors and their magnitude in are calculated in a manner similar to 

To determine the components of the same method is used in as was used in ,
i.e., which implies that or, in component form,

Thus, the components of the algebraic vector 
can be found by subtracting the coordinates of point A from the coordinates of point B.

If P has coordinates we can calculate the magnitude of 

From the diagram, we first note that and 

We also observe, using the Pythagorean theorem, that and,

since substitution gives @OC
! @ 2.@OP

! @ 2 � @OA
! @ 2 � @OB

! @ 2 �@OD
! @ 2 � @OA

! @ 2 � @OB
! @ 2,

@OP
! @ 2 � @OD

! @ 2 � @OC
! @ 2@OC

! @ � 0 c 0 .@OA
! @ � 0a 0 , @OB

! @ � 0b 0 ,

z

x

y

D (a, b, 0)

O (0, 0, 0)

C (0, 0, c)

B (0, b, 0)

F (0, b, c)

 E (a, 0, c)
P (a, b, c)

A(a, 0, 0)

OP
!
.1a, b, c 2 ,

AB
!

AB
!
� 1x2 � x1, y2 � y1, z2 � z1 2 . AB

!
� OB

!
� OA

!
,OA

!
� AB

!
� OB

!
,

R2R3AB
!
,

P (x2 – x1, y2 – y1, z2 – z1) = P (a, b, c)

y

x

z

O

B(x2, y2, z2)

A(x1, y1, z1)

R2.R3
R3

 � 10, 1, 0 2 � j
! � 1�1 � 0 � 1, 2 � 2 � 1�32 , 1 � 1�32 � 22 a

!
� b
!
� c
!
� 1�1, 2, 1 2 � 10, 2, �3 2 � 11, �3, 2 2
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Writing this expression in its more familiar coordinate form, we get

or . The use of the 

absolute value signs in the formula guarantees that the components are positive
before they are squared. Because squaring components guarantees the result
will be positive, it would have been just as easy to write the formula as

which gives an identical result.@OP
! @ � Va2 � b2 � c2,

@OP
! @ � V 0a 0 2 � 0b 0 2 � 0 c 0 2@OP

! @ 2 � 0a 0 2 � 0b 0 2 � 0 c 0 2

Position Vectors and Magnitude in 

If and are two points, then the vector 
is equivalent to 

the related position vector, , and@AB
! @ � @OP

! @ � Va2 � b2 � c2 � V1x2 � x1 22 � 1y2 � y1 22 � 1z2 � z1 22.
OP
!@AB

! @ � 1x2 � x
1
, y2 � y1, z2 � z1 2 � 1a, b, c 2B1x2, y2, z2 2A1x1, y1, z1 2 R3

EXAMPLE 3 Connecting vectors in R3 with their components

If and are two points in determine each of the
following:

a. b. c. d.

Solution
a.

b.

c.

d.

In this section, we developed further properties of algebraic vectors. In the
next section, we will demonstrate how these properties can be used to
understand the geometry of .R3

@AB
! @ � V1�3 22 � 42 � 122 � V169 � 13

AB
!
� 14 � 7, �7 � 1�11 2 , 25 � 13 2 � 1�3, 4, 12 2@OB
! @ � V42 � 1�7 22 � 252 � V690 � 26.27

@OA
! @ � V72 � 1�11 22 � 132 � V339 � 18.41

0AB
! 0AB

!0OB
! 00OA

! 0
R3,B14, �7, 25 2A17, �11, 13 2
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Exercises 6.7

PART A
1. a. Write the vector using the standard unit vectors.

b. Determine 

2. Write the vector in component form and calculate 
its magnitude.

3. If and determine 

4. For the vectors and , determine the 
following:

a. the components of vector , where 

b. , , and 

c. and . What does represent?AB
!@AB

! @AB
!

@OP
! @@OB

! @@OA
! @ OP

!
� OA

!
� OB

!
OP
!

OB
!
� 12, 2, �1 2OA

!
� 1�3, 4, 12 2Pa! � 1

3b
!
� c
! P . c

!
� 10, 8, 1 2 ,b

!
� 1�3, 6, 12 2 ,a

!
� 11, 3, �3 2 ,

OB
!
� 3i
!
� 4j
!
� 4k
!

@OA
! @ .OA
!
� 1�1, 2, 4 2

IN SUMMARY

Key Ideas

• In . All are unit vectors along the

x-, y- and z-axes, respectively.

•

• The vector between two points with its tail at and head at 

is determined as follows:

• The vector is equivalent to the position vector since their directions
and magnitude are the same.

Need to Know
• If and then

• mOP
!
� m1a, b, c 2 � 1ma, mb, mc 2 , m�R

OA
!
� OD

!
� 1a � d, b � e, c � f 2 .OD

!
� 1d, e, f 2 ,OA

!
� 1a, b, c 2

0AB
! 0 � �1x2 � x1 22 � 1y2 � y1 22 � 1z2 � z1 22

OP
!

AB
! � 1x2 � x1, y2 � y1, z2 � z1 2AB

!
� OB

!
� OA

!
� 1x2, y2, z2 2 � 1x1, y1, z1 2B1x1, y1, z1 2 A1x1, y1, z1 2OP

!
� 1a, b, c 2 � ai

!
� bj
!
�  ck

!
, 0OP

! 0  �  Va2 �  b2 �  c2

R3, i
!
� 11, 0, 0 2 , j!� 10, 1, 0 2 , k!� 10, 0, 1 2
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PART B
5. Given and determine a vector

equivalent to each of the following:

a. c.

b. d.

6. Given and determine the following 
in terms of the standard unit vectors.

a. b. c. d.

7. If and calculate each of the following:

a. b. c. d.

8. Given and determine and 

9. Three vectors, and are given.

a. In a sentence, describe what each vector represents.

b. Write each of the given vectors using the standard unit vectors.

c. Determine a formula for each of and 

d. Determine What does represent?

10. Given the points and determine each 
of the following:

a. c. e.

b. d. f.

11. The vertices of quadrilateral ABCD are given as 
and Prove that ABCD is a parallelogram.

12. Given and 
determine the value of the unknowns.

13. A parallelepiped is determined by the vectors 

and 

a. Draw a sketch of the parallelepiped formed by these vectors.

b. Determine the coordinates of all of the vertices for the parallelepiped.

14. Given the points and determine the coordinates 
of the point on the x-axis that is equidistant from these two points.

PART C
15. Given and determine 0a!� b

! 0 .0a!� b
! 0 � 7,0b! 0 � 5,0a! 0 � 3,

B14, �1, 3 2 ,A1�2, 1, 3 2
OC
!
� 10, 5, �1 2 .OB

!
� 10, 4, 1 2 , OA

!
� 1�2, 2, 5 2 ,

z
!
� 1�a, 6, c 2 ,y

!
� 1a, �2, c 2 ,x

!
� 1�1, b, c 2 ,2x

!
� y
!
� 2z
!
� 0
!
,

D14, 1, 3 2 .C17, �3, 15 2 , B13, �1, 17 2 ,A10, 3, 5 2 ,@BA
! @@AB

! @@OB
! @ BA

!
AB
!@OA

! @ B13, �4, 12 2 ,A1�2, �6, 3 2AB
!

AB
!
.

@OC
! @ .@OB

! @ ,@OA
! @ ,

OC
!
� 10, b, c 2 ,OB

!
� 1a, 0, c 2 ,OA

!
� 1a, b, 0 2 , y

!
.x

!
x
!
� y
!
� 3i
!
� 6j
!
� 7k
!
,x

!
� y
!
� �i

!
� 2j
!
� 5k
!

��5m
!
��2m

!
� 3n

!
��m

!
� n
!
��m

!
� n
!
�

n
!
� �2i

!
� j
!
� 2k
!
,m

!
� 2i
!
� k
!

�2p
!
� 5q

!
2p
!
� 5q

!
p
!
� q
!

p
!
� q
!

q
!
� �i

!
� j
!
� k
!
,p

!
� 2i
!
� j
!
� k
!

3x
!
� 5y
!
� 3z
!

�2x
!
� 3y
!
� z
!

1
2x
!
� y
!
� 3z
!

x
!
� 2y
!
� z
!

z
!
� 1�2, 1, 0 2 ,y

!
� 11, 3, �2 2 ,x

!
� 11, 4, �1 2 ,

C

K

A

T
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Section 6.8—Linear Combinations 
and Spanning Sets

We have discussed concepts involving geometric and algebraic vectors in some
detail. In this section, we are going to use these ideas as a basis for understanding
the notion of a linear combination, an important idea for understanding the
geometry of three dimensions.

Examining Linear Combinations of Vectors in 
We’ll begin by considering linear combinations in If we consider the vectors

and and write then the
expression on the left side of this equation is called a linear combination. In this
case, the linear combination produces the vector Whenever vectors are
multiplied by scalars and then added, the result is a new vector that is a linear
combination of the vectors. If we take the two vectors and

then is a vector on the xy-plane and is the diagonal of the
parallelogram formed by the vectors and as shown in the diagram.

y

–2

–4

–6

–8

–10

4

2
x

2–10 –8 –2–4–6

–12

0
a

2a = (–2, 4)

–3b = (–3, –12)

2a – 3b = (–5, –8)

b

�3b
!
,2a

!2a
!
� 3b

!
b
!
� 11, 4 2 , a

!
� 1�1, 2 21�5, �8 2 . 1�5, �8 2 ,21�1, 2 2 � 311, 4 2 �b

!
� 11, 4 2a

!
� 1�1, 2 2 R2.

R2

Linear Combination of Vectors 

For noncollinear vectors, and a linear combination of these vectors is
where and are scalars (real numbers). The vector 

is the diagonal of the parallelogram formed by the vectors and bv
!
.au

! au
!
� bv
!

baau
!
� bv
!
,

v,u
!

It was shown that every vector in the xy-plane can be written uniquely in terms
of the unit vectors and where and 

This can be done in only one way. Writing in this way is really justOP
!

j
!
� 10, 1 2 . i

!
� 11, 0 2OP

!
� 1a, b 2 � ai

!
� bj
!
,j

!
.i

!
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writing this vector as a linear combination of and . Because every 
vector in can be written as a linear combination of these two vectors, we say that

and span . Another way of stating this is to say that the set of vectors 
forms a spanning set for .R2

Ui!, j!VR2j
!

i
! R2

j
!

i
!

Spanning Set for 

The set of vectors is said to form a spanning set for Every vector in 
can be written uniquely as a linear combination of these two vectors. 

R2R2.Ui!, j!VR2

What is interesting about spanning sets is that there is not just one set of 
vectors that can be used to span . There is an infinite number of sets, each
set containing a minimum of exactly two vectors, that would serve the same
purpose. The concepts of span and spanning set will prove significant 
for the geometry of planes studied in Chapter 8.

EXAMPLE 1 Representing a vector as a linear combination of two other vectors

Show that can be written as a linear combination of either set of 
vectors, or .

Solution
In each case, the procedure is the same, and so we will show the details for just 
one set of calculations. We are looking for solutions to the following separate 
equations: and .

Multiplying,

Since the vector on the left side is equal to that on the right side, we can write

This forms a linear system that can be solved using the method of elimination.

, after multiplying equation by 4.

Adding equation and equation gives, , so and, by
substitution, .

Therefore, .
The calculations for the second linear combination are done in the same way as
the first, and so and Substituting gives and 
Therefore, You should verify the calculations 
on your own.

5011, 0 2 � 231�2, 1 2 � 14, 23 2 . d � 23.c � 50d � 23.c � 2d � 4

21�1, 4 2 � 312, 5 2 � 14, 23 2a � 2
b � 313b � 3932

1�4a � 8b � 163

4a � 5b � 232

�a � 2b � 41

1�a � 2b, 4a � 5b 2 � 14, 23 21�a, 4a 2 � 12b, 5b 2 � 14, 23 2 c11, 0 2 � d1�2, 1 2 � 14, 23 2a1�1, 4 2 � b12, 5 2 � 14, 23 2
5 11, 0 2 , 1�2, 1 2 65 1�1, 4 2 , 12, 5 2 6x

!
� 14, 23 2

R2

(Properties of scalar multiplication)

(Properties of vector addition)
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In it is possible to take any pair of noncollinear (non-parallel) vectors as a
spanning set, provided that is not one of the two vectors.

EXAMPLE 2 Reasoning about spanning sets in R2

Show that the set of vectors does not span 

Solution
Since these vectors are scalar multiples of each other, i.e., they 
cannot span . All linear combinations of these two vectors produce only vectors
that are scalar multiples of (2, 3). This is shown by the following calculation:

This result means that we cannot use linear combinations of the set of vectors 
to obtain anything but a multiple of As a result, the only 

vectors that can be created are ones in either the same or opposite direction of (2, 3).
There is no linear combination of these vectors that would allow us to obtain, for
example, the vector 

When we say that a set of vectors spans we are saying that every vector in the
plane can be written as a linear combination of the two given vectors. In Example 1,
we did not prove that either set of vectors was a spanning set. All that we showed
was that the given vector could be written as a linear combination of a set of vectors.
It is true in this case, however, that both sets do span In the following example, it
will be shown how a set of vectors in can be proven to be a spanning set.

EXAMPLE 3 Proving that a given set of vectors spans R2

Show that the set of vectors is a spanning set for 

Solution
In order to show that the set spans we write the linear combination

where represents any vector in Carrying
out the same procedure as in the previous example, we obtain 

Again the process of elimination will be used to solve this system of equations.

after multiplying equation by 222a � 2b � 2y,3

2a � 3b � x1

a � b � y2

2a � 3b � x1

R2.1x, y 2a12, 1 2 � b1�3, �1 2 � 1x, y 2 , R2,

R2.5 12, 1 2 , 1�3, �1 2 6
R2

R2.

R2,

13, 4 2 .
12, 3 2 .5 12, 3 2 , 14, 6 2 6

 � 1a � 2b 2 12, 3 2a12, 3 2 � b14, 6 2 � 12a � 4b, 3a � 6b 2 � 121a � 2b 2 , 31a � 2b 22
R2

14, 6 2 � 212, 3 2 ,
R2.5 12, 3 2 , 14, 6 2 6

10, 0 2R2,
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NEL

Subtracting eliminates 

Therefore, or . By substituting this value of b into
equation , we find . Therefore, the solution to this system 
of equations is and .

This means that, whenever we are given the components of any vector, we can
find the corresponding values of a and b by substituting into the formula. Since
the values of x and y are unique, the corresponding values of a and b are also
unique. Using this formula to write as a linear combination of the two
given vectors, we would say and solve for a and b to obtain

and

So the vector can be written as a linear combination of and 
Therefore, the set of vectors spans 

Examining Linear Combinations of Vectors in
In the previous section, the set of unit vectors and was introduced as unit
vectors lying along the positive x-, y-, and z-axes, respectively. This set of vectors
is referred to as the standard basis for meaning that every vector in can be
written uniquely as a linear combination of these three vectors. (It should be
pointed out that there is an infinite number of sets containing three vectors that
could also be used as a basis for )

EXAMPLE 4 Representing linear combinations in 

Show that the vector can be written as a linear combination of , and
and illustrate this geometrically.

Solution
Writing the given vector as a linear combination

This is exactly what we would expect based on the work in the previous section.

 � 2i
!
� 3j
!
� 5k
!

12, 3, �5 2  � 211, 0, 0 2 � 310, 1, 0 2 � 510, 0, 1 2
k
! i

!
,  j
!12, 3, �5 2 R3

R3.

R3R3,

k
!

i
!
,  j
!
,

R3

R2.5 12, 1 2 , 1�3, �1 2 61�3, �1 2 . 12, 1 21�3, 7 22412, 1 2 � 171�3, �1 2 � 1�3, 7 2b � �1�3 2 � 217 2 � 17

a � �1�3 2 � 317 2 � 24

x � �3,  y � 7
1�3, 7 2

b � �x � 2ya � �x � 3y
a � �x � 3y2

b � �x � 2y�b � x � 2y

a, �3b � 1�2b 2 � x � 2y

C H A P T E R  6 337
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The vectors and are basis vectors in This has the same meaning for 
that it has for As before, every vector in can be uniquely written as a linear
combination of and Stated simply, can be written as

The methods for working in are similar to methods we have already seen at the
beginning of this section. A natural question to ask is, “Suppose you are given
two noncollinear (non-parallel) vectors in ; what do these vectors span?”

In the diagram, the large parallelogram is meant to represent an infinite plane
extending in all directions. On this parallelogram are drawn the nonzero vectors

and with their tails at the origin, O. When we write the linear
combination is the resulting vector and is the diagonal of the smaller 
parallelogram, Since each of the scalars, m and n, can be any real number,
an infinite number of vectors, each unique, will be generated from this linear
combination. All of these vectors lie on the plane determined by and It
should be noted that if we say lies on the plane, the point E also lies on the
plane so that when we say and lie on the plane, this is effectively
saying that the points A, B, and E also lie on the plane. When two or more points
or vectors lie on the same plane they are said to be coplanar.

OE = m a + n b

OD = m OA = m a

OC = n OB = n b

a

b

A

E

O

B

D

C

OE
!

OB
!
,OA

!
,
OE
! b

!
.a

!
ODEC.

OE
!

ma
!
� nb

!
,

OB
!
� b
!

OA
!
� a
!

R3

R3

OP
!
� a11, 0, 0 2 � b10, 1, 0 2 � c10, 0, 1 2 � ai

!
� bj
!
� ck
!
.

OP
!
� 1a, b, c 2k

!
.i

!
,  j
!
,

R3R2.
R3R3.k

!
i
!
,  j
!
,
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Spanning Sets

1. Any pair of nonzero, noncollinear vectors will span .

2. Any pair of nonzero, noncollinear vectors will span a plane in .R3

R2

C (0,0,–5)

P
OP = 2(1,0,0) + 3(0, 1,0) –5(0,0, 1)

= 2i+3j–5k

–5k

O

2i + 3j 

B(0, 3,0)

A (2,0,0)

z

y

x

2i
3j

–5k

Geometrically, the linear combination of the vectors can be visualized in the 
following way.
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EXAMPLE 5 Selecting a linear combination strategy to determine if vectors lie 
on the same plane

a. Given the two vectors and does the vector
lie on the plane determined by and ? Explain.

b. Does the vector lie in the plane determined by the first two vectors?

Solution
a. This question is asking whether lies in the span of and . Stated 

algebraically, are there values of m and n for which
?

Multiplying,
or 

Equating components leads to

The easiest way of dealing with these equations is to work with equations 
and . If we add these equations, m is eliminated and so 
Substituting into equation gives We must verify that these values 
give a consistent answer in the remaining equation. Checking in equation :

Since can be written as a linear combination of and
, i.e., , it lies in the plane

determined by the two given vectors.

b. If we carry out calculations identical to those in the solution for part a., the
only difference would be that the second equation would now be ,
and substituting and would give . Since
we have an inconsistent result, this implies that the vector does not
lie on the same plane as and .

In general, when we are trying to determine whether a vector lies in the plane
determined by two other nonzero, noncollinear vectors, it is sufficient to solve
any pair of equations and look for consistency in the third equation. If the
result is consistent, the vector lies in the plane, and if not, the vector does not
lie in the plane.

b
!

a
! 1�9, �5, 1 2213 2 � 1�2 2 � 4 � 5n � �2m � 3

2m � n � 5

1�9, �4, 1 2 � 31�1, �2, 1 2 � 213, �1, 1 213, �1, 1 2 1�1, �2, 1 21�9, �4, 1 2213 2 � 1�2 2 � 4.
2

m � 3.3

n � �2.4n � �8,3

1

m � n � 13

2m � n � 42

�m � 3n � �91

1�m � 3n, �2m � n, m � n 2 � 1�9, �4, 1 21�m, �2m, m 2 � 13n, �n, n 2 � 1�9, �4, 1 2n13, �1, 1 2 � 1�9, �4, 1 2m1�1, �2, 1 2 �

b
!

a
!

c
!

1�9, �5, 1 2 b
!

a
!

c
!
� 1�9, �4, 1 2 b

!
� 13, �1, 1 2 ,a

!
� 1�1, �2, 1 2
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Exercise 6.8

PART A

1. A student writes and then concludes that 
and span What is wrong with this conclusion?

2. It is claimed that is a set of vectors spanning 
Explain why it is not possible for these vectors to span 

3. Describe the set of vectors spanned by Say why this is the same set as
that spanned by 

4. In the vector spans a set. Describe the set spanned by this
vector. Name two other vectors that would also span the same set.

5. It is proposed that the set could be used to span Explain
why this is not possible.

6. The following is a spanning set for 

Remove three of the vectors and write down a spanning set that can be used
to span R2.

1�3, 6 2 , 11, 0 2 6.5 1�1, 2 2 , 12,�4 2 , 1�1, 1 2 , R2:

R2.5 10, 0 2 , 11, 0 2 6
i
!
� 11, 0, 0 2R3,

10, �1 2 . 10, 1 2 . R3.
R3.5 11, 0, 0 2 , 10, 1, 0 2 , 10, 0, 0 2 6R2.1�1, 0 2 11, 0 2211, 0 2 � 41�1, 0 2 � 1�2, 0 2
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IN SUMMARY

Key Ideas
• In and span Every vector

in can be written uniquely as a linear combination of these two vectors.

• In 
and span since every vector in can be written uniquely as a linear

combination of these three vectors.

Need to Know
• Any pair of nonzero, noncollinear vectors will span 

• Any pair of nonzero, noncollinear vectors will span a plane in This means
that every vector in the plane can be expressed as a linear combination
involving this pair of vectors.

R3.

R2.

R3R3k
!

i
!
, j
!
,

OP
!
� 1a, b, c 2 � a11, 0, 0 2 � b10, 1, 0 2 � c 10, 0, 1 2 � ai

!
� bj
!
� ck
!
.R3,

R2
R2.j

!
i
!

OP
!
� 1a, b 2 � a11, 0 2 � b10, 1 2 � ai

!
� bj
!
.R2,



PART B

7. Simplify each of the following linear combinations and write your answer in 
component form: and 

a.

b.

8. Name two sets of vectors that could be used to span the xy-plane in Show
how the vectors and could each be written as a linear 
combination of the vectors you have chosen.

9. a. The set of vectors spans a set in Describe this set.
b. Write the vector as a linear combination of these vectors.
c. Explain why it is not possible to write as a linear combination of

these vectors.
d. If the vector were added to this set, what would these three 

vectors span in ?

10. Solve for and in the following equation:

11. Write the vector as a linear combination of the vectors and

12. In Example 3, it was shown how to find a formula for the coefficients a and b
whenever we are given a general vector 

a. Repeat this procedure for 
b. Write each of the following vectors as a linear combination of the set given

in part a.: and 

13. a. Show that the vectors  and do not lie
on the same plane.

b. Show that the vectors and lie on the same
plane, and show how one of the vectors can be written as a linear 
combination of the other two.

14. Determine the value for x such that the points and
all lie on a plane that contains the origin.

15. The vectors and span What values of m and n will make the following
statement true: Explain your reasoning.

PART C

16. The vectors and are coplanar. Determine three sets
of values for p and q for which this is true.

17. The vectors and span For what values of m is it true that
Explain your reasoning.1m2 � 2m � 3 2a!� 1m2 � m � 6 2b!� 0
!
?

R2.b
!

a
!

1p, q, 5 214, 1, 7 2 , 1�1, 1, 6 2 ,
1m � 2 2a!� 1n � 3 2b!?R2.b
!

a
!

C1�5, 6, x 2 A1�1, 3, 4 2 , B1�2, 3, �1 2 ,
1�3, 14, 7 21�1, 3, 4 2 , 10, �1, 1 2 ,
1�14, �1, 16 214, 1, �2 2 ,1�1, 2, 3 2 , 14, �11 2 .12, �3 2 , 1124, �5 2 ,5 12, �1 2 , 1�1, 1 2 6.1x, y 2 .

11, 5 2 . 1�1, 3 21�10, �34 215, b � c, 15 221a, 3, c 2 � 31c, 7, c 2 �
ca, b,

R3
11, 1, 0 2 13, 5, 8 21�2, 4, 0 2 R3.5 11, 0, 0 2 , 10, 1, 0 2 6

13, 4, 0 21�1, 2, 0 2 R3.

1

2
12a
!
� 4b

!
� 8c
!2 �

1

3
13a
!
� 6b

!
� 9c
!2212a

!
� 3b

!
� c
!2 � 41�a

!
� b
!
� c
!2 � 1a!� c

!2c
!
� i
!
� 3j
!
� 2k
!

b
!
� j
!
� 3k
!
,a

!
� i
!
� 2j
!
,
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CHAPTER 6: FIGURE SKATING

Investigate and ApplyCAREER LINK WRAP-UP

A figure skater is attempting to perform a quadruple spin jump. He sets up his
jump with an initial skate along vector . He then plants his foot and applies
vertical force at an angle according to vector . This causes him to leap into the air
and spin. After landing, his momentum will carry him into the wall if he does not
apply force to stop himself. So he applies force along vector to slow himself
down and change direction. 

a. Add vectors and to find the resulting vector for the skater’s jump. The 
angle between and is 25º. If the xy-plane represents the ice surface,
calculate the angle the skater will take with respect to the ice surface 
on this jump.

b. Discuss why the skater will return to the ground even though the vector that
represents his leap carries him in an upward direction. 

c. Rewrite the resulting vector without the vertical coordinate. For example, 
if the vector has components (20, 30, 15), rewrite as (20, 30). Explain 
the significance of this vector.

d. Add vectors and to find the resulting vector as the skater applies force
to slow himself and change direction. Explain the significance of this vector.

1b!2f
!

a
!

a
!

e
!

d
! 1a!2e
!

d
!

f
!

e
!d

!

d (0, 20, 0)

f (15, 5, 0)

e (0, 30, 30)

y

z

x

O
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Key Concepts Review

In Chapter 6, you were introduced to vectors: quantities that are described in
terms of both magnitude and direction. You should be familiar with the difference
between a geometric vector and an algebraic vector. Consider the following
summary of key concepts:

• Scalar quantities have only magnitude, while vector quantities have both 
magnitude and direction.

• Two vectors are equal if they have the same magnitude and direction.

• Two vectors are opposite if they have the same magnitude and opposite
directions.

• When vectors are drawn tail-to-tail, their sum or resultant is the diagonal of the 
parallelogram formed by the vectors.

• When vectors are drawn head-to-tail, their sum or resultant is the vector drawn
from the tail of the first to the head of the second.

• Multiplying a vector by a nonzero scalar results in a new vector in the same or
opposite direction of the original vector with a greater or lesser magnitude
compared to the original. The set of vectors formed are described as collinear
(parallel vectors).

• The vector is called a position vector and is drawn on a coordinate axis
with its tail at the origin and its head located at point P.

OP
!

• In where 

and 

• In where 

and .

• In the vector between two points with its tail at A(x1, y1) and head at 
B(x2 , y2) is determined as follows:

• In the vector between two points with its tail at A(x1, y1, z1) and head at
B(x2, y2, z2) is determined as follows:

• Any pair of nonzero, noncollinear vectors will span 

• Any pair of nonzero, noncollinear vectors will span a plane in R3.

R2.

@AB
! @ � V1x2 � x1 22 � 1y2 � y1 22 � 1z2 � z1 22AB
!
� OB

!
� OA

!
� 1x2 , y2, z2 2 � 1x1, y1, z1 2 � 1x2 � x1, y2 � y1, z2 � z1 2

R3,

@AB
! @ � V1x2 � x1 22 � 1y2 � y1 22AB
!
� OB

!
� OA

!
� 1x2, y2 2 � 1x1, y1 2 � 1x2 � x1, y2 � y1 2

R2,

k
!
� 10, 0, 1 2i

!
� 11, 0, 0 2 ,  j!� 10, 1, 0 2 @OP

! @ � Va2 � b2 � c21a, b, c 2 � ai
!
� bj
!
� ck
!
,OP

!
�R3,

j
!
� 10, 1 2 . i

!
� 11, 0 2@OP

! @ � Va2 � b21a, b 2 � ai
!
� bj
!
,OP

!
�R2,
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Review Exercise

1. Determine whether each of the following statements is true or false. Provide 
a brief explanation for each answer.

a.

b. implies 

c. implies 

d. implies 

e.

f. If and then 

2. If and 
determine simplified expressions for each of the following:

a.

b.

3. If and are two points in determine the following:

a. and 

b. The coordinates of a unit vector in the same direction as 

4. and are two points in 

a. Determine the components of a position vector equivalent to 

b. Determine the components of a unit vector that is in the same direction
as

5. Find the components of the unit vector with the opposite direction to that 
of the vector from to 

6. A parallelogram has its sides determined by the vectors and 

a. Determine the components of the vectors representing the diagonals.

b. Determine the angles between the sides of the parallelogram.

7. The points and are vertices of a triangle.

a. Show that this triangle is a right triangle.

b. Calculate the area of triangle 

c. Calculate the perimeter of triangle 

d. Calculate the coordinates of the fourth vertex D that completes the rectangle
of which A, B, and C are the other three vertices.

ABC.

ABC.

C13, 3, �4 2B12, 0, 3 2 ,A1�1, 1, 1 2 ,
OB
!
� 1�6, 6, �2 2 . OA

!
� 13, 2, �6 2N18, 1, 2 2 .M12, 3, 5 2

YX
!
.

YX
!
.

R3.Y15, 5, 12 2X1�1, 2, 6 2 XY
!
.

@XY
! @XY

! R3,Y1�4, 4, 8 2X1�2, 1, 2 231�2x
!
� 4y
!
� z
!2 � 12x

!
� y
!
� z
!2 � 21�4x

!
� 5y
!
� z
!22x

!
� 3y
!
� 5z
!

z
!
� 2a

!
� 3b

!
� 5c
!
,y

!
� �2a

!
� 3b

!
� 3c
!
,x

!
� 2a

!
� 3b

!
� 4c
!
,

@a!� b
! @ � @ c!� d

! @ .�c
!
� � @d! @ ,�a

!
� � @b! @ma
!
� na

!
� 1m � n 2a!RS

!
� FW

!
RF
!
� SW

! b
!
� c
!

a
!
� b
!
� a
!
� c
!

@b! @ � �c
!
�@a!� b

! @ � �a
!
� c
!
�

@a!� b
! @ � �a

!
�
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8. The vectors and are as shown.

a. Construct the vector 

b. If the vectors and are perpendicular, and if and 
determine 

9. Given and express each vector 
as a linear combination of the other two.

10. a. Find an equation to describe the set of points equidistant from 
and 

b. Find the coordinates of two points that are equidistant from A and B.

11. Calculate the values of a, b, and c in each of the following:

a.

b.

12. a. Determine whether the points and 
represent the vertices of a right triangle.

b. Determine whether the points and 
are collinear.

13. a. Show that the points and represent 
the vertices of a right triangle.

b. Determine 

14. In the following rectangle, vectors are indicated by the direction 
of the arrows.

a. Name two pairs of vectors that are opposites.

b. Name two pairs of identical vectors.

c. Explain why @AD
! @ 2 � @DC

! @ 2 � @DB
! @ 2.

D C

A B

E

cos �ABC.

C12, 1, 3 2B11, 2, 5 2 ,A13, 0, 4 2 ,
R1�1, �2, �3 2Q12, 4, 6 2 ,P11, 2, 3 2 ,

C14, �2, 1 2B12, 2, 2 2 ,A11, �1, 1 2 ,2 aa, a, 
1

2
ab � 13b, 0, �5c 2 � 2 ac, 

3

2
c, 0b � 13, �22, 54 221a, b, 4 2 �

1

2
16, 8, c 2 � 317, c, �4 2 � 1�24, 3, 25 2

B11, 2, �3 2 . A12, �1, 3 2
r
!
� 1�1, 2 2 ,q

!
� 1�3, 1 2 ,p

!
� 1�11, 7 2 ,@a!� b

! @ . @b! @ � 3,�a
!
� � 4b

!
a
!

a
!
� b
!
� c
!
.

c
!

b
!
,a

!
,

b
c

a
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15. A rectangular prism measuring 3 by 4 by 5 is drawn on a coordinate axis 
as shown in the diagram.

a. Determine the coordinates of points C, P, E, and F.

b. Determine position vectors for and 

c. By drawing the rectangle containing and determine the acute
angle between these vectors.

d. Determine the angle between and 

16. The vectors and are such that and and the angle between
them is Determine each of the following:

a. b. c.

17. An airplane is headed south at speed 400 km h. The airplane encounters 
a wind from the east blowing at 100 km h.

a. How far will the airplane travel in 3 h?

b. What is the direction of the airplane?

18. a. Explain why the set of vectors: spans 

b. Find m and n in the following:

19. a. Show that the vector can be written as a linear combination 
of the vectors and where and Explain
why lies in the plane determined by and 

b. Is the vector in the span of and 
? Explain your answer.c

!
� 13, 1, 4 2 b

!
� 1�2, 3, 1 2a

!
� 1�13, 36, 23 2 c

!
.b

!
a
! c

!
� 13, 1, 4 2 .b

!
� 1�2, 3, 1 2c

!
,b

! a
!
� 15, 9, 14 2m12, 3 2 � n13, 5 2 � 1323, 795 2 .R2.5 12, 3 2 , 13, 5 2 6

> > @ e!� d
! @@d!� e

! @@d!� e
! @30°.

0 e! 0 � 5,@d! @ � 3e
!

d
!

AE
!
.OP

!

OP
!
,DB

!
CF
!
.DB

!

z

C
P

E

F
y

B(3, 4, 0)

O(0, 0, 0)

D(0, 0, 5)

x

A(3, 0, 0)
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20. A cube is placed so that it has three of its edges located along the positive 
x-, y-, and z-axes (one edge along each axis) and one of its vertices at the origin.

a. If the cube has a side length of 4, draw a sketch of this cube and write 
the coordinates of its vertices on your sketch.

b. Write the coordinates of the vector with its head at the origin and its tail at
the opposite vertex.

c. Write the coordinates of a vector that starts at and is a diagonal 
in the plane parallel to the xz-plane.

d. What vector starts at the origin and is a diagonal in the xy-plane?

21. If and determine

22. The three points and are on a circle with radius 5
and centre at the origin. Points A and B are the endpoints of a diameter, and 
point C is on the circle.

a. Calculate and 

b. Show that A, B, and C are the vertices of a right triangle.

23. In terms of and find a vector expression for each of the following:

a.

b.

c.

d.

e.

24. Draw a diagram showing the vectors and where and 
are both true. (Make sure to indicate the direction 

of the vectors.)

25. If the vectors and are perpendicular to each other, express each 
of the following in terms of and :

a. b. c.

26. Show that if is perpendicular to each of the vectors and , then is 
perpendicular to .2b

!
� 4c
!

a
!

c
!

b
!

a
!

@2a
!
� 3b

! @@a!� b
! @@a!� b

! @ @b! @�a
!
�

b
!

a
!

@b! @ � @a!� b
! @ �a

!
� � 2 @b! @b

!
,a

!
IK
!
� IH

!
IH
!
� KJ

!HJ
!

MK
!

FL
!

0
!
,c

!
,b

!
,a

!
,

@BC
! @ .@AC

! @ ,@AB
! @ ,

C15, 0 2B13, �4 2 ,A1�3, 4 2 ,P2Qa!� b
!
� c
!R � Qa!� 2b

!R � 3Qa!� b
!
� c
!R P .c
!
� 2i
!
� 13k

!
,b

!
� 2i
!
� j
!
� 3k
!
,a

!
� i
!
� j
!
� k
!
,

14, 4, 4 2

M L

KJ

I
H

GF

c
b a
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Chapter 6 Test

1. The vectors , , and are shown.

Using these three vectors, demonstrate that 

Name this property and explain how your answer shows this to be true.

2. A and are two points in Determine each 
of the following:

a. b. c. a unit vector in the direction of 

3. The vectors and are each of length 3 units, i.e.,
If determine 

4. a. If and express the vectors and in terms 
of and 

b. Solve for a, b, and c:

5. a. Explain why the vectors and span 

b. Determine the values of p and q in 

6. a. Show that the vector can be written as a linear combination 
of and 

b. Determine whether can be written as a linear 
combination of and Explain the significance
of your result geometrically.

7. and are vectors of magnitude 1 and 2, respectively, with an angle of 
between them. Determine and the direction of 

8. In triangle ABC, point D is the midpoint of and point E is the midpoint 

of Vectors are marked as shown. Use vectors to prove that 

ED

B A

C

a

a

b

b

DE
!
�

1
2BA
!
.AC

!
.

BC
!

3x
!
� 2y
!
.�3x

!
� 2y
!
�

120°y
!

x
!

q
!
� 14, 1, �6 2 .p

!
� 1�2, 3, 4 2r
!
� 116, 11, �24 2c
!
� 11, 2, �3 2 .b

!
� 13, 1, 4 2 a

!
� 11, 12, �29 2p1�2, 3 2 � q13, �1 2 � 113, �9 2 .R2.b

!
� 13, �1 2a

!
� 1�2, 3 212, �1, c 2 � 1a, b, 1 2 � 312, a, 4 2 � 1�3, 1, 2c 2 .b

!
.a

! y
!

x
!

5x
!
� 3y
!
� b
!
,3x

!
� 2y
!
� a
! �x

!
� y
!
�.�x

!
� y
!
� � V17,

�x
!
� � �y

!
� � 3.y

!
x
!

BA
!@AB

! @AB
!

R3.B16, 7, 3 21�2, 3, �5 2
a
!
� Qb!� c

!R � Qa!� b
!R � c

!
.

c

a
b

c
!

b
!

a
!



Chapter 7

APPLICATIONS OF VECTORS

In Chapter 6, we discussed some of the basic ideas about vectors. In this chapter, we
will use vectors in both mathematical and physical situations to calculate quantities
that would otherwise be difficult to determine. You will discover how vectors
enable calculations in situations involving the velocity at which a plane flies under
windy conditions and the force at which two other people must pull to balance the
force created by two others in a game of tug-o-war. In addition, we will introduce
the concept of vector multiplication and show how vectors can be applied in a
variety of contexts. 

CHAPTER EXPECTATIONS
In this chapter, you will 

• use vectors to model and solve problems arising from real-world applications
involving velocity and force, Sections 7.1, 7.2

• perform the operation of the dot product on two vectors, Sections 7.3, 7.4

• determine properties of the dot product, Sections 7.3, 7.4

• determine the scalar and vector projections of a vector, Section 7.5

• perform the operation of cross product on two algebraic vectors in
three-dimensional space, Section 7.6

• determine properties of the cross product, Section 7.6

• solve problems involving the dot product and cross product, Section 7.7

NEL



Review of Prerequisite Skills

In this chapter, you will use vectors in applications involving elementary force
and velocity problems. As well, you will be introduced to the study of scalar and
vector products. You will find it helpful to be able to
• find the magnitude and the direction of vectors using trigonometry
• plot points and find coordinates of points in two- and three-dimensional

systems

Exercise

1. The velocity of an airplane is north. A wind is blowing due east at 
. Determine the velocity of the airplane relative to the ground.

2. A particle is displaced 5 units to the west and then displaced 12 units in 
a direction N45°W. Find the magnitude and direction of the resultant
displacement.

3. Draw the x-axis, y-axis, and z-axis, and plot the following points:

a. c.

b. d.

4. Express each of the following vectors in component form Then
determine its magnitude.

a. c.

b. d.

5. Describe where the following general points are located.

a. b. c.

6. Find a single vector that is equivalent to each linear combination.

a.

b.

c.

d.

7. If and determine a single vector that is
equivalent to each linear combination.

a. b. c. 2a
!
� 3b

!
a
!
� b
!

a
!
� b
!

b
!
� �2i

!
� j
!
,a

!
� 3i
!
� 2j
!
� k
!

�
1

2
 14, �6, 8 2 �

3

2
 14, �6, 8 221�1, 1, 3 2 � 31�2, 3, �1 214, �1, 3 2 � 1�2, 1, 3 21�6, 0 2 � 711, �1 2

C10, y, z 2B1x, 0, z 2A1x, y, 0 2
2i
!
� 9k
!

�9i
!
� 3j
!
� 14k

! i
!
� j
!

3i
!
� 2j
!
� 7k
!

1a, b, c 2 .D10, 2, �3 2B1�3, 2, 0 2 C1�2, 0, 1 2A10, 1, 0 2

100 km>h 800 km>h
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InvestigateCAREER LINK

CHAPTER 7: FORCES IN ARCHITECTURE: STRUCTURAL ENGINEERING

Structural engineers are a specific kind of architect: they help in the
design of large-scale structures, such as bridges and skyscrapers. The
role of structural engineers is to make sure that the structure being 
built will be stable and not collapse. To do this, they need to calculate
all the forces acting on the structure, including the weight of building
materials, occupants, and any furniture or items that might be stored in
the building. They also need to account for the forces of wind, water,
and seismic activity, including hurricanes and earthquakes. To design a
safe structure effectively, the composition of forces must be calculated
to find the resultant force. The strength and structure of the materials
must exert a force greater than the equilibrant force. A simple example
of this is a load-bearing wall inside a house. A structural engineer must
calculate the total weight of the floor above, which is considered a
dead load. Then the engineer has to factor in the probable weight of
the occupants and their furniture, which is considered a live load. The
load-bearing wall must be built to exert an opposing force that is
greater than the force created by the live load. 

Case Study—Replacing a Load-Bearing Wall with a Steel 
Support Beam

The table at the left shows the normal loads created by a timber floor
and a non-load-bearing wall above. A homeowner wants to make one
large room out of two. This will require removing a wall that is bearing
the load of the floor above and replacing the wall with a steel support
beam. The horizontal and vertical yellow segments represent the
framing for the area of the upper floor that is currently being supported
by the wall, without help from the walls at the edges of the rooms.
Complete the discussion questions to determine what size of beam will
be required to bear the load.

DISCUSSION QUESTIONS 

1. Find the area of the floor that is currently being supported by the
load-bearing wall. Use the information in the table to calculate the
live and dead loads for this area.

2. Find the resultant downward force created by the weight of the floor
above including an estimate for the expected weight of four
occupants and their furniture.

3. Determine the equilibrant force required by a steel support beam 
that would support the force you calculated in question 2. Explain
why, for safety reasons, a beam that supports a greater force is used.

12 m

12 m

floor
load-bearing wall

Type of Load Load (kg/m2)

live 90

dead 150



Section 7.1—Vectors as Forces

The concept of force is something that everyone is familiar with. When we think
of force, we usually think of it associated with effort or muscular exertion. This is
experienced when an object is moved from one place to another. Examples of
activities that involve forces are pulling a toboggan, lifting a book, shooting a
basketball, or pedalling a bicycle. Each of these activities involves the use of
muscular action that exerts a force. There are, however, many other examples of
force in which muscular action is not present. For example, the attraction of the
Moon to Earth, the attraction of a piece of metal to a magnet, the thrust exerted
by an engine when gasoline combusts in its cylinders, or the force exerted by
shock absorbers in cars to reduce vibration.

Force as a Vector Quantity
Force can be considered something that either pushes or pulls an object. When 
a large enough force is applied to an object at rest, the object tends to move.
When a push or pull is applied to a body that is already in motion, the motion of
the body tends to change. Generally speaking, force can be defined as that which
changes, or tends to change, the state of rest, or uniform motion of a body. 

When describing certain physical quantities, there is little value in describing
them with magnitude alone. For example, if we are describing the velocity of 
wind, it is not very practical to say that the wind has a speed of 
without specifying the direction of the wind. It makes more sense to say that a
wind has a speed of travelling south. Similarly, the description of a
force without specifying its magnitude and direction has little practical value.
Because force is described by both magnitude and direction, it is a vector. The
rules that apply to vectors also apply to forces.

Before we consider situations involving the calculation of force, it is necessary to
describe the unit in which force is measured. On Earth, force is defined as the
product between the mass of an object and the acceleration due to gravity

So a 1 kg mass exerts a downward force of 1 kg � or
This unit of measure is called a newton and is abbreviated as N.

Because of Earth’s gravitational field, which acts downward, we say that a 
1 kg mass exerts a force of 9.8 N. Thus, the force exerted by a 2 kg mass at
Earth’s surface is about 19.6 N. A person having a mass of 60 kg would exert
approximately 60 � 9.8, or 588 N, on the surface of Earth. So weight, expressed
in newtons, is a force acting with a downward direction. 

In problems involving forces, it is often the case that two or more forces act
simultaneously on an object. To better understand the effect of these forces, it is
useful to be able to find the single force that would produce exactly the same

m>s2.9.8 kg #
9.8 m>s219.8 m>s2 2 .

30 km>h 30 km>h
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effect as all the forces acting together produced. This single force is called the
resultant, or sum, of all the forces working on the object. It is important that 
we be able to determine the direction and magnitude of this single force. When
we find the resultant of several forces, this resultant may be substituted for the
individual forces, and the separate forces need not be considered further. The
process of finding the resultant of all the forces acting on an object is called the
composition of forces.

C H A P T E R  7 353

Resultant and Composition of Forces 

The resultant of several forces is the single force that can be used to represent
the combined effect of all the forces. The individual forces that make up the
resultant are referred to as the components of the resultant.

If several forces are acting on an object, it is often advantageous to find a single
force which, when applied to the object, would prevent any further motion that
these original forces tended to produce. This single force is called the equilibrant
because it would keep the object in a state of equilibrium. 

Equilibrant of Several Forces

The equilibrant of a number of forces is the single force that opposes the result-
ant of the forces acting on an object. When the equilibrant is applied to 
the object, this force maintains the object in a state of equilibrium. 

In the first example, we will consider collinear forces and demonstrate how to
calculate their resultant and equilibrant. Collinear forces are those forces that act
along the same straight line (in the same or opposite direction).

EXAMPLE 1 Representing force using vectors

Two children, James and Fred, are pushing on a rock. James pushes with 
a force of 80 N in an easterly direction, and Fred pushes with a force of 60 N in
the same direction. Determine the resultant and equilibrant of these two forces. 

Solution
To visualize the first force, we represent it with a horizontal line segment
measuring 8 cm, pointing east. We represent the 60 N force with a line segment

NEL



Resultant and Equilibrant of the Force Vectors f1

!
 and f2

!

of 6 cm, also pointing east. The vectors used to represent forces are proportionate
in length to the magnitude of the forces they represent. 

The resultant of these forces, , is the single vector pointing east with a
magnitude of 140 N. The combined effort of James and Fred working together
exerts a force on the rock of magnitude 140 N in an easterly direction. The
equilibrant of these forces is the vector, which has a magnitude
of 140 N pointing in the opposite direction, west. In general, the resultant and
equilibrant are two vectors having the same magnitude but pointing in opposite
directions. 

It is not typical that forces acting on an object are collinear. In the following 
diagram, the two noncollinear forces, , are applied at the point P and
could be thought of as two forces applied to an object in an effort to move it. 

The natural question is, how do we determine the resultant of these two forces?
Since forces are vectors, it follows from our work in the previous chapter that the
resultant of two noncollinear forces is represented by either the diagonal of the
parallelogram determined by these two vectors when placed tail to tail or the 
third side of the triangle formed when the vectors are placed head to tail. In the
following diagrams, vector is the resultant of , while the 
vector is the equilibrant of .f1

!
 and f2

!
PB
!
� E
! f1

!
 and f2

!
PA
!
� F
!

f1

!
 and f2

!

�1 f1!� f2
!2 ,

f1

!
� f2

!

equilibrant, –(f1 + f2)

Resultant and Equilibrant
of the Two Collinear

Force Vectors

f1f2

resultant, f1 + f2
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–F = E

B

A

f2

f1
180° – uu

F = f1 + f2

P

A

f2

f1180° – u

F = f1 + f2

–F = E

B



The resultant vector and the equilibrant vector are examples of two vectors
that are in a state of equilibrium. When both these forces are applied to an object
at point P, the object does not move. Since these vectors have the same magnitude
but opposite directions it follows that 

Vectors in a State of Equilibrium
When three noncollinear vectors are in a state of equilibrium, these vectors will
always lie in the same plane and form a linear combination. When the three 
vectors are arranged head to tail, the result is a triangle because the resultant of
two of the forces is opposed by the third force. This means that if three vectors

are in equilibrium, such that is the equilibrant of then

It is important to note that it also is possible for three vectors to be in equilibrium
when the three forces are collinear. As with noncollinear vectors, one of the three
forces is balanced by the resultant of the two other forces. In this case, the three
forces do not form a triangle in the traditional sense. Instead, the sides of the
“triangle” lie along the same straight line. 

�c
!
� a
!
� b
!
 or a
!
� b
!
� c
!
� 1�c

!2 � 1c!2 � 0
!
.

a
!
 and b

!
,c

!
a
!
, b
!
, and c

!

F
!
� E
!
� F
!
� 1�F

!2 � 0
!
.

E
!

F
!

Forces in Equilibrium

c

ba

a + b + c = 0

Three  collinear forces

b

Three non-collinear forces

a + b + c = 0

a

c

In the following example, the resultant of two noncollinear forces is calculated.

EXAMPLE 2 Connecting the resultant force to vector addition

Two forces of 20 N and 40 N act at an angle of 30° to each other. Determine the
resultant of these two forces. 

Solution
We start the solution to this problem by drawing both a position diagram and 
a vector diagram. A position diagram indicates the actual position of the given
vectors, and a vector diagram takes the information given in the position diagram
and puts it in a form that allows for the determination of the resultant vector
using either the triangle or parallelogram law. As before, the position diagram 
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is drawn approximately to scale, and the side lengths of the parallelogram are 
labelled. The resultant of the two given vectors is and the supplement of

, which measures 150°.

In DEF, (Cosine law)

Therefore, . If we let represent the equilibrant, then 

Since we are asked to calculate the resultant and equilibrant of the two forces, we
must also calculate angles so that we can state each of their relative positions. To
do this, we use the sine law. 

In DEF, (Sine law)

Thus,

The resultant and equilibrant are forces, each having a magnitude of approximately
58.19 N. The resultant makes an angle of 20.1° with the 20 N force and 9.9° with
the 40 N force. The equilibrant makes an angle of 159.9° with the 20 N force and
an angle of 170.1° with the 40 N force. 

20 N

40 N
D

F

G

E 40 N

20 NR
150˚

150˚

9.9˚
20.1˚

170.1˚

159.9˚

�EDF � 20.1°

 sin �EDF � 0.3437

sin �EDF �
401sin 150° 2

58.19

sin 150°

58.19
�

sin �EDF

40

sin �DEF@R! @ �
sin �EDF@EF

! @^

@E! @ � 58.19 N.E
!@R! @ � 58.19 N

 @R! @ 2 � 3385.64

 @R! @ 2 � 2000 � 800�3

 @R! @ 2 � 202 � 402 � 2120 2 140 2 a�V3

2
b @R! @ 2 � 202 � 402 � 2120 2 140 2cos 150°^

20 N

40 ND

F

G

E 40 N

20 NR
150˚

150˚

30˚

Vector diagram

20 N

40 N
30˚

Position diagram

�EDG is �FED
DF
!
� R
!
,
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We have shown that if we take any two forces that act at the same point, acting at
an angle of to each other, the forces may be composed to obtain the resultant of
these two forces. Furthermore, the resultant of any two forces is unique because
there is only one parallelogram that can be formed with these two forces.

Resolving a Vector into Its Components
In many situations involving forces, we are interested in a process that is the
opposite of composition. This process is called resolution, which means taking a
single force and decomposing it into two components. When we resolve a force
into two components, it is possible to do this in an infinite number of ways
because there are infinitely many parallelograms having a particular single force
as the diagonal. However, the most useful and important way to resolve a force
vector occurs when this vector is resolved into two components that are at right
angles to each other. These components are usually referred to as the horizontal
and vertical components.

In the following diagram, we demonstrate how to resolve the force vector into
its horizontal and vertical components. 

The vector resolved into components is the vector , or vector . From A, the
head of the vector, perpendicular lines are drawn to meet the x-axis and y-axis at
points D and E, respectively. The vectors and are called the horizontal
and vertical components of the vector , where the angle between and the 
x-axis is labelled . 

To calculate , we use the cosine ratio in the right triangle OAD. 

In OAD,

Therefore,

This means that the vector , the horizontal component of , has magnitude@OA
! @ cos u.

OA
!

OD
!

@OD
! @ � @OA

! @ cos u

cos u �
adjacent

hypotenuse
�
@OD
! @@OA
! @^

@OD
! @u

f
!

OA
! OE

!
OD
!

f
!

OA
!

f
!

u

y

x

vertical axis

horizontal axis

AE

D

90° – u

u
O

= fyOE

= fxOD

f
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The magnitude of the vertical component of is calculated in the same way
using OEA. 

In OEA,

Therefore,

Since ,

What we have shown is that and . If we 

replace with , this would imply that and ,
where represent the horizontal and vertical components of , respectively.f

!
fx
!
 and fy

! @ fy! @ � @ f! @ sin u@ fx! @ � @ f! @ cos uf
!

OA
! @OE

! @ � @OA
! @ sin u@OD

! @ � @OA
! @ cos u

@OE
! @ � @OA

! @ sin u

sin u � cos190° � u 2@OE
! @ � @OA

! @ cos190° � u 2cos190° � u 2 �
adjacent

hypotenuse
�
@OE
! @@OA
! @^

^
OA
!
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Resolution of a Vector into Horizontal and Vertical Components

If the vector is resolved into its respective horizontal and vertical 
components, and , then and , where is 
the angle that makes with the x-axis.f

! u@ fy! @ � @ f! @ sin u@ fx! @ � @ f! @ cos ufy

!
fx

!f
!

EXAMPLE 3 Connecting forces to the components of a given vector
Kayla pulls on a rope attached to her sleigh with a force of 200 N. If the rope
makes an angle of with the horizontal, determine:

a. the force that pulls the sleigh forward
b. the force that tends to lift the sleigh

Solution
In this problem, we are asked to resolve the force vector into its two rectangular
components. We start by drawing a position diagram and, beside it, show the
resolution of the given vector. 

From the diagram, the vector is the horizontal component of the given force
vector that pulls the sleigh forward. The vector is the vertical component of
the given force vector that tends to lift the sleigh. To calculate their magnitudes,
we directly apply the formulas developed. 

OB
!OA

!

A

B

O
20˚

200 N

Vector diagram

20˚

200 N

Position diagram

20°
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and

The sleigh is pulled forward with a force of approximately 187.94 N, and the
force that tends to lift it is approximately 68.40 N. 

In the following example, we will use two different methods to solve the problem.
In the first solution, a triangle of forces will be used. In the second solution, the
concept of resolution of forces will be used. 

EXAMPLE 4 Selecting a strategy to solve a problem involving several forces

A mass of 20 kg is suspended from a ceiling by two lengths of rope that make
angles of and with the ceiling. Determine the tension in each of the ropes. 

Solution
Method 1 Triangle of forces
First, recall that the downward force exerted per kilogram is 9.8 N. So the 20 kg
mass exerts a downward force of 196 N. Draw a position diagram and a vector
diagram. Let the tension vectors for the two pieces of rope be and , and let
their resultant be . The magnitude of the resultant force created by the tensions
in the ropes must equal the magnitude of the downward force on the mass caused
by gravity since the system is in a state of equilibrium.

To calculate the required tensions, it is necessary to use the sine law in the vector
diagram. 

Thus,
@T1

! @
sin 45°

�
@T2

! @
sin 30°

�
196

sin 105°

30°

60°
45°

45°

T1

T2

T1 + T2  = R

) R )  = 196 N

Vector diagram

20 kg

Position diagram

45˚

ceiling

60°

mass

R
! T2

!
T1

!

45°60°

� 68.40 N� 187.94 N

� 20010.3420 2� 20010.9397 2  @OB
! @ � 2001sin 20° 2@OA

! @ � 2001cos 20° 2
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and

and

Therefore, the tensions in the two ropes are approximately 143.48 N and
101.46 N. 

Method 2 Resolution of Forces
We start by drawing a diagram showing the tension vectors, and , and the
equilibrant, . The tension vectors are shown in their resolved form. 

For the tension vectors, the magnitudes of their components are calculated.
Horizontal components:

and ;

Vertical components:

and 

For the system to be in equilibrium, the magnitudes of the horizontal and vertical
components must balance each other. 

Horizontal components: or 

Vertical components: or 

This gives the following system of two equations in two unknowns. 

In equation , or @T1

! @ � 1.4142 @T2

! @ .@T1

! @ � 0.7071 @T2

! @
0.5

 1

0.7071 @T2

! @ � 0.8660 @T1

! @ � 1962

0.7071 @T2

! @ � 0.5 @T1

! @1

0.7071 @T2

! @ � 0.8660 @T1

! @ � 196@OB
! @ � @OC

! @ � @E! @ 0.5 @T1

! @�0.7071 @T2

! @@OA
! @ � @OD

! @
@OD
! @ � 0.5 @T1

! @� 0.8660 @T1

! @� sin 60° @T1

! @@OC
! @

@OB
! @ � 0.7071 @T2

! @@OA
! @ � cos 45° @T2

! @ � 0.7071 @T2

! @

D

C

T2

T1

B

O A
60˚ 45˚

E, ) E ) = 196 N

E
! T2

!
T1

!

@T2

! @ � 19610.5 2
0.9659

� 101.46 N@T1

! @ � 19610.7071 2
0.9659

� 143.48 N

@T2

! @ sin 105° � 1961sin 30° 2 @T1

! @ sin 105° � 1961sin 45° 2
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If we substitute this into equation , we obtain 

Since ,

Therefore, the tensions in the ropes are 143.48 N and 101.46 N, as before. 

EXAMPLE 5 Reasoning about equilibrium in a system involving three forces

a. Is it possible for three forces of 15 N, 18 N, and 38 N to keep a system in a
state of equilibrium?

b. Three forces having magnitudes 3 N, 5 N, and 7 N are in a state of equilibrium.
Calculate the angle between the two smaller forces. 

Solution
a. For a system to be in equilibrium, it is necessary that a triangle be formed 

having lengths proportional to 15, 18, and 38. Since a triangle
cannot be formed because the triangle inequality states that for a triangle to be
formed, the sum of any two sides must be greater than or equal to the third
side. Therefore, three forces of 15 N, 18 N, and 38 N cannot keep a system in 
a state of equilibrium.

b. We start by drawing the triangle of forces and the related parallelogram. 

Using ,

(Cosine law)

 72 � 32 � 52 �213 2 15 2  cos �CBA

@AC
!! @ 2 � @AB

!! @ 2 � @BC
!! @ 2 � 2 @AB

!! @ @BC
!! @ cos �CBA

^ABC

CD

BA

7 N

3 N

3 N

5 N
5 N

C

BA

7 N

3 N

5 N

15 � 18 6 38,

� 143.48 N

@T1

! @ � 1.4142 1101.46 2@T1

! @ � 1.4142 @T2

! @� 101.46 N

@T2

! @ � 196

1.9318

1.9318 @T2

! @ � 196

0.7071 @T2

! @ � 0.8660 311.4142 2 1 @T2

! @ 2 4 � 196

2
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Exercise 7.1

PART A
1. a. Name some common household items that have approximate weights of 

10 N, 50 N, and 100 N. 

b. What is your weight in newtons?

2. Three forces of 10 N, 20 N, and 30 N are in a state of equilibrium. 

a. Draw a sketch of these three forces.

b. What is the angle between the equilibrant and each of the smaller forces?

3. Two forces of 10 N and 20 N are acting on an object. How should these
forces be arranged to produce the largest possible resultant?

4. Explain in your own words why three forces must lie in the same plane if they
are acting on an object in equilibrium. 

362 NEL

The angle that is required is the supplement of 
, and the angle between the 3 N and 5 N force is 60°. �DAB � 60°

�CBA.�DAB,

 120° � cos�11�0.5 2�CBA

 
�1

2
� cos �CBA

 49 � 34 � 30 cos �CBA

IN SUMMARY

Key Ideas

• Problems involving forces can be solved using strategies involving vectors.

• When two or more forces are applied to an object, the net effect of the
forces can be represented by the resultant vector determined by adding the
vectors that represent each of the forces.

• A system is in a state of equilibrium when the net effect of all the forces
acting on an object causes no movement of the object.

Need to Know

• is the resultant of and .

• is the equilibrant of and .

• If then are in a state of equilibrium.a
!
, b
!
, and c

!
a
!
� b
!
� c
!
� 0
!
,

F2

!
F1

!
�F
!
� �1F1

!
� F2

!2 F2

!
F1

!
F
!
� F1

!
� F2

!

7 . 1 V E C TO R S  A S  F O R C E S



PART B
5. Determine the resultant and equilibrant of each pair of forces acting on an object.

a. has a magnitude of 5 N acting due east, and has a magnitude of 12 N
acting due north.

b. has a magnitude of 9 N acting due west, and has a magnitude of 12 N
acting due south. 

6. Which of the following sets of forces acting on an object could produce
equilibrium?

a. 2 N, 3 N, 4 N

b. 9 N, 40 N, 41 N 

c. 6 N, 9 N 

d. 9 N, 10 N, 19 N

7. Using a vector diagram, explain why it is easier to do chin-ups when your
hands are 30 cm apart instead of 90 cm apart. (Assume that the force exerted
by your arms is the same in both cases.) 

8. A force, , of magnitude 6 N acts on particle P. A second force, , of
magnitude 8 N acts at 60° to . Determine the resultant and equilibrant 
of and . 

9. Resolve a force of 10 N into two forces perpendicular to each other, such that
one component force makes an angle of 15° with the 10 N force. 

10. A 10 kg block lies on a smooth ramp that is inclined at 30°. What force,
parallel to the ramp, would prevent the block from moving? (Assume that 
1 kg exerts a force of 9.8 N.)

11. Three forces, with magnitudes 13 N, 7 N, and 8 N, are in a state of
equilibrium. 

a. Draw a sketch of these three forces.

b. Determine the angle between the two smallest forces. 

12. Four forces of magnitude 5 N, 9 N, 10 N, and 14 N are arranged as shown in
the diagram at the left. Determine the resultant of these forces. 

30°

10 kg

ground

f2

!
f1

! f1

! f2

!
f1

!

V5 N,

f2

!
f1

!

f2

!
f1

!
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13. Two forces, and , act at right angles to each other. The magnitude of the 

resultant of these two forces is 25 N, and 

a. Determine 

b. Determine the angle between and the resultant, and the angle between
and the equilibrant.

14. Three forces, each having a magnitude of 1 N, are arranged to produce
equilibrium. 

a. Draw a sketch showing an arrangement of these forces, and demonstrate
that the angle between the resultant and each of the other two forces 
is 60°. 

b. Explain how to determine the angle between the equilibrant and the other
two vectors. 

15. Four forces, , , , and , are acting on an object and lie in the same 
plane, as shown. The forces and act in an opposite direction to each 

other, with and . The forces and also act in 
opposite directions, with and . If the angle between 
and is 45°, determine the resultant of these four forces. 

16. A mass of 20 kg is suspended from a ceiling by two lengths of rope that make
angles of 30° and 45° with the ceiling. Determine the tension in each of the
ropes. 

17. A mass of 5 kg is suspended by two strings, 24 cm and 32 cm long, from two
points that are 40 cm apart and at the same level. Determine the tension in
each of the strings. 

PART C
18. Two tugs are towing a ship. The smaller tug is off the port bow, and the

larger tug is 20° off the starboard bow. The larger tug pulls twice as hard as
the smaller tug. In what direction will the ship move?

19. Three forces of 5 N, 8 N, and 10 N act from the corner of a rectangular solid
along its three edges.

a. Calculate the magnitude of the equilibrant of these three forces.

b. Determine the angle that the equilibrant makes with each of the three
forces. 

20. Two forces, and , make an angle with each other when they are placed 

tail to tail, as shown. Prove that . Å @ f1! @ 2 � @ f2! @ 2 � 2 @ f1! @ @ f2! @ cos u@ f1!� f2
! @ �uf2

!
f1

!

15°

f3

! f1

!@ f4! @ � 25 N@ f3! @ � 35 N
f4

!
f3

!@ f2! @ � 40 N@ f1! @ � 30 N

f2

!
f1

!f4

!
f3

!
f2

!
f1

!

f1

! f1

!
@ f2! @ . @ f1! @ � 24 N.

f2

!
f1

!
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Section 7.2—Velocity

In the previous chapter, we showed that velocity is a vector because it had both
magnitude (speed) and direction. In this section, we will demonstrate how 
two velocities can be combined to determine their resultant velocity. 

EXAMPLE 1 Representing velocity with diagrams

An airplane has a velocity of (relative to the air) when it encounters a wind
having a velocity of (relative to the ground). Draw a diagram showing the
possible positions of the velocities and another diagram showing the resultant velocity.

Solution

The resultant velocity of any two velocities is their sum. In all calculations
involving resultant velocities, it is necessary to draw a triangle showing the
velocities so there is a clear recognition of the resultant and its relationship to 
the other two velocities. When the velocity of the airplane is mentioned, it is
understood that we are referring to its air speed. When the velocity of the wind is
mentioned, we are referring to its velocity relative to a fixed point, the ground.
The resultant velocity of the airplane is the velocity of the airplane
relative to the ground and is called the ground velocity of the airplane. 

EXAMPLE 2 Selecting a vector strategy to determine ground velocity

A plane is heading due north with an air speed of when it is blown off
course by a wind of from the northeast. Determine the resultant ground
velocity of the airplane. 

100 km>h 400 km>h

w

v

     +    , the
resultant velocity
w v

Vector diagram

w

v

Position diagram

w
! v

!

NEL



Solution
We start by drawing position and vector diagrams where represents the velocity
of the wind and represents the velocity of the airplane in kilometres per hour. 

Use the cosine law to determine the magnitude of the resultant velocity.

To state the required velocity, the direction of the resultant vector is needed. Use
the sine law to calculate , the angle between the velocity vector of the plane and
the resultant vector. 

Therefore, the resultant velocity is approximately 
(or ). W77.9°N

N12.1°W336.80 km>h,

a � 12.1°

sin a �
100sin 45°

336.80
� 0.2099

sin a

100
�

sin 45°

336.80

a)v + w * = 336.80

458

w, )w ) = 100 

v, )v )  = 400 

a

0 v!� w
! 0 � 336.80

0 v! � w
! 0 2 � 170 000 �

80 000

V2

0 v!� w
! 0 2 � 160 000 � 10 000 � 80 000 a 1

V2
b0 v!� w

! 0 2 � 4002 � 1002 � 21100 2 1400 2cos 45°

0 v!� w
! 0 2 � 0 v! 0 2 � 0w! 0 2 � 2 0 v! 0 0w! 0 cos u, u � 45°, 0w! 0 � 100, 0 v! 0 � 400

v + w, resultant

458

w, )w ) = 100 

v, )v )  = 400 

Vector diagram

458
w, )w ) = 100 

v, )v )  = 400 

Position diagram

v
! w

!

S

N

EW

SW

NW NE

SE

458

7 . 2 V E L O C I T Y366 NEL



C H A P T E R  7 367

EXAMPLE 3 Using vectors to represent velocities

A river is 2 km wide and flows at Anna is driving a motorboat, which has
a speed of in still water and she heads out from one bank in a
direction perpendicular to the current. A marina lies directly across the river from
the starting point on the opposite bank. 

a. How far downstream from the marina will the current push the boat?
b. How long will it take for the boat to cross the river?
c. If Anna decides that she wants to end up directly across the river at the marina,

in what direction should she head? What is the resultant velocity of the boat?

Solution
a. As before, we construct a vector and position diagram, where and represent

the velocity of the river and the boat, respectively, in kilometres per hour.

The distance downstream that the boat lands can be calculated in a 
variety of ways, but the easiest way is to redraw the velocity triangle from the
vector diagram, keeping in mind that the velocity triangle is similar to the dis-
tance triangle. This is because the distance travelled is directly proportional to
the velocity. 

Using similar triangles, .

The boat will touch the opposite bank 0.6 km downstream. 
b. To calculate the actual distance between the starting and end points, the

Pythagorean theorem is used for the distance triangle, with x being the required
distance. Thus, and , which means that the
actual distance the boat travelled was approximately 2.09 km. 

To calculate the length of time it took to make the trip, it is necessary to 
calculate the speed at which this distance was travelled. Again, using similar 

x � 2.09x2 � 22 � 10.6 22 � 4.36

 6
20 �

d
2, d � 0.6

a
x d

starting
point

end
point

marina2 km

a

v + w

starting
point

marina

w, )w* = 6

v, )v * = 20

v + w

2 km

downstream

upstream

starting
point

marina
w, )w* = 6

v, )v * = 20

Vector diagram

2 km

downstream

upstream

starting
point marina

w, )w* = 6

v, )v * = 20

Position diagram

v
!

w
!

20 km>h 6 km>h.
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triangles, Solving this proportion, so the 

actual speed of the boat crossing the river was about The actual

time taken to cross the river is or about 6 min. 

Therefore, the boat landed 0.6 km downstream, and it took approximately 
6 min to make the crossing. 

c. To determine the velocity with which she must travel to reach the marina, we
will draw the related vector diagram. 
We are given and . To determine the direction in which 
the boat must travel, let represent the angle upstream at which the boat 
heads out.

To calculate the magnitude of the resultant velocity, use the Pythagorean theorem. 
where and 

Thus,

This implies that if Anna wants to travel directly across the river, she will have
to travel upstream with a speed of approximately The nose
of the boat will be headed upstream at but the boat will actually be 
moving directly across the river at a water speed of 19.08 km>h.

17.5°,
19.08 km>h.17.5°

0 v!� w
! 0  � 19.08

0 v!� w
! 0 2 � 400 � 36

202 � 62 � 0 v!� w
! 0 2 0w! 0 � 60v! 0 � 200 v! 0 2 � 0w! 0 2 � 0 v!� w

! 0 2
a � 17.5°

sin a �
6

20
 or sin�1 a 6

20
b � a

a

0v! 0 � 200w! 0 � 6

t �
d
v �

2.09
20.9 � 0.1 h,

20.9 km>h.

0 v!� w
! 0 � 20.9,20

2 �
0v! � w

! 0
2.09 .
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IN SUMMARY

Key Idea

• Problems involving velocities can be solved using strategies involving vectors.

Need to Know

• The velocity of an object is stated relative to a frame of reference. The frame
of reference used influences the stated velocity of the object. 

• Air speed/water speed is the speed of a plane/boat relative to a person on
board. Ground speed is the speed of a plane or boat relative to a person on
the ground and includes the effect of wind or current.

• The resultant velocity .vr
!
� v1
!
� v2
!

v
w

v + w
a
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Exercise 7.2

PART A
1. A woman walks at down the corridor of a train that is travelling at

on a straight track. 

a. What is her resultant velocity in relation to the ground if she is walking in
the same direction as the train? 

b. If she walks in the opposite direction as the train, what is her resultant
velocity?

2. An airplane heading north has an air speed of 

a. If the airplane encounters a wind from the north at 100 km h, what is the
resultant ground velocity of the plane?

b. If there is a wind from the south at what is the resultant ground
velocity of the plane? 

PART B
3. An airplane has an air speed of and is heading due west. If it

encounters a wind blowing south at what is the resultant ground
velocity of the plane?

4. Adam can swim at the rate of in still water. At what angle to the bank
of a river must he head if he wants to swim directly across the river and the
current in the river moves at the rate of 1 km h?

5. A child, sitting in the backseat of a car travelling at throws a ball at
to her brother who is sitting in the front seat.

a. What is the velocity of the ball relative to the children?

b. What is the velocity of the ball relative to the road?

6. A boat heads west of north with a water speed of Determine its
resultant velocity, relative to the ground, when it encounters a current
from north of east. 

7. An airplane is heading due north at when it encounters a wind
from the northeast at 

a. What is the resultant velocity of the airplane?

b. How far will the plane travel in 1 h?

8. An airplane is headed north with a constant velocity of The plane
encounters a wind from the west at 

a. In 3 h, how far will the plane travel?

b. In what direction will the plane travel?

100 km>h.
450 km>h.

100 km>h.
800 km>h15°

5 m>s12 m>s.15°

2 m>s 20 m>s,

>2 km>h
50 km>h,

300 km>h
100 km>h,

>600 km>h.

80 km>h 4 km>h

K
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9. A small airplane has an air speed of The pilot wishes to fly to a
destination that is 480 km due west from the plane’s present location. There 
is a wind from the south. 

a. In what direction should the pilot fly in order to reach the destination?

b. How long will it take to reach the destination?

10. Judy and her friend Helen live on opposite sides of a river that is 1 km wide.
Helen lives 2 km downstream from Judy on the opposite side of the river.
Judy can swim at a rate of and the river’s current has a speed of

Judy swims from her cottage directly across the river.

a. What is Judy’s resultant velocity?

b. How far away from Helen’s cottage will Judy be when she reaches the
other side?

c. How long will it take Judy to reach the other side?

11. An airplane is travelling N60°E with a resultant ground speed of 
The nose of the plane is actually pointing east with an airspeed of 

a. What is the wind direction?

b. What is the wind speed? 

12. Barbara can swim at in still water. She wishes to swim across a
river to a point directly opposite from where she is standing. The river is
moving at a rate of Explain, with the use of a diagram, why this
is not possible. 

PART C
13. Mary leaves a dock, paddling her canoe at She heads downstream at an

angle of to the current, which is flowing at 

a. How far downstream does Mary travel in 10 s?

b. What is the length of time required to cross the river if its width is 150 m?

14. Dave wants to cross a 200 m wide river whose current flows at 
The marina he wants to visit is located at an angle of from his starting
position. Dave can paddle his canoe at in still water.

a. In which direction should he head to get to the marina?

b. How long will the trip take? 

15. A steamboat covers the distance between town A and town B (located
downstream) in 5 h without making any stops. Moving upstream from B to A,
the boat covers the same distance in 7 h (again making no stops). How many
hours does it take a raft moving with the speed of the river current to get from
A to B?

4 m>s S45°W
5.5 m>s.

4 m>s.30°
3 m>s.

5 km>h.

4 km>h
212 km>h.

205 km>h.

4 km>h.
3 km>h,

44 km>h 244 km>h.
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Section 7.3—The Dot Product of Two
Geometric Vectors

In Chapter 6, the concept of multiplying a vector by a scalar was discussed. In
this section, we introduce the dot product of two vectors and deal specifically
with geometric vectors. When we refer to geometric vectors, we are referring to
vectors that do not have a coordinate system associated with them. The dot
product for any two vectors is defined as the product of their magnitudes
multiplied by the cosine of the angle between the two vectors when the two
vectors are placed in a tail-to-tail position. 

Dot Product of Two Vectors 

AC
! # AB
!
� @AC

! @ @AB
! @ cos u, 0 � u � 180°

B

C

uA

Sign of the Dot Product 

For the vectors and :

• for so 

• for so 

• for so a
! # b! 6 090° 6 u � 180°, cos u 6 0,

a
! # b!� 0u � 90°, cos u � 0,

a
! # b! 7 00 � u 6 90°, cos u 7 0,

b
!
, a
! # b!� 0a! 0 @b! @ cos u, 0 � u � 180°a

!

Observations about the Dot Product
There are some elementary but important observations that can be made about
this calculation. First, the result of the dot product is always a scalar. Each of the
quantities on the right side of the formula above is a scalar quantity, and so their
product must be a scalar. For this reason, the dot product is also known as the
scalar product. Second, the dot product can be positive, zero, or negative,
depending upon the size of the angle between the two vectors.

The dot product is only calculated for vectors when the angle between the vectors
is to to , inclusive. (For convenience in calculating, the angle between the
vectors is usually expressed in degrees, but radian measure is also correct.) 

180°0°
u
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Perhaps the most important observation to be made about the dot product is that when
two nonzero vectors are perpendicular, their dot product is always 0. This will have
many important applications in Chapter 8, when we discuss lines and planes. 

EXAMPLE 1 Calculating the dot product of two geometric vectors

Two vectors, and are placed tail to tail and have magnitudes 3 and 5,
respectively. There is an angle of between the vectors. Calculate 

Solution
Since and 

Notice that, in this example, it is stated that the vectors are tail to tail when taking
the dot product. This is the convention that is always used, since this is the way of
defining the angle between any two vectors.

� �7.5

a
! # b!� 13 2 15 2 1�0.5 2 cos 120° � �0.5,0a! 0 � 3, @b! @ � 5,

a
! # b!.120°

b
!
,a

!

INVESTIGATION A.Given vectors and where , and the angle between the
vectors is calculate .

B. For the vectors given in part A calculate . What do you notice?
Will this relationship always hold regardless of the two vectors used and the
measure of the angle between them? Explain.

C. For the vectors given in part A calculate and . Based on your 
observations, what can you conclude about for any vector ?

D.Using the vectors given in part A and a third vector , as shown in the
diagram, calculate each of the following without rounding:

i. iii.

ii. the angle between iv.
and .

E. Compare your results from part iii and iv in part D. What property does this
demonstrate? Write an equivalent expression for and confirm it
using the appropriate calculations with the vectors given in part D.

F. Using the 3 vectors given above, explain why .

G.A fourth vector is given as shown in the diagram. Explain why 

H.Using the vectors given, calculate , and . What does this imply?c
! # 0!0

!
b
! #0

!
a
! #

a
! # d!� a

! # 1�d
!2 � 1�a

!2 # d!� 1�a
!2 # 1�d

!2d
!
, �d
!
� � 3,

1a! # b!2 # c!� a
! # 1b! # c!2

c
! # 1a!� b

!2
a
!

b
!
� c
! a

! # b!� a
! # c!

a
! # 1b!� c

!2�b
!
� c
!
�

0c! 0 � 4,c
!

u
!

u
!

u
! # b

!
b
! #a

!
a
! #

a
!

b
! #

b
!

a
! #60°,

�b
!
� � 80a! 0 � 5b

!
a
!

a

60°

a

c
b

60°
20°

a

c
b

d
60°

20°
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Properties of the Dot Product
It should also be noted that the dot product can be calculated in whichever order we
choose. In other words, We can change
the order in the multiplication because the quantities in the formula are just scalars
(that is, numbers) and the order of multiplication does not affect the final answer.
This latter property is known as the commutative property for the dot product.

Another property that proves to be quite important for both computation and
theoretical purposes is the dot product between a vector and itself. The angle
between and itself is , so since 

EXAMPLE 2 Calculating the dot product between a vector and itself

a. If , calculate 

b. Calculate 

Solution
a. This is an application of the property just shown. So,

b. Since we know that is a unit vector (along the positive x-axis),

In general, for any vector of unit length,
Thus, and where and are the unit vectors along the
positive y- and z-axes, respectively. 

Another important property that the dot product follows is the distributive property.
In elementary algebra, the distributive property states that 
We will prove that the distributive property also holds for the dot product. We will
prove this geometrically below and algebraically in the next section.

Theorem: For the vectors and 

Proof: The vectors and are drawn, and the diagram is labelled as shown 
with To help visualize the dot products, lines from B and C
have been drawn perpendicular to (which is ).

Using the definition of a dot product, we write q
! # p!� 0q! 0 0p! 0 cos BAF.

D E FA

B

C

p

q + rq

r

AF
!

p
!

AC
!
� q
!
� r
!
.

r
!
,q

!
,p

!
,

p
!1q!� r

!2 � p
! # q!� p

! # r!.r
!
,q

!
,p

!
,

p1q � r 2 � pq � pr.

k
!

j
!

k
! # k!� 1,j

! # j!� 1
x
! # x!� 0x! 0 2 � 1.x

!
i
! # i!� 11 2 11 2 � 1.

i
! a

! # a!� 1V7 2 1V7 2 � 7.

i
! # i!.

a
! # a!.0a! 0 � V7

cos10° 2 � 1.p
! # p!� 0p! 0 0p! 0 11 2 � 0p! 0 20°p

! p
!

p
! # q!� 0p! 0 0q! 0 cos u � 0q! 0 0p! 0 cos u � q

! # p!.
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If we look at the right-angled triangle ABD and use the cosine ratio, we note

that The two angles BAD and BAF are 

identical, and so 

Rewriting the formula as , and 

substituting , we obtain,

We also consider the vectors and We translate the vector so that point B
is moved to be coincident with D. (The vector maintains the same direction
and size under this translation.) 

Writing the dot product for and we obtain If we use

trigonometric ratios in the right triangle,

Substituting into we obtain
If we use the formula for the dot product of we 

get the following: Using the same reasoning 

as before, and and then, by

substitution,

Adding the two quantities and ,

(Factoring)

Thus, or, written in the more usual way,

We list some of the properties of the dot product below. 
This final property has not been proven, but it comes directly from the definition
of the dot product and proves most useful in computation.

p
! # 1q!� r

!2 � p
! # q!� p

! # r!
q
! # p!� r

! # p!� 1q!� r
!2 # p!,� 1q!� r
!2 # p!� 0p! 0AE

� 0p! 0 1AD � DE 2q
! # p!� r

! # p!� AD 0p! 0 � DE 0p! 0r
! # p!q

! # p!
1q!� r

!2 # p!� 0p! 0AE.

AE � 1cos CAE 2 0q! � r
! 0 ,cos CAE �

AE0q!� r
! 0

1q!� r
!2 # p!� 0q!� r

! 0 0p! 0 cos CAE.
q
!
� r
!
 and p

!
,r

! # p!� DE 0p! 0 . r
! # p!� 0 r! 0 0p! 0 cos CDE,DE � 0 r! 0 cos CDE

cos CDE �
DE0 r! 0  or DE � 0 r! 0 cos CDE.

r
! # p!� 0 r! 0 0p! 0 cos CDE.p

!
,r

!
B, D E

C

p

r

BC
! BC

!
p
!
.r

!
q
! # p!� AD 0p! 0 .AD � 0q! 0 cos BAF

q
! # p!� 1 0q! 0 cos BAF 2 0p! 0q

! # p!� 0q! 0 0p! 0 cos BAF

AD � 0q! 0 cos BAF.

cos BAD �
AD0q! 0  or AD � 0q! 0 cos BAD.



375

EXAMPLE 3 Selecting a strategy to determine the angle between two 
geometric vectors

If the vectors and are perpendicular, and determine 

the angle (to the nearest degree) between the nonzero vectors 

Solution
Since the two given vectors are perpendicular, .

Multiplying,

(Distributive property)

Simplifying, (Commutative property)

Since (Squaring both sides)

Substituting,

Solving for 

Thus,

Therefore, the angle between the two vectors is approximately 

It is often necessary to square the magnitude of a vector expression. This is
illustrated in the following example.

EXAMPLE 4 Proving that two vectors are perpendicular using the dot product

If prove that the nonzero vectors, and , are perpendicular.y
!

x
!0 x!� y

! 0 � 0 x! � y
! 0 ,

126.2°.

cos�1 a�13

22
b � u, u � 126.2°

cos u �
�13

22
, @b! @ 2 � 0

cos u �
�13 @b! @ 2
22 @b! @ 2

cos u,

414 @b! @ 2 2 � 111 12 @b! @ 2 1 @b! @ 2cos u 2 � 3 @b! @ 2 � 0

0a! 0 � 2 @b! @ , 0a! 0 2 � 12 @b! @ 22 � 4 @b! @ 24 0a! 0 2 � 11a
! # b!� 3 @b! @ 2 � 0

4a
! # a!� a

! # b!� 12b
! # a!� 3b

! # b!� 0

a
! # 14a

!
� b
!2 � 3b

! # 14a
!
� b
!2 � 0

1a!� 3b
!2 # 14a

!
� b
!2 � 0

a
!
 and b

!
.

0a! 0 � 2 @b! @ ,4a
!
� b
!

a
!
� 3b

!
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Properties of the Dot Product 

Commutative Property:

Distributive Property:

Magnitudes Property:

Associative Property with a scalar K: 1kp
!2 # q!� p

! # 1kq
!2 � k1p! # q!2p

! # p!� 0p! 0 2,

p
! # 1q!� r

!2 � p
! # q!� p

! # r!,
p
! # q!� q

! # p!,

NEL
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Solution
Consider the following diagram.

Since (Squaring both sides)

and 

Therefore,

(Multiplying out)

So,

Thus, the two required vectors are shown to be perpendicular. (Geometrically,
this means that if diagonals in a parallelogram are equal in length, then the sides
must be perpendicular. In actuality, the parallelogram is a rectangle.)

In this section, we dealt with the dot product and its geometric properties. In the
next section, we will illustrate these same ideas with algebraic vectors.

4x
! # y!� 0 and x

! # y!� 0

0 x! 0 2 � 2x
! # y!� 0 y! 0 2 � 0 x! 0 2 � 2x

! # y!� 0 y! 0 21x!� y
!2 # 1x!� y

!21x!� y
!2 # 1x!� y

!2 �

0 x!� y
! 0 2 � 1x!� y

!2 # 1x!� y
!20x!� y

! 0 2 � 1x!� y
!2 # 1x!� y

!20 x!� y
! 0 2 � 0 x!� y

! 0 20x!� y
! 0 � 0x! � y

! 0 ,x

x

yy–

x + y

x – y

(Magnitudes
property)

IN SUMMARY

Key Idea

• The dot product between two geometric vectors and is a scalar quantity
defined as , where is the angle between the two vectors.

Need to Know

• If , then 

• If , then SUMMARY
• If , then 

•

•

•

• and 

• 1ka
!2 # b!� a

! # 1kb
!2 � k1a! # b!2k

! # k!� 1j
! # j!� 1,i

! # i!� 1,

a
! # a!� 0a! 0 2a
! # 1b!� c

!2 � a
! # b!� a

! # c!
a
! # b!� b

! # a!
a
! # b! 6 090° 6 u � 180°

a
! # b!� 0u � 90°

a
! # b! 7 00° � u 6 90°

ua
! # b!� 0a! 0 @b! @ cos u

b
!

a
!
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Exercise 7.3

PART A
1. If why can we not necessarily conclude that the given vectors are

perpendicular? (In other words, what restrictions must be placed on the
vectors to make this statement true?)

2. Explain why the calculation is not meaningful.

3. A student writes the statement and then concludes that 
Construct a simple numerical example to show that this is not correct if the
given vectors are all nonzero. 

4. Why is it correct to say that if then  

5. If two vectors are unit vectors pointing in opposite directions, what is
the value of 

PART B
6. If is the angle (in degrees) between the two given vectors, calculate the dot

product of the vectors. 

a. d.

b. e.

c. f.

7. Calculate, to the nearest degree, the angle between the given vectors.

a. d.

b. e.

c. f.

8. For the two vectors whose magnitudes are shown in the diagram
below, calculate the dot product. 

a
!
 and b

!
0u! 0 � 10, 0v! 0 � 10, u

! # v!� �500p! 0 � 1, 0q! 0 � 5, p
! # q!� 3

0a! 0 � 7, @b! @ � 3, a
! # b!� 10.50m! 0 � 6, 0n! 0 � 6, m

! # n!� 6

0p! 0 � 1, 0q! 0 � 5, p
! # q!� �30x! 0 � 8, 0y! 0 � 3, x

! # y!� 12V3

0u! 0 � 4, 0v! 0 � 8, u � 145°0a! 0 � 0, @b! @ � 8, u � 100°

0m! 0 � 2, 0n! 0 � 5, u � 90°0x! 0 � 2, 0y! 0 � 4, u � 150°

0p! 0 � 1, 0q! 0 � 1, u � 180°0p! 0 � 4, 0q! 0 � 8, u � 60°

u

a
! # b!?
a
!
 and b

!
a
! # b!� b

! # c!?a
!
� c
!
,

a
!
� c
!
.a

! # b!� b
! # c!

1a! # b!2 # c!
a
!
 #  b!� 0,

K

C

120°

 )a * = 7.5

 )b* = 6

9. Use the properties of the dot product to simplify each of the following 
expressions:

a.

b. 3x
! # 1x!� 3y

!2 � 1x!� 3y
!2 # 1�3x

!
� y
!21a!� 5b

!2 # 12a
!
� 3b

!2

NEL



10. What is the value of the dot product between and any nonzero vector? Explain.

11. The vectors are perpendicular. If are unit vectors,
then determine 

12. If are any two nonzero vectors, prove each of the following to be true:

a.

b.

13. The vectors satisfy the relationship 

a. Show that 

b. If the vectors are perpendicular, how does this prove the
Pythagorean theorem?

14. Let be three mutually perpendicular vectors of lengths 1, 2, and 3,
respectively. Calculate the value of 

15. Prove the identity 

16. The three vectors are of unit length and form the sides of 
equilateral triangle ABC such that (as shown). Determine 
the numerical value of 1a!� b

!2 # 1a!� b
!
� c
!2 .a

!
� b
!
� c
!
� 0
!a

!
, b
!
, and c

!
2 0u! 0 2 � 2 0v! 0 2.0u!� v

! 0 2 �0u!� v
! 0 2 �

1u!� v
!
� w
!2 .1u!� v

!
� w
!2 #u

!
, v
!
, and w

!

b
!
 and c

!
0a! 0 2 � @b! @ 2 � 2b

! # c!� 0c! 0 2.

a
!
� b
!
� c
!
.a

!
, b
!
, and c

!
0a! 0 2 � @b! @ 21a!� b

!2 # 1a!� b
!2 �

0a! 0 2 � 2a
! # b!� @b! @21a!� b

!2 # 1a!� b
!2 �

a
!
 and b

!
a
!
 #  b!.

a
!
 and b

!
a
!
� 5b

!
 and a

!
� b
!

0
!
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T

A B

C

c

b a

A

PART C
17. The vectors are such that Determine the value of

if and 

18. The vector is a unit vector, and the vector is any other nonzero vector. If
and prove that d

! # a!� 0.d
!
� b
!
� c
!
,c

!
� 1b! # a!2a! b

!
a
!

0c! 0 � 3.0a! 0 � 1, 0b! 0 � 2,b
! # c!a

! # b!� a
! # c!�

a
!
� b
!
� c
!
� 0
!
.a

!
, b
!
, and c

!
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Section 7.4—The Dot Product of Algebraic
Vectors

In the previous section, the dot product was discussed in geometric terms. In this
section, the dot product will be expressed in terms of algebraic vectors in and

. Recall that a vector expressed as is referred to as an algebraic
vector. The geometric properties of the dot product developed in the previous 
section will prove useful in understanding the dot product in algebraic form. The
emphasis in this section will be on developing concepts in , but these ideas
apply equally well to or to higher dimensions. 

Defining the Dot Product of Algebraic Vectors
Theorem: In , if and then 

Proof: Draw and as shown in the diagram.

In (Cosine law)

So, and 

We know that and 

It should also be noted that (Definition of dot product)

We substitute each of these quantities in the expression for the cosine law.

This gives 

a1
2 � a2

2 � a3
2 � b1

2 � b2
2 � b3

2 � 2a
! # b!

1b1 � a1 22 � 1b2 � a2 22 � 1b3 � a3 22 �

a
! # b!� @OA

! @ @OB
! @ cos u.
@OB
! @ 2 � b1

2 � b2
2 � b3

2.@OA
! @ 2 � a1

2 � a2
2 � a3

2

1b2 � a2 22 � 1b3 � a3 22@AB
! @ 2 � 1b1 � a1 22 �

AB
!
� 1b1 � a1, b2 � a2, b3 � a3 2 @OB

!! @ cos u@OA
!! @@OB

!! @ 2 � 2@OA
!! @ 2 �¢OAB, @AB

! @ 2 �

z

y

x

u

b

a

B (b1, b2, b3)

A(a 1, a 2, a 3)

O

b
!
� 1b1, b2, b3 2 ,a

!
� 1a1, a2, a3 2a

! # b!� b
! # a!� a

1
b1 � a2b2 � a3b3.

b
!
� 1b1, b2, b3 2 ,a

!
� 1a1, a2, a3 2R3

R2
R3

a
!
� 1�1, 4, 5 2R3

R2
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Expanding, we get

(Simplify)

(Divide by 22)

Observations about the Algebraic Form of the Dot Product
There are some important observations to be made about this expression for the dot
product. First and foremost, the quantity on the right-hand side of the expression,

is evaluated by multiplying corresponding components and 
then adding them. Each of these quantities, is just a real number,
so their sum is a real number. This implies that is itself just a real number, or a
scalar product. Also, since the right side is an expression made up of real numbers, it
can be seen that This
is a restatement of the commutative law for the dot product of two vectors. All the
other rules for computation involving dot products can now be proven using the
properties of real numbers and the basic definition of a dot product. 

In this proof, we have used vectors in to calculate a formula for . It is
important to understand, however, that this procedure could be used in the same
way for two vectors, in , to obtain the formula 

EXAMPLE 1 Proving the distributive property of the dot product in 

Prove that the distributive property holds for dot products in —that is,

Solution
Let and 

In showing this statement to be true, the right side will be expressed in component
form and then rearranged to be the same as the left side. 

(Definition of dot product)

(Rearranging terms)

(Factoring)

This example shows how to prove the distributive property for the dot product in .
The value of writing the dot product in component form is that it allows us to

R3

� a
! # 1b!� c

!2� a11b1 � c1 2 � a21b2 � c2 2 � a31b3 � c3 2� a1b1 � a1c1 � a2b2 � a2c2 � a3b3 � a3c3

1a1c1 � a2c2 � a3c3 2� 1a1b1 � a2b2 � a3b3 2 �

1c
1
, c2, c3 21a

1
, a2, a3 2 #1b

1
, b2, b3 2 �a

! # b!� a
! # c!� 1a

1
, a2, a3 2 #

c
!
� 1c1, c2, c3 2 .a

!
� 1a1, a2, a3 2 , b!� 1b1, b2, b3 2 ,

a
! # b!� a

! # c!.a
! # 1b!� c

!2 �
R3

R3

a1b1 � a2b2.a
! # b!�

R2a
!
� 1a1, a2 2  and b

!
� 1b1, b2 2 , a

! # b!R3

b1a1 � b2a2 � b3a3 � b
! # a!.a1b1 � a2b2 � a3b3 �a

! # b!�
a
! # b!

a1b1, a2b2, and a3b3,
a1b1 � a2b2 � a3b3,

 a
! # b!� a1b1 � a2b2 � a3b3.

 �2a1b1 � 2a2b2 � 2a3b3 � �2a
! # b!

a1
2 � a2

2 � a3
2 � b1

2 � b2
2 � b3

2 � 2a
! # b! �

2a2b2 � a2
2 � b3

2 � 2a3b3 � a3
2b1

2 � 2a1b1 � a1
2 � b2

2 �
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Computation of the Dot Product of Algebraic Vectors 

In where and 

In , where and
.

In both cases is the angle between and .y
!

x
!

q

y
!
� 1y1, y2, y3 2 x

!
� 1x1, x2, x3 2� x3y3x1y1 � x2y2R3, x

! # y!� 0 x! 0 0 y! 0 cos u �

y
!
� 1y1, y2 2 .x

!
� 1x1, x2 2x1y1 � x2x2,R2, x

! # y!� 0 x! 0 0 y! 0 cos u �

Formula for the Angle between Two Vectors 

When two vectors are placed tail to tail, as shown, cos u �
a
! # b!0a! 0 @b! @ .

u

b = (b1, b2, b3)

a = (a1, a2, a3)

The dot product expressed in component form has significant advantages over the 
geometric form from both a computational and theoretical point of view. At the outset,
the calculation appears to be somewhat artificial or contrived, but as we move ahead,
we will see its applicability to many situations. 

A useful application of the dot product is to calculate the angle between two vectors.
Solving for in the formula gives the following result.a

! # b!� 0a! 0 @b! @ cos ucos u

EXAMPLE 2 Selecting a strategy to determine the angle between two 
algebraic vectors

a. Given the vectors and calculate .

b. Calculate, to the nearest degree, the angle between . 

Solution
a. a
! # b!� 1�1 2 13 2 � 12 2 14 2 � 14 2 13 2 � 17

a
!
 and b

!
a
! # b!b

!
� 13, 4, 3 2 ,a

!
� 1�1, 2, 4 2

combine the geometric form with the algebraic form, and create the ability to do
calculations that would otherwise not be possible.
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b.

(Substitution)

Therefore, the angle between the two vectors is approximately . 

In the previous section, we showed that when two nonzero vectors are
perpendicular, their dot product equals zero—that is,

EXAMPLE 3 Using the dot product to solve a problem involving 
perpendicular vectors

a. For what values of k are the vectors and 
perpendicular?

b. For what values of m are the vectors and 
perpendicular? 

Solution
a. Since for perpendicular vectors,

In calculations of this type involving the dot product, the calculation should be
verified as follows:

This check verifies that the calculation is correct. 
b. Using the conditions for perpendicularity of vectors,

m � 6 or m � �3
1m � 6 2 1m � 3 2 � 0

m2 � 3m � 18 � 0
1m, �3, 6 2 � 01m, m, �3 2 #

� 0
� �3 � 5 � 8

�113 2 � 3Q�5
3 R � 41�2 21�1, 3, �4 2 # Q3, �5

3 , �2R �

k �
�5
3

3k � �5

�113 2 � 31k 2 � 41�2 2 � 0
a
! # b!� 0

y
!
� 1m, �3, 6 2x

!
� 1m, m, �3 2

b
!
� 13, k, �2 2a

!
� 1�1, 3, �4 2

a
! # b!� 0.

50.5°

u � 50.5°

u � cos�110.6362 2cos u � 0.6362

cos u �
17

V21 V34

cos u �
a
! # b!0a! 0 @b! @
@b! @ � V34@b! @ 2 � 13 22 � 14 22 � 13 22 � 34,

0a! 0 � V210a! 0 2 � 1�1 22 � 12 22 � 14 22 � 21,
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Check:
For 

For 

We can combine various operations that we have learned for calculation purposes
in and . 

EXAMPLE 4 Using the dot product to solve a problem involving a parallelogram

A parallelogram has its sides determined by and . Determine
the angle between the diagonals of the parallelogram formed by these vectors.

Solution
The diagonals of the parallelogram are determined by the vectors and

, as shown in the diagram. The components of these vectors are

and 

as shown in the diagram

At this point, the dot product is applied directly to find , the angle between the
vectors and . 

Therefore,

Therefore,

The angle between the diagonals is approximately 54.6°. The answer given is
54.6°, but its supplement, 125.4°, is also correct. 

u � 54.61°

cos u � 0.5792

cos u �
27

V41 V53

cos u �
15, 4 2 # 17, �2 20 15, 4 2 0 0 17, �2 2 0

OC
!

OD
! u

D( 7, –2)

C(5, 4)

A(6, 1)
E u

u

a – b

a 

a + b

b

B(–1, 3)

6 84 102–2–4

8

10

–4

–2

4

6

2
x

y

17, �2 2 ,a
!
� b
!
� 16 � 1�1 2 , 1 � 3 2 �

a
!
� b
!
� 16 � 1�1 2 , 1 � 3 2 � 15, 4 2a

!
� b
! a

!
� b
!

b
!
� 1�1, 32a

!
� 16, 12

R3R2

m � �3, 1�3, �3, �3 2 # 1�3, �3, 6 2 � 9 � 9 � 18 � 0

m � 6, 16, 6, �3 2 # 16, �3, 6 2 � 36 � 18 � 18 � 0
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One of the most important properties of the dot product is its application to
determining a perpendicular vector to two given vectors, which will be
demonstrated in the following example.

EXAMPLE 5 Selecting a strategy to determine a vector perpendicular to two 
given vectors

Find a vector (or vectors) perpendicular to each of the vectors and
. 

Solution
Let the required vector be Since is perpendicular to each of the
two given vectors, and .

Multiplying gives and which is a system of
two equations in three unknowns. 

(Multiplying equation by 3)

(Adding equations and )

Now, we substitute into equation to solve for x in terms of y. We
obtain  

We have solved for x and z by expressing each variable in terms of y. The solution
to the system of equations is or if we let . The 
substitution of t (called a parameter) for y is not necessarily required for a correct
solution and is done more for convenience of notation. This kind of substitution
will be used later to great advantage and will be discussed in Chapter 9 at length. 

We can find vectors to satisfy the required conditions by replacing t with any real
number, Since we can use any real number for t to produce the required
vector, this implies that an infinite number of vectors are perpendicular to both 
and . If we use we obtain 

As before, we verify the solution:
and 

It is interesting to note that the vector represents a general 
vector perpendicular to the plane in
which the vectors 
and lie. This is 
represented in the diagram shown,
where t � 1.

b
!
� 1�3, 1, 2 2a! � 11, 5, �1 2111t, t, 16t 2 , t � 0,

�33 � 1 � 32 � 0111, 1, 16 2 # 1�3, 1, 2 2 �
11 � 5 � 16 � 0111, 1, 16 2 # 11, 5, �1 2 �

111, 1, 16 2 .t � 1,b
! a

!t � 0.

y � t111t, t, 16t 2111y, y, 16y 2
x � 5y � 16y � 0, or x � 11y.

1z � 16y
z � 16y

3216y � z � 04

13x � 15y � 3z � 03

�3x � y � 2z � 02

x � 5y � z � 01

�3x � y � 2z � 0,x � 5y � z � 0

1x, y, z 2 # 1�3, 1, 2 2 � 01x, y, z 2 # 11, 5, �1 2 � 0
x
!

x
!
� 1x, y, z 2 .

b
!
� 1�3, 1, 2 2 a

!
� 11, 5, �1 2

B
O

b = (–3, 1, 2)

Aa = (1, 5, –1)

t = 1, N

n = (11, 1, 16)
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Determining the components of a vector perpendicular to two nonzero vectors
will prove to be important in later applications. 

Exercise 7.4

PART A
1. How many vectors are perpendicular to State the components

of three such vectors. 

2. For each of the following pairs of vectors, calculate the dot product and, on
the basis of your result, say whether the angle between the two vectors is
acute, obtuse, or 90°.

a.

b.

c.

3. Give the components of a vector that is perpendicular to each of the following
planes:

a. xy-plane

b. xz-plane 

c. yz-plane

b
!
� 13, �2, �2 2a

!
� 11, �2, 5 2 , b

!
� 14, 3, �17 2a

!
� 12, 3, �1 2 ,b

!
� 11, 2 2a

!
� 1�2, 1 2 ,

a
!
� 1�1, 1 2?

IN SUMMARY

Key Idea
• The dot product is defined as follows for algebraic vectors in and ,

respectively:

• If and , then 

• If and , then 

Need to Know
• The properties of the dot product hold for both geometric and algebraic

vectors.

• Two nonzero vectors, and are perpendicular if .

• For two nonzero vectors and , where is the angle between the 

vectors, �
a
! # b!0a! 0  @b! @  .cos u

ub
!

a
!

a
! # b!� 0b

!
,a

!

a
! # b!� a1b1 � a2b2 � a3b3b

!
� 1b1, b2, b3 2a

!
� 1a1, a2, a3 2 a

! # b!� a1b1 � a2b2b
!
� 1b1, b2, 2a

!
� 1a1, a2 2

R3R2
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4. a. From the set of vectors ,

select two pairs of vectors that are perpendicular to each other. 

b. Are any of these vectors collinear? Explain. 

5. In Example 5, a vector was found that was perpendicular to two nonzero vectors. 

a. Explain why it would not be possible to do this in if we selected the
two vectors and 

b. Explain, in general, why it is not possible to do this if we select any two
vectors in .

PART B
6. Determine the angle, to the nearest degree, between each of the following

pairs of vectors:

a. and 

b. and 

c. and 

d. and 

7. Determine k, given two vectors and the angle between them.

a. , ,

b. , ,

8. In , a square is determined by the vectors and .

a. Sketch the square.

b. Determine vector components for the two diagonals.

c. Verify that the angle between the diagonals is .

9. Determine the angle, to the nearest degree, between each pair of vectors. 

a. and 

b. and 

10. a. For the vectors and , determine values of p and
q so that the vectors are

i. collinear

ii. perpendicular

b. Are the values of p and q unique? Explain why or why not.

11. ABC has vertices at , , and . Determine the angles
in this triangle.

C1�1, 6 2B14, 11 2A12, 5 2^

b
!
� 1q, 4, 12 2a

!
� 12, p, 8 2 b

!
� 11, 1, 1 2a

!
� 1V2 � 1, V2 � 1, V2 2 b!� 11, 1 2a
!
� 11 � V2, V2, � 1 2

90°

j
!

i
!

R2

u � 45°b
!
� 10, k 2a

!
� 11, 1 2 u � 90°b

!
� 1�6k, �1, k 2a

!
� 1�1, 2, �3 2

b
!
� 1�5, 0, 12 2a

!
� 12, 3, �6 2 b

!
� 12, 1, �2 2a

!
� 12, 2, 1 2 b

!
� 16, �2 2a

!
� 1�1, 4 2 b

!
� 1�1,�2 2a

!
� 15, 3 2

R2

b
!
� 11, 1 2 .a

!
� 11, �2 2 R2

Q5, �3, �5
6 R fe 11, 2, �1 2 , 1�4, �5, �6 2 , 14, 3, 10 2 ,

K

C
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12. A rectangular box measuring 4 by 5 by 7 is shown in the diagram at the left.

a. Determine the coordinates of each of the missing vertices.

b. Determine the angle, to the nearest degree, between and .

13. a. Given the vectors and , determine the 
components of a vector perpendicular to each of these vectors.

b. Given the vectors and , determine the 
components of a vector perpendicular to each of these vectors.

14. Find the value of p if the vectors and are 
perpendicular to each other.

15. a. Determine the algebraic condition such that the vectors 
and are perpendicular to each other.

b. If , what is the corresponding value of p?

16. Given the vectors and , determine the
components of two vectors perpendicular to each of these vectors. Explain
your answer.

17. The vectors and are such that ,

where is the angle between and . Determine the value(s) of p.

PART C
18. The diagonals of a parallelogram are determined by the vectors 

and .

a. Show that this parallelogram is a rhombus.

b. Determine vectors representing its sides and then determine the length of
these sides.

c. Determine the angles in this rhombus.

19. The rectangle ABCD has vertices at , , and .

a. Determine the coordinates of the vertex C.

b. Determine the angle between the two diagonals of this rectangle.

20. A cube measures 1 by 1 by 1. A line is drawn from one vertex to a diagonally
opposite vertex through the centre of the cube. This is called a body diagonal
for the cube. Determine the angles between the body diagonals of the cube.

D13, q, 8 2B12, 6, �9 2A1�1, 2, 3 2

b
!
� 1�1, 1, �2 2 a

!
� 13, 3, 0 2

y
!

x
!

u

cos�1Q 4
21R � uy

!
� 1�2, 3, 6 2x

!
� 1�4, p, �2 2

s
!
� 1�2, �4, 2 2r

!
� 11, 2, �1 2q � �3

d
!
� 11, �4, q 2 c

!
� 1�3, p, �1 2

s
!
� 1  p, �2, �3 2r

!
� 1  p, p, 1 2

n
!
� 1�1, �2, 3 2m

!
� 11, 3, �4 2

q
!
� 11, �5, 2 2p

!
� 1�1, 3, 0 2 BF

!
AE
!

a
u

z

y

x

F E

D

C

B
A

O

P( 7, 4, 5)

A

T
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b

a

Mid-Chapter Review

1. a. If and and the angle between these two vectors is ,

determine .

b. Determine the numerical value of 

2. A mass of 15 kg is suspended by two cords from a ceiling. The cords have
lengths of 15 cm and 20 cm, and the distance between the points where they
are attached on the ceiling is 25 cm. Determine the tension in each of the two
cords.

3. In a square that has side lengths of 10 cm, what is the dot product of the
vectors representing the diagonals?

4. An airplane is travelling at 500 km h due south when it encounters a wind
from at 100 km h.

a. What is the resultant velocity of the airplane?

b. How long will it take for the airplane to travel 1000 km?

5. A 15 kg block lies on a smooth ramp that is inclined at to the ground.

a. Determine the force that this block exerts in a direction perpendicular to
the ramp.

b. What is the force, parallel to the inclined plane, needed to prevent the
block from slipping?

6. A regular hexagon, with sides of 3 cm, is shown below. Determine .

7. Given the vectors and determine the following:

a.

b. the cosine of the angle between the two vectors

8. Given the vectors , and 
determine the following:

a. c. e.

b. d. f. 12a
!
� 3b

!2 # 12a
!
� c
!2a

! # 1b!� c
!2b

! # c!
1a!� b

!2 # 1b!� c
!2b

!
� c
!

a
! # b!

c
!
� 3i
!
� j
!
� k
!
,a

!
� i
!
� 2j
!
� k
!
, b
!
� 2i
!
� 3j
!
� 4k
!

a
! # b!

b
!
� 11, 2, 2 2 ,a

!
� 14, �5, 20 2

a
! # b!

40°

>W45°N
>

13a
!
� 2b

!2 # 14a
!
� 3b

!2 .a
! # b!

60°@b! @ � 2,0a! 0 � 3
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9. Given the vectors and , determine the
following:

a. the value(s) of x that make these vectors perpendicular

b. the values(s) of x that make these vectors parallel

10. If and , determine the value of each of the
following:

a.

b.

c.

d.

e.

11. Three forces of 3 N, 4 N, and 5 N act on an object so that the object is in
equilibrium. Determine the angle between the largest and smallest forces.

12. A force of 3 N and a force of 4 N act on an object. If these two forces make
an angle of to each other, find the resultant and equilibrant of these two
forces.

13. The sides of a parallelogram are determined by the vectors 
and . Determine

a. the larger angle between the diagonals of this parallelogram

b. the smaller angle between the sides

14. Martina is planning to fly to a town 1000 km due north of her present 
location. There is a 45 km h wind blowing from .

a. If her plane travels at 500 km h, what direction should the pilot head to
reach the destination?

b. How long will the trip take?

15. Determine the coordinates of a unit vector that is perpendicular to
and 

16. Clarence leaves a dock, paddling a canoe at 3 m s. He heads downstream at
an angle of to the current, which is flowing at 4 m s.

a. How far downstream does he travel in 10 s?

b. What is the length of time required to cross the river if it is 180 m wide?

17. a. Under what conditions does ?
b. Give a geometrical interpretation of the vectors and 

18. A lawn roller with a mass of 60 kg is being pulled with a force of 350 N. If
the handle of the roller makes an angle of with the ground, what 
horizontal component of the force is causing the roller to move forward?

40°

a
!
� b
!
.a

!
� b
!
,a

!
, b
!
,

1x!� y
!2 # 1x!� y

!2 � 0

>45°
>b

!
� 11, 3, 5 2 .a

!
� 1�1, 2, 5 2

> N30°E>
n
!
� 1�1, 7, 5 2 m

!
� 12, �3, 5 2

60°

2x
! # y!� 5y

! # x!
12x
!
� 3y
!2 # 1x!� 4y

!20 x!� 2y
! 03x

! # 2y
!

3x
!
� 2y
!

y
!
� i
!
� j
!
� k
!

x
!
� i
!
� 2j
!
� k
!

q
!
� 3xi

!
� 10xj

!
� k
!

p
!
� xi
!
� j
!
� 3k
!
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Section 7.5—Scalar and Vector Projections

In the last two sections, the concept of the dot product was discussed, first in geo-
metric form and then in algebraic form. In this section, the dot product will be used
along with the concept of projections. These concepts are closely related, and each
has real significance from both a practical and theoretical point of view.

When two vectors, and are placed tail to tail, and is the angle
between the vectors, , the scalar projection of on is ON, as
shown in the following diagram. The scalar projection can be determined using
right triangle trigonometry and can be applied to either geometric or algebraic
vectors equally well.

b
!

a
!

0° � u � 180°
ub

!
� OB

!
,a

!
� OA

!

Observations about the Scalar Projection 
A number of observations should be made about scalar projections. The scalar
projection of on is obtained by drawing a line from the head of vector 
perpendicular to , or an extension of . If the point where this line meets the 
vector is labelled N, then the scalar projection on is . Since ON is a real
number, or scalar, and also a projection, it is called a scalar projection. If the angle
between two given vectors is such that , then the scalar projection is
positive; otherwise, it is negative for and 0 if . 

The sign of scalar projections should not be surprising, since it corresponds
exactly to the sign convention for dot products that we saw in the previous two
sections. An important point is that the scalar projection between perpendicular
vectors is always 0 because the angle between the vectors is and 
Another important point is that it is not possible to take the scalar projection of
the vector on . This would result in a statement involving division by 0, which
is meaningless.

0
!

a
!

cos 90° � 0.90°

u � 90°90° 6 u � 180°
0° � u 6 90°

ONb
!

a
!

OB
!

OB
! a

!
b
!

a
!

Scalar Projection of on 
The scalar projection of vector onto is ON, where ON .� 0a! 0 cos ub

!
a
!b

!
a
!

B

A

O

a

u

b N

0 ≤ u < 908

B

A

O

u = 908

a

b
N B

A

O

908< u ≤ 1808

u
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Another observation should be made about scalar projections that is not
immediately obvious from the given definition. The scalar projection of vector 
on vector is in general not equal to the scalar projection of vector on vector ,
which can be seen from the following.

Calculating the scalar projection of on :

When calculating this projection, what is needed is to solve for 
in the dot product formula.

We know that .

Rewrite this formula as .

Solving for .

Calculating the scalar projection of on :

To find the scalar projection of on , it is necessary to solve for 
in the dot product formula. This is done in exactly the same way as above,

and we find that .

From this, we can see that, in general, . It is correct to say,

however, that these scalar projections are equal if .

Another observation to make about scalar projections is that the scalar projection 
of on is independent of the length of . This is demonstrated in the following
diagram:

From the diagram, we can see that the scalar projection of vector on vector 
equals ON. If we take the scalar projection of on , this results in the exact
same line segment ON.

2b
!

a
! b

!
a
!

BN2b

A

O
u

a

B N

A

O
u

b

a

b
!

b
!

a
!

0a! 0 � @b! @
a
! # b!0a! 0 �

a
! # b!@b! @

@b! @ cos u �
a
! # b0a! 0   

@b! @ cos ua
!

b
!
a
!

b
!

0a! 0 cos u �
a
! # b!@b! @   0a! 0 cos u gives 

@b! @a
! # b!� Q 0a! 0 cos uRa

! # b!� 0a! 0 @b! @ cos u

0a! 0 cos u

b
!

a
!

a
!

b
!

b
! a

!

NO
u

b

a

Projection of a onto b

N

O
u

b

a

Projection of b onto a
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EXAMPLE 1 Reasoning about the characteristics of the scalar projection

a. Show algebraically that the scalar projection of on is identical to the scalar
projection of on .

b. Show algebraically that the scalar projection of on is not the same as 
on .

Solution

a. The scalar projection of on is given by the formula .

The scalar projection of on is . If we use the properties of the dot

product and the fact that , this quantity can be written as

, and then simplified to .

From this, we see that what was shown geometrically is verified 
algebraically.

b. As before, the scalar projection of on is given by the formula .

The scalar projection of on is . Using the same approach as 

above and recognizing that , this can be rewritten as 

.

In this case, the direction of the vector changes the scalar projection to the
opposite sign from the projection of on .

The following example shows how to calculate scalar projections involving
algebraic vectors. All the properties applying to geometric vectors also apply 
to algebraic vectors.

EXAMPLE 2 Selecting a strategy to calculate the scalar projection involving 
algebraic vectors

For the vectors and calculate each of the 
following scalar projections:

a. on b. on a
!

b
!

b
!

a
!

b
!
� 1�2, 2, �1 2 ,a

!
� 1�3, 4, 5V3 2

b
!

a
! �2b

!

�1a! # b!2@b! @�
�2a
! # b!

2 @b! @�
a
! # 1�2b

!2@�2b
! @

@�2b
! @ � 2 @b! @

a
! # 1�2b

!2@�2b
! @�2b

!
a
!

a
! # b!@b! @b

!
a
!

a
! # b!@b! @21a! # b!2

2 @b! @
@2b
! @ � 2 @b! @

a
! # 2b
!@2b
! @2b

!
a
!

a
! # b!@b! @b

!
a
!

�2b
! a

!
b
!

a
!

2b
!

a
! b

!
a
!
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Solution
a. The required scalar projection is and, since ,

as before, .

We start by calculating .

Since 

The scalar projection of on is approximately 1.78.

b. In this case, the required scalar projection is . Solving as in the solution 

to part a. 

Since 

The scalar projection of on is approximately 0.53.a
!

b
!

@b! @ cosu �
5.34

10
� 0.53

0a! 0 � 1�3 22 � 14 22 � 15�3 22 � 10,

@b! @ cos u �
a
! # b!0a! 0

@b! @ cos u

b
!

a
!

0a! 0 cos u �
5.34

3
� 1.78

@b! @ � �1�2 22 � 12 22 � 1�1 22 � 3,

� 5.34

� 14 � 5�3

a
! # b!� �31�2 2 � 412 2 � 5�31�1 2a

! # b!
0a! 0 cos u �

a
! # b@b! @

a
! # b!� 0a! 0 @b! @ cos u0a! 0 cos u

Calculating Scalar Projections

The scalar projection of on is .

The scalar projection of on is .

In general,
a
! # b!@b! @ �

a
! # b!
�a
! 0 .

a
! # b!0a! 0a

!
b
!

a
! # b!@b! @b

!
a
!

Scalar projections are sometimes used to calculate the angle that a position 

vector makes with each of the positive coordinate axes. This concept is 
illustrated in the next example.

OP
!
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EXAMPLE 3 Selecting a strategy to determine the direction angles of a vector in 

Determine the angle that the vector makes with each of the
coordinate axes.

Solution
To calculate the required direction angles, it is necessary to project on
each of the coordinate axes. To carry out the calculation, we use the standard
basis vectors so that can 
be projected along the x-axis, y-axis, and z-axis, respectively. We define as
the angle between and the positive x-axis, as the angle between and
the positive y-axis, and as the angle between and the positive z-axis.  

Calculating :
To calculate the angle that makes with the x-axis, we start by writing

which implies .

Since and , we substitute to find

Thus, .

Therefore, the angle that makes with the x-axis is approximately . In its

simplest terms, the cosine of the required angle is the scalar projection of 

on , divided by —that is, . 

This angle is illustrated in the following diagram:

O
x-axis

P (2, 1, 4)

ii N (2, 0, 0)

OP  =   21

ON  = 2

a

�
2

V21

OP
! # i!@OP
! @cos a ��OP

!
�i

!
OP
!

a

64.1°OP
!

a � cos�1 a 2

�21
b  and a � 64.1°

cos a �
2

V21

cos a �
12, 1, 4 2 # 11, 0, 0 2

V2111 2
OP
! # i!@OP
! @ @ i! @cos a �

@ i! @ � 1@OP
! @ � V21

OP
! # i!0OP
! 0 0 i! 0cos a �OP

! # i!� @OP
! @ @ i! @  cos a,

OP
!a

OP
!

g

OP
!

bOP
! a

OP
!

i
!
� 11, 0, 0 2 , j!� 10, 1, 0 2 , and k

!
� 10, 0, 1 2 OP

!

OP
!
� 12, 1, 4 2 R3

z

y

x

b

g

P (2, 1, 4)

a

O(0, 0, 0)
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These angles can be visualized by constructing a rectangular box and drawing in the
appropriate projections. If we are calculating , the angle that makes with the
positive x-axis, the projection of on the x-axis is just a, and 

, so . 

We calculate and in the same way.

O

z

y

x

C (0, 0, c)

P (a, b, c)

B(0, b, 0)

A(a, 0, 0)

cos gcos b

cos a �
a

Va2 � b2 � c2
Va2 � b2 � c2@OP

! @ � OP
! OP

!
a

Calculating and :
If we use the same procedure, we can also calculate and , the angles that 
makes with the y-axis and z-axis, respectively.

Thus,

Similarly, ,

Therefore, makes angles of , , and with the positive x-axis,
y-axis and z-axis, respectively.

In our example, specific numbers were used, but the calculation is identical if we 
consider and develop a formula for the required direction angles.
The cosines of the angles are referred to as the direction cosines of , , and .gba

OP
!
� 1a, b, c 2

29.2°77.4°64.1°OP
!

g � 29.2°cos g �
4

V21

b � 77.4°b � cos�1 a 1

V21
b ,

�
1

V21
�
12, 1, 4 2 # 10, 1, 0 2

V21
cos b

OP
!

gb

gb

Direction Cosines for 

If , , and are the angles that makes with the positive x-axis, y-axis, and
z-axis, respectively, then

and cos g �
c

Va2 � b2 � c2
cos b �

b

Va2 � b2 � c2

cos a �
1a, b, c 2 # 11, 0, 0 2@OP

! @ �
a

�a2 � b2 � c2

OP
!

gba

OP
!
� 1a, b, c 2
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EXAMPLE 4 Calculating a specific direction angle

For the vector determine the direction cosine and the
corresponding angle that this vector makes with the positive z-axis.

Solution
We can use the formula to calculate .

and 

Examining Vector Projections

Thus far, we have calculated scalar projections of a vector onto a vector. This
computation can be modified slightly to find the corresponding vector projection
of a vector on a vector.

The calculation of the vector projection of on is just the corresponding scalar

projection of on multiplied by . The expression is a unit vector pointing

in the direction of .

N B

A

O
u

b

a

Vector projection of a on b

N B

A

Scalar projection of a on b

O
u

b

a

b
!

b
!@b! @b

!@b! @b
!

a
!

b
!

a
!

g � 135.6°

�
�5

V49
�

�5

7
� �0.7143cos g �

�5

V1�2V2 22 � 14 22 � 1�5 22
g

OP
!
� 1�2V2, 4, �5 2 ,

Vector Projection of on 

vector projection of on 
� (scalar projection of on ) (unit vector in the direction of )

, b
!
� 0
!

� a a
! # b!

b
! # b! bb

!

�
a
! # b!@b! @ 2  b
!

� a a
! # b!@b! @ b a b

!@b! @ b
b
!

b
!

a
! b
!

a
!

b
!

a
!
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EXAMPLE 5 Connecting a scalar projection to its corresponding vector projection

Find the vector projection of 

Solution

The formula for the scalar projection of on is .

The vector projection, , is found by multiplying ON by the unit vector .

Since 

The required vector projection is 

= (ON)(a unit vector in the same direction as )

The vector projection is shown in red in the following diagram:

y

x

3

2

1

4

O
–1

–2

2 4 6

a

b B(4, –1)

A(4, 3)

N
52
17

, 13
17

–

ON
!

� a 52

17
, �

13

17
b

�
13

17
 14, �1 2

ON
!
�

13

�17
a 1

�17
 14, �1 2b

OB
!

ON
!

 OB
!@OB
! @ � 1

�17
 14, �1 2@OB

! @ � �14 22 � 1�1 22 � �17,

OB
!@OB
! @ON

!

�
13

V17

ON �
OA
! # OB

!@OB
! @ �

14, 3 2 # 14, �1 2
V14 22 � 1�1 22

OA
! # OB

!@OB
! @OB

!
OA
!

OA
!
 � 14, 3 2  on OB

!
 � 14, �1 2 .
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Exercise 7.5

PART A

1. a. The vector is projected onto the x-axis. What is the scalar
projection? What is the vector projection?

b. What are the scalar and vector projections when is projected onto the
y-axis?

2. Explain why it is not possible to obtain either a scalar projection or a vector
projection when a nonzero vector is projected on .0

!
x
!

a
!

a
!
� 12, 3 2

IN SUMMARY

Key Idea

• A projection of one vector onto another can be either a scalar or a vector.
The difference is the vector projection has a direction.

Need to Know

• The scalar projection of on � � , where is the angle

between and .

• The vector projection of on 

• The direction cosines for are

, ,

, where , , and are the direction angles 

between the position vector and the positive x-axis, y-axis and z-axis,
respectively.

OP
!

gbacos g �  
c

Va2 �  b2 �  c2 

cos b �  
b

Va2 �  b2 �  c2 
cos a �  

a

Va2 �  b2 �  c2 

OP
!
� 1a, b, c 2

b
!

� a a
! # b!

b
! # b! ba

! # b!@b! @ 2  b
!

�b
!

a
!

b
!

a
!

u0a! 0  cos u
a
! # b!@b! @b

!
a
!

N B

A

O
u

b

a

Vector projection of a on b

N B

A

O
u

b

a

Scalar projection of a on b
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3. Consider two nonzero vectors, and , that are perpendicular to each other. 
Explain why the scalar and vector projections of on must be 0 and ,
respectively. What are the scalar and vector projections of on ?

4. Draw two vectors, and . Draw the scalar and vector projections of on .
Show, using your diagram, that these projections are not necessarily the same
as the scalar and vector projections of on .

5. Using the formulas in this section, determine the scalar and vector projections
of on , and . Explain how you could have arrived at
the same answer without having to use the formulas.

PART B

6. a. For the vectors and , determine the
scalar and vector projections of on .

b. Determine the direction angles for .

7. For each of the following, determine the scalar and vector projections of 
on .

a. ,

b. ,

c. ,

8. a. Determine the scalar and vector projections of on each of
the three axes.

b. What are the scalar and vector projections of on each of the
three axes?

9. a. Given the vector , show with a diagram that the vector projection of on
is and that the scalar projection of on is .

b. Using the formulas for scalar and vector projections, explain why the
results in part a. are correct if we use for the angle between the 
two vectors.

10. a. Using a diagram, show that the vector projection of on is .

b. Using the formula for determining scalar projections, show that the result
in part a. is true.

11. a. Find the scalar and vector projections of along each of the axes if A has
coordinates and B has coordinates .

b. What angle does make with the y-axis?AB
! 1�1, 3, 4 211, 2, 2 2 AB

!

�a
!

a
!

�a
!

u � 0°

0a! 0a
!

a
!

a
!

a
! a

!
a
!

m1�1, 2, 4 2
a
!
� 1�1, 2, 4 2y

!
� 1�5, 12 2x

!
� 12, 5 2 y

!
� 11, 0 2x

!
� 12, 2�3 2y!� 11, �1 2x
!
� 11, 1 2y
!

x
!

p
!

q
!

p
! q
!
� 1�4, 5, �20 2p

!
� 13, 6, �22 2

k
!

j
!

i
!
,OP

!
� 1�1, 2, �5 2

p
!

q
!

q
!

p
!

q
!

p
!

a
!

b
! 0

!
b
!

a
!

b
!

a
!

K

C

A
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12. In the diagram shown, is an isosceles triangle where .

a. Draw the scalar projection of on .

b. Relocate , and draw the scalar projection of on .

c. Explain why the scalar projection of on is the same as the scalar
projection of on .

d. Does the vector projection of on equal the vector projection of on ?

13. Vectors and are such that and , and the angle between
them is .

a. Show that the scalar projection of on does not equal the scalar 
projection of on .

b. Draw diagrams to illustrate the corresponding vector projections associated
with part a.

14. You are given the vector and the three points, ,
, and .

a. Calculate the scalar projection of on .

b. Verify computationally that the scalar projection of on added 
to the scalar projection of on equals the scalar projection of 

on .

c. Explain why this same result is also true for the corresponding vector
projections.

15. a. If , , and represent the direction angles for vector , prove that
.

b. Determine the coordinates of a vector that makes an angle of with
the y-axis, with the z-axis, and with the x-axis.

c. In Example 3, it was shown that, in general, the direction angles do not
always add to —that is, . Under what conditions,
however, must the direction angles always add to ?

PART C

16. A vector in makes equal angles with the coordinate axes. Determine the
size of each of these angles if the angles are

a. acute b. obtuse

17. If , , and represent the direction angles for vector , prove that
.

18. Vectors and are not collinear. The sum of the direction angles of 
each vector is . Draw diagrams to illustrate possible positions of points 
A and B.

180°
OB
!

OA
!

sin2 a � sin2 b � sin2 g � 2
OP
!

gba

R3

180°
a � b � g � 180°180°

90°60°
30°OP

!cos2 a � cos2 b � cos2 g � 1
OP
!

gba

OD
!

AC
! OD

!
BC
! OD

!
AB
!OD

!
AB
!C1�6, 7, 5 2B11, 3, 3 2 A1�2, 1, 4 2OD

!
� 1�1, 2, 2 2

a
!

b
! b

!
a
!

135°
@b! @ � 120a! 0 � 10b

!
a
!

c
!

b
!

c
!

a
!

c
!

b
! c

!
a
!

c
!

b
!

b
! c

!
a
!

0a! 0 � @b! @^ABC

T
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Section 7.6—The Cross Product of Two
Vectors

In the previous three sections, the dot product along with some of its applications
was discussed. In this section, a second product called the cross product, denoted
as is introduced. The cross product is sometimes referred to as a vector
product because, when it is calculated, the result is a vector and not a scalar. As
we shall see, the cross product can be used in physical applications but also in the
understanding of the geometry of 

If we are given two vectors, and and wish to calculate their cross product,
what we are trying to find is a particular vector that is perpendicular to each
of the two given vectors. As will be observed, if we consider two nonzero,
noncollinear vectors, there is an infinite number of vectors perpendicular to the
two vectors. If we want to determine the cross product of these two vectors, we
choose just one of these perpendicular vectors as our answer. Finding the cross
product of two vectors is shown in the following example.

EXAMPLE 1 Calculating the cross product of two vectors

Given the vectors determine 

Solution
When calculating we are determining a vector that is perpendicular to
both and We start by letting this vector be 

Since and 

In the same way, since and 

Finding of the cross product of and requires solving a system of two
equations in three variables which, under normal circumstances, has an infinite
number of solutions. We will eliminate a variable and use substitution to find a
solution to this system.

Subtracting eliminates x, or If we substitute in
equation , it will be possible to express x in terms of y. Doing so gives

or . Since x and z can both be expressed in terms of y,
we write the solution as The solution to this system 1�y, y, 2y 2 � y1�1, 1, 2 2 .x � �yx � 3y � 12y 2 � 0

2

z � 2yz � 2y.�2y � z � 0,

x � 3y � z � 02

x � y � 01

b
!

a
!

x � 3y � z � 0.# 1x, y, z 2 � 011, 3, �1 2b
! # v!� 0,

x � y � 0.11, 1, 0 2 # 1x, y, z 2 � 0a
! # v!� 0,

v
!
� 1x, y, z 2 .b

!
.a

! a
!
� b
!
,

a
!
� b
!
.a

!
� 11, 1, 0 2  and b

!
� 11, 3, �1 2 ,

b
!
,a

!
R3.

a
!
� b
!
,

a

b
a 3 b

b 3 a

O

The Cross Product
(Vector Product)

NEL
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is any vector of the form It can be left in this form, but is
usually written as , where k is a parameter 
representing any real value. The parameter k indicates that there is an
infinite number of solutions and that each of them is a scalar multiple of

In this case, the cross product is defined to be the vector
where —that is, The choosing of simplifies
computation and makes sense mathematically, as we will see in the
next section. It should also be noted that the cross product is a vector
and, as stated previously, is sometimes called a vector product.

Deriving a Formula for the Cross Product

What is necessary, to be more efficient in calculating , is a formula. 

The vector is a vector that is perpendicular to each of the vectors and 
An infinite number of vectors satisfy this condition, all of which are scalar 
multiples of each other, but the cross product is one that is chosen in the simplest
possible way, as will be seen when the formula is derived below. Another 
important point to understand about the cross product is that it exists only in 
It is not possible to take two noncollinear vectors in and construct a third 
vector perpendicular to the two vectors, because this vector would be outside the
given plane. 

It is also difficult, at times, to tell whether we are calculating or 
The formula, properly applied, will do the job without difficulty. There are times
when it is helpful to be able to identify the cross product without using a formula.
From the diagram below, is pictured as a vector perpendicular to the plane
formed by and and, when looking down the axis from P on would
have to be rotated counterclockwise in order to be collinear with In other
words, and form a right-handed system.

The vector the opposite to , is again perpendicular to the plane
formed by and but, when looking from Q down the axis formed by 

would have to be rotated clockwise in order to be collinear with 

a

b

O

P

Q

b
!
.a

! b
!
� a
!
,b

!
,a

! a
!
� b
!

b
!
� a
!
,

a
!
� b
!

b
!
,a

!
,

b
!
.

a
!

a
!
� b
!
,b

!
,a

! a
!
� b
!

b
!
� a
!
.a

!
� b
!

R2
R3.

b
!
.a

!
a
!
� b
!

a
!
� b
!

k � 11�1, 1, 2 2 .k � 1
1�1, 1, 2 2 .

k1�1, 1, 2 2 , k�R
y1�1, 1, 2 2 .

a

b

a 3 b, k = 1

b 3 a, k = –1

O
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To develop a formula for we follow a procedure similar to that followed in
Example 1. Let and , and let be the 
vector that is perpendicular to and 

So,

and 

As before, we have a system of two equations in three unknowns, which we know
from before has an infinite number of solutions. To solve this system of equations,
we will multiply the first equation by and the second equation by and then
subtract.

3

3

Subtracting and eliminates x. Move the z-terms to the right.

Multiplying each side by and rearranging gives the desired result:

Now

y

a3b1 � a1b3
�

z

a1b2 � a2b1

1a1b2 � b1a2 2y � 1b1a3 � a1b3 2z�1

1b1a2 � a1b2 2y � 1a1b3 � b1a3 2z43

a1b1x � a1b2y � a1b3z � 04Sa12

b1a1x � b1a2y � b1a3z � 03Sb11

a1b1

b
! # v!� 1b1, b2, b3 2 # 1x, y, z 2 � b1x � b2y � b3z � 02

a
! # v!� 1a1, a2, a3 2 # 1x, y, z 2 � a1x � a2y � a3z � 01

b
!
.a

! v
!
� 1x, y, z 2b

!
� 1b1, b2, b3 2a

!
� 1a1, a2, a3 2a

!
� b
!
,

Definition of a Cross Product

The cross product of two vectors and in (3-space) is the vector that is
perpendicular to these vectors such that the vectors and form a
right-handed system.
The vector is the opposite of and points in the opposite direction.a

!
� b
!

b
!
� a
!

a
!
� b
!

b
!
,a

!
,

R3b
!

a
!

a

P

a 3 b

b

NEL
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If we carry out an identical procedure and eliminate z from the system of 
equations, we have the following:

If we combine the two statements and set them equal to a constant k, we have

Note that we can make these fractions equal to k because every proportion can be 

made equal to a constant k. (For example, if then k could be 

either or or any nonzero multiple of the form ) This expression gives us a 

general form for a vector that is perpendicular to and The cross product,

is defined to occur when and occurs when k � �1.b
!
� a
!

k � 1,a
!
� b
!
,

b
!
.a

!

1n
2n.10

20
1
2

3
6 �

4
8 �

5
10 � k,

x

a2b3 � a3b2
�

y

a3b1 � a1b3
�

z

a1b2 � a2b1
� k

x

a2b3 � a3b2
�

y

a3b1 � a1b3

Formula for Calculating the Cross Product of Algebraic Vectors

is a vector perpendicular to 
both and 
If then 

If then b
!
� a
!
� 1a3b2 � a2b3, a1b3 � a3b1, a2b1 � a1b2 2k � �1, 

a
!
� b
!
� 1a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1 2k � 1, 

k�R.b
!
,a

!k1a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1 2

Method of Calculating � , where and  

1. List the components of vector in column form on the left side, starting with
and then writing and below each other as shown.

2. Write the components of vector in a column to the right of , starting with 
and then writing and in exactly the same way as the components

of 

3. The required formula is now a matter of following the arrows and doing the
calculation. To find the x component, for example, we take the down 
product and subtract the up product from it to get a2b3 � a3b2.a3b2a2b3

a
!
.

b2b1,b3,b2

a
!

b
!a2a1,a3,a2

a
!

b
!
� 1b1, b2, b3 2a

!
� 1a1, a2, a3 2b

!
a
!

It is not easy to remember this formula for calculating the cross product of two
vectors, so we develop a procedure, or a way of writing them, so that the memory
work is removed from the calculation.

(continued)



405C H A P T E R  7

The other components are calculated in exactly the same way, and the
formula for each component is listed below.

a × b = (a2b3 – a3b2, a3b1 – a1b3, a1b2 – a2b1)

x = a2b3  – a3b2

z = a1b2  – a2b1

y = a3b1  – a1b3

z

y

x

a2

b1

b3

b2

a1

a3

b2a2

ba

INVESTIGATION A.Given two vectors and calculate and 

. What property does this demonstrate does hold not for the cross
product? Explain why the property does not hold.

B. How are the vectors and related? Write an expression that relates   
with .

C. Will the expression you wrote in part B be true for any pair of vectors in ?
Explain.

D.Using the two vectors given in part A and a third vector 
calculate:

i. ii.

E. Compare your results from i and ii in part D. What property does this
demonstrate? Write an equivalent expression for and confirm it
using the appropriate calculations.

F. Choose any 3 vectors in and demonstrate that the property you identified in
part E holds for your vectors.

G.Using the three vectors given calculate:

i. ii.

H.Compare your results from i and ii in part G. What property does this demonstrate
does hold not for the cross product? Explain why the property does not hold.

I. Choose any vector that is collinear with (that is, any vector of the form
. Calculate Repeat using a different value for k.

What can you conclude?
a
!
� k a

!
.k a

!
  k�R 2 a

!

a
!
� 1b!� c

! 21a!� b
!2 � c

!

R3

b
!
� 1a!� c

!2
a
!
� b
!
� a
!
� c
!

a
!
� 1b!� c

! 2
c
!
� 14, 3, �1 2

R3

b
!
� a
!

a
!
� b
! b

!
� a
!

a
!
� b
!

b
!
� a
!

a
!
� b
!

b
!
� 1�1, 2, �5 2a

!
� 12, 4, 6 2

NEL
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EXAMPLE 2 Calculating cross products

If and calculate and 

Solution
Let The vectors and are listed in column form, with 
on the left and on the right, starting from the second component and 
working down.

As already mentioned, is the opposite of so
It is not actually necessary

to calculate All that is required is to calculate and take the
opposite vector to get 

After completing the calculation of the cross product, the answer should be
verified to see if it is perpendicular to the given vectors using the dot product.

Check:
and 

There are a number of important properties of cross products that are worth 
noting. Some of these properties will be verified in the exercises.

128, 10, �1 2 # 12, �5, 6 2 � 56 � 50 � 6 � 0

128, 10, �1 2 # 1 � 1, 3, 2 2 � �28 � 30 � 2 � 0

q
!
� p
!
.

p
!
� q
!

q
!
� p
!
.

�1128, 10, �1 2 � 1�28, �10, 1 2 .q
!
� p
!
�

p
!
� q
!
,q

!
� p
!

x = 3(6) – (2)(–5) = 28

z = –1(–5) – 3(2) = –1

y = 2(2) – (–1)(6) = 10

z

y

x

3

2

6

–5

–1

2

–53
qp

p × q = (28, 10, –1)

q
!

p
!

q
!

p
!

p
!
� q
!
� 1x, y, z 2 .

q
!
� p
!
.p

!
� q
!

q
!
� 12, �5, 6 2 ,p

!
� 1�1, 3, 2 2

Properties of the Cross Product

Let and be three vectors in , and let 

Vector multiplication is not commutative:

Distributive law for vector multiplication:

Scalar law for vector multiplication: k1p!� q
!2 � 1kp

!2 � q
!
� p
!
� 1kq

!2 ,p
!
� 1q!� r

!2 � p
!
� q
!
� p
!
� r
!
,

p
!
� q
!
� �1q!� p

!2 ,k�R.R3r
!

q
!
,p

!
,
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The first property is one that we have seen in this section and is the first instance
we have seen where the commutative property for multiplication has failed.
Normally, we expect that the order of multiplication does not affect the product. 
In this case, changing the order of multiplication does change the result. The other
two listed results are results that produce exactly what would be expected, and
they will be used in this set of exercises and beyond.

Exercise 7.6

PART A
1. The two vectors and are vectors in and is calculated.

a. Using a diagram, explain why and 

b. Draw the parallelogram determined by and , and then draw the vector 

Give a simple explanation of why 

c. Why is it true that Explain.

2. For vectors in explain why the calculation is meaningless.
(Consider whether or not it is possible for the left side to be a scalar.)

PART B
3. For each of the following calculations, say which are possible for vectors in 

and which are meaningless. Give a brief explanation for each.

a. c. e.

b. d. f. a
!
� b
!
� c
!1a! # b!2 1c!� d

!21a! # b!2 � c
!

1a!� b
!2 � 1c!� d

!21a!� b
!2 # 1c!� d

!2a
! # 1b!� c

!2R3

1a! # b!2 1a!� b
!2 � 0R3,

1a!� b
!2 # 1a!� b

!2 � 0?

1a!� b
!2 # 1a!� b

!2 � 0.a
!
� b
!
.

b
!

a
!

b
! # 1a!� b

!2 � 0.a
! # 1a!� b

!2 � 0

a
!
� b
!

R3,b
!

a
!

IN SUMMARY

Key Idea

• The cross product , between two vectors and , results in a third
vector that is perpendicular to the plane in which the given vectors lie.

Need to Know

•

•

•

• 1ka
!2 � b

!
� a
!
� 1kb

!2 � k1a!� b
!2a

!
� 1b!� c

!2 � a
!
� b
!
� a
!
� c
!

a
!
� b
!
� �b

!
� a
!

a
!
� b
!
� 1a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1 2

b
!

a
!

a
!
� b
!

NEL
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4. Calculate the cross product for each of the following pairs of vectors, and 
verify your answer by using the dot product.

a. and d. and 

b. and e. and 

c. and f. and 

5. If determine a.

6. a. Calculate the vector product for and 
b. Explain geometrically why it makes sense for vectors of the form 

and to have a cross product of the form 

7. a. For the vectors and show that their vector product is 
b. In general, show that the vector product of two collinear vectors,

and , is always 

8. In the discussion, it was stated that 
for vectors in Verify that this rule is true for the following vectors.

a. and 

b. and 

9. Verify each of the following:

a.

b.

c.

10. Show algebraically that
What is the meaning of this result?

11. You are given the vectors 
and 

a. Calculate and 

b. Calculate 

c. Without doing any calculations (that is, by visualizing the four 
vectors and using properties of cross products), say why 

PART C
12. Show that the cross product is not associative by finding vectors , and 

such that 

13. Prove that is true.1a! � b
!2 � 1a!� b

!2 � 2a
!
� b
!

1x!� y
!2 � z

!
� x
!
� 1y!� z

!2 . z
!

y
!
,x

!

1a!� c
!2 � 1b!� d

!2 � 0
!
.

1a!� b
!2 � 1c!� d

!2 .c
!
� d
!
.a

!
� b
!d

!
� 14, 3, 0 2 . a

!
� 12, 0, 0 2 , b!� 10, 3, 0 2 , c!� 12, 3, 0 2 ,

k1a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1 2 # a!� 0.

k
!
� i
!
� j
!
� �i

!
� k
!j

!
� k
!
� i
!
� �k

!
� j
!i

!
� j
!
� k
!
� �j

!
� i
!

r
!
� 10, 1, 2 2p

!
� 14, 1, 2 2 , q!� 13, 1, �1 2 , r

!
� 1�1, 1, 0 2q

!
� 11, 2, 7 2 ,p

!
� 11, �2, 4 2 ,R3.

p
!
� 1q!� r

!2 � p
!
� q
!
� p
!
� r
!

0
!
.1ka, kb, kc 2 1a, b, c 20!.12, 4, 2 2 ,11, 2, 1 2 1a, 0, 0 2 .10, d, e 2 10, b, c 2b

!
� 10, 5, 1 2 .a

!
� 10, 1, 1 21�1, 3, 5 2 � 10, a, 1 2 � 1�2, 1, �1 2 , 1�1, 2, 4 215, 1, 6 212, 4, 7 215, �1, 1 2 11, �1, 0 21�2, 3, 3 213, �1, 2 212, �1, 3 2 1�2, 3, 4 211, 2, 9 210, � 1, 4 212, � 3, 5 2

K

A

C

T
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Section 7.7—Applications of the Dot Product
and Cross Product

In the previous four sections, the dot product and cross product were discussed in
some detail. In this section, some physical and mathematical applications of these
concepts will be introduced to give a sense of their usefulness in both physical
and mathematical situations.

Physical Application of the Dot Product

When a force is acting on an object so that the object is moved from one point
to another, we say that the force has done work. Work is defined as the product of
the distance an object has been displaced and the component of the force along
the line of displacement. 

In the following diagram, represents a constant force, acting on an object 
at O so that this force moves the object from O to A. We will call the distance that
the object is displaced s, which is a scalar, where we are assuming that 
and The scalar projection of on equals ON, or which is
the same calculation for the scalar projection that was done earlier. (This is called 
the scalar component of on ) The work, W, done by in moving the object

is calculated as As explained before,
the force is measured in newtons (N), the displacement is measured in metres (m),
and the unit for work is newton-metres, or joules (J). When a 1 N force moves an
object 1 m, the amount of work done is 1 J.

f
! W � 1 0 f! 0 cos u 2 1 0OA

! 0 2 � 1ON 2 1s 2 � f
! # s!.

f
!

OA
!
.OB

!
0 f! 0 cos u,OA

!
f
!

s � 0OA
! 0 . s

!
� OA

!
f
!
,OB

!

B

N

f

AO

OA = s

)OA) = ) s ) = s

ON = ) f  )cos u

u

Formula for the Calculation of Work

where is the force acting on an object, measured in newtons (N); 
is the displacement of the object, measured in metres (m); and W is the 

work done, measured in joules (J).
s
! f

!
W � f

! # s!,

NEL
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h

CD

A B
u

b

a

Area = ) a )h

= ) a )() b )sin u)

= ) a )) b )sin u

where sin u = or h = ) b )sin uh
) b )

EXAMPLE 1 Using the dot product to calculate work

Marianna is pulling her daughter in a toboggan and is exerting a force of 40 N,
acting at to the ground. If Marianna pulls the child a distance of 100 m, how
much work was done?

Solution

24°

h

v
248

toboggan

40 N

To solve this problem, the 40 N force has been resolved into its vertical and
horizontal components. The horizontal component tends to move the toboggan
forward, while the vertical component is the force that tends to lift the toboggan.

From the diagram,

The amount of work done is . Therefore, the work
done by Marianna is approximately .

Geometric Application of the Cross Product
The cross product of two vectors is interesting because calculations involving the
cross product can be applied in a number of different ways, giving us results that
are important from both a mathematical and physical perspective.

The cross product of two vectors, and can be used to calculate the area of a
parallelogram. For any parallelogram, ABCD, it is possible to develop a formula
for its area, where and are vectors determining its sides and h is its height.b

!
a
!

b
!
,a

!

3654 J
W � 136.54 2 1100 2 � 3654 J

� 36.54 N

 � 4010.9135 2�h
!
� � 40 cos 24°

v
! h

!

It can be proven that this formula for the area is equal to That is,@a!� b
! @ � @a! @ @b! @ sin u.

@a!� b
! @ .
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Theorem: For two vectors, and where is the angle
between the two vectors.

Proof: The formula for the cross product is

Therefore,

The right-hand side is expanded and then factored to give

This formula can be simplified by making the following substitutions:

and

Thus, (Factor)

(Substitution)

But since for 

This gives us the required formula for the area of a parallelogram, which is 
equivalent to the magnitude of the cross product between the vectors that define
the parallelogram.

EXAMPLE 2 Solving area problems using the cross product

a. Determine the area of the parallelogram determined by the vectors 
and 

b. Determine the area of the triangle formed by the points 
and 

Solution

a. The cross product is

The required area is determined by 

square units� 28.62

V1�23 22 � 112 � 1�13 22 � V529 � 121 � 169 � V819

0p!� q
! 0 .� 1�23, 11, �13 2p

!
� q
!
� 151�1 2 � 316 2 , 612 2 � 1�1 2 1�1 2 , �113 2 � 215 22

C13, �1, 4 2 .B1�1, 0, 0 2 , A1�1, 2, 1 2 ,q
!
� 12, 3, �1 2 . p

!
� 1�1, 5, 6 2

@a!� b
! @ � 0a! 0 @b! @ sin u

0° � u � 180°,sin u � 0

@a!� b
! @ � ;  0a! 0 @b! @ sin u

@a!� b
! @ 2 � 0a! 0 2 @b! @ 211 � cos2 u 2 � 0a! 0 2 @b! @ 2sin2 u

@a!� b
! @ 2 � 0a! 0 2 @b! @ 2 � 0a! 0 2 @b! @ 2cos2 u

0a! 0 @b! @ cos u � a1b1 � a2b2 � a3b3

@b! @ 2 � b1
2 � b2

2 � b3
2,0a! 0 2 � a1

2 � a2
2 � a3

2,

@a!� b
! @ 2 � 1a1

2 � a2
2 � a3

2 2 1b1
2 � b2

2 � b3
2 2 � 1a1b1 � a2b2 � a3b3 22

@a!� b
! @ 2 � 1a2b3 � a3b2 22 � 1a3b1 � a1b3 22 � 1a1b2 � a2b1 22a

!
� b
!
� 1a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1 2

u@a!� b
! @ � @a! @ @b! @ sin u,b

!
,a

!
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b. We start by constructing position vectors equal to and Thus,

and 

Calculating,

And

Therefore, the area of is one half of the area of the parallelogram formed

by vectors and , which is 

This connection between the magnitude of the cross product and area allows us
further insight into relationships in This calculation makes a direct and precise
connection between the length of the cross product and the area of the parallelogram
formed by two vectors. These two vectors can be anywhere in 3-space, not necessarily
in the plane. As well, it also allows us to determine, in particular cases, the cross
product of two vectors without having to carry out any computation.

EXAMPLE 3 Reasoning about a cross product involving the standard unit vectors

Without calculating, explain why the cross product of and is —that is,
j
!
� k
!
� i
!
.

i
!

k
!

j
!

R3.

1

2
V161 � 6.34 square units.AC

!
AB
!

ABC^

�AB
!
� AC

!
� � V1�9 22 � 1�4 22 � 18 22 � V161

� 1�9, �4, 8 2AB
!
� AC

!
� 1�213 2 � 1�1 2 1�3 2 , �114 2 � 013 2 , 01�3 2 � 1�2 2 14 2 2

AC
!
� 14, �3, 3 2AB

!
� 1�1 � 1�1 2 , 0 � 2, 0 � 1 2 � 10, �2, �1 2 AC

!
.AB

!

x

k

1

1

1

i = j × k = (1, 0, 0)

j

K(0, 0, 1)

O
J(0, 1, 0)

z

y

L(0, 1, 1)

Solution
As shown in the diagram, the area of square OJLK is 1. The cross product,
is a vector perpendicular to the plane determined by and , and must therefore
lie along either the positive or negative x-axis. Using the definition of the cross
product, and knowing that these vectors form a right-handed system, the only
possibility is that the cross product must then lie along the positive x-axis. The
length of the cross product must equal the area of the square OJLK, which is 1.
So, the required cross product is since 0 i! 0 � 1.i

!

k
!

j
! j

!
� k
!
,
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Using the same kind of reasoning, it is interesting to note that is which
could be determined by using the definition of a right-handed system and verified
by calculation.

Physical Application of the Cross Product
The cross product can also be used in the consideration of forces that involve 
rotation, or turning about a point or an axis. The rotational or turning effect of a
force is something that is commonly experienced in everyday life. A typical
example might be the tightening or loosening of a nut using a wrench. A second
example is the application of force to a bicycle pedal to make the crank arm
rotate. The simple act of opening a door by pushing or pulling on it is a third
example of how force can be used to create a turning effect. In each of these
cases, there is rotation about either a point or an axis.

In the following situation, a bolt with a right-hand thread is being screwed into a
piece of wood by a wrench, as shown. A force is applied to the wrench at point N
and is rotating about point M. The vector is the position vector of N with
respect to M—that is, it defines the position of N relative to M.

r
!
� MN

!f
!

�i
!
,k

!
� j
!

r × f
u

d

f

N

M
r = MN

The torque, or the turning effect, of the force about the point M is defined to be
the vector This vector is perpendicular to the plane formed by the vectors 
and , and gives the direction of the axis through M about which the force tends
to twist. In this situation, the vector representing the cross product is directed
down as the bolt tightens into the wood and would normally be directed along the
axis of the bolt. The magnitude of the torque depends upon two factors: the exerted
force, and the distance between the line of the exerted force and the point of
rotation, M. The exerted force is and the distance between M and the line of the
exerted force is d. The magnitude of the torque is the product of the magnitude of
the force (that is, and the distance d. Since the magnitude of the 
torque about M is The magnitude of the torque
measures the twisting effect of the applied force.

The force is measured in newtons, and the distance d is measured in metres, so
the unit of magnitude for torque is (newton)(metres), or joules (J), which is the
same unit that work is measured in.

f
!

1 0 r! 0 sin u 2 1 0 f! 0 2 � �r
!
� f
!
�.f

! d � 0 r! 0 sin u,0 f! 0 2 f
!
,

f
! r

!
r
!
� f
!
.

f
!

radius

force

N

turning
moment

M

NEL



414 NEL7 . 7 A P P L I C AT I O N S  O F  T H E  D OT  P R O D U C T  A N D  C R O S S  P R O D U C T

EXAMPLE 4 Using the cross product to calculate torque

A 20 N force is applied at the end of a wrench that is 40 cm in length. The force
is applied at an angle of to the wrench. Calculate the magnitude of the torque
about the point of rotation M.

Solution

One of the implications of calculating the magnitude of torque,
is that it is maximized when and when the 

force is applied as far as possible from the turning point—that is, is as large as
possible. To get the best effect when tightening a bolt, this implies that force
should be applied at right angles to the wrench and as far down the handle of the
wrench as possible from the turning point.

0 r! 0sin u � 10 r!� f
! 0 � 0 r! 0 0 f! 0 sin u,

0r!� f
! 0 � 1 0r! 0 sin u 2 0 f! 0 � 10.40 2 120 2V3

2
� 6.93 J

60°

IN SUMMARY

Key Idea

• Both the dot and cross products have useful applications in geometry and physics.

Need to Know

• , where is the force applied to an object, measured in newtons
(N); is the displacement of the object, measured in metres (m); and W is
work, measured in joules (J).

•

• Area of a parallelogram, with sides and , equals 

• Area of a triangle, with sides and , equals .

• Torque equals . 

• , the magnitude of the torque, measures the overall twisting effect of
applied force.
@r!� f

! @ r
!
� f
!
� 0r! 0 @f! @ sin u

1
2�a
!
� b
! @b

!
a
!

@a!� b
! @b

!
a
!

0a!� b
! @ � 0a! 0 @b! @ sin u

s
! F

!
W � F

! # s!

Exercise 7.7

PART A
1. A door is opened by pushing inward. Explain, in terms of torque, why this is

most easily accomplished when pushing at right angles to the door as far as
possible from the hinge side of the door.

C
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2. a. Calculate where and 

b. If and represent the sides of a parallelogram, explain why your
answer for part a. makes sense, in terms of the formula for the area of a
parallelogram.

PART B
3. Calculate the amount of work done in each situation.

a. A stove is slid 3 m across the floor against a frictional force of 150 N.

b. A 40 kg rock falls 40 m down a slope at an angle of to the vertical.

c. A wagon is pulled a distance of 250 m by a force of 140 N applied at an
angle of to the road.

d. A lawnmower is pushed 500 m by a force of 100 N applied at an angle of
to the horizontal.

4. Determine each of the following by using the method shown in Example 3:

a. b. c. d.

5. Calculate the area of the parallelogram formed by the following pairs of vectors:

a. and b. and 

6. The area of the parallelogram formed by the vectors and 

is . Determine the value(s) of a for which this is true.

7. In points and form the vertices of .

a. By constructing position vectors and determine the area of 
the triangle.

b. By constructing position vectors and determine the area of the 
triangle.

c. What conclusion can be drawn?

8. A 10 N force is applied at the end of a wrench that is 14 cm long. The force
makes an angle of with the wrench. Determine the magnitude of the
torque of this force about the other end of the wrench.

9. Parallelogram OBCA has its sides determined by and 
Its fourth vertex is point C. A line is drawn from B

perpendicular to side AC of the parallelogram to intersect AC at N. Determine
the length of BN.

PART C
10. For the vectors and show the 

following to be true.

a. The vector can be written as a linear combination of and 

b. 1p!� q
!2 � r

!
� 1p! # r!2q!� 1q! # r!2p! q

!
.p

!1p!� q
!2 � r

!

r
!
� 11, 1, 0 2 ,p

!
� 11, �2, 3 2 , q!� 12, 1, 3 2 ,

OB
!
� b
!
� 13, 1, 4 2 . OA

!
� a
!
� 14, 2, 4 2

45°

CA
!
,BC

!

AC
!
,AB

! ABC^C12, 3, 2 2A1�2, 1, 3 2, B11, 0, 1 2,R3,

�35q
!
� 11, 1, 2 2 p

!
� 1a, 1, �1 2b

!
� 11, 2, 4 2a

!
� 11, �2, 3 2b

!
� 11, 0, 1 2a

!
� 11, 1, 0 2

�i
!
� k
!

i
!
� k
!

�i
!
� j
!

i
!
� j
!

45°

20°

50°

b
!

a
!

b
!
� 12, 4, 2 2 .a

!
� 11, 2, 1 2�a

!
� b
!
�,

K

A

T

NEL
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Investigate and ApplyCAREER LINK WRAP-UP

CHAPTER 7: STRUCTURAL ENGINEERING

A structural engineer is designing a special roof for a building. The roof is
designed to catch rainwater and hold solar panels to collect sunlight for
electricity. Each angled part of the roof exerts a downward force of 50 kg/m2,
including the loads of the panels and rainwater. The building will need a 
load-bearing wall at the point where each angled roof meets. 

a. Calculate the force of the longer angled roof at the point where the roofs
meet.

b. Calculate the force of the shorter angled roof at the point where the roofs
meet.

c. Calculate the resultant force that the load-bearing wall must counteract to
support the roof.

d. Use the given lengths and angles to calculate the width of the building.

e. If the point where the two roofs meet is moved 2 m to the left, calculate
the angles that the sloped roofs will make with the horizontal and the
length of each roof. Assume that only the point where the roofs meet can
be adjusted and that the height of each roof will not change.

f. Repeat parts a. to c., using the new angles you calculated in part e.

g. Make a conjecture about the angles that the two roofs must make with the
horizontal (assuming again that the heights are the same but the point
where the roofs meet can be adjusted) to minimize the downward force
that the load-bearing wall will have to counteract.

h. Calculate the downward force for the angles you conjectured in part g.
Then perform the calculations for other angles to test your conjecture.

18 m 7 m

20° 60°



Key Concepts Review

In Chapter 7, you were introduced to applications of geometric vectors involving
force and velocity. You were also introduced to the dot product and cross product
between two vectors and should be familiar with the differences in their formulas
and applications. Consider the following summary of key concepts:

• When two or more forces are applied to an object, the net effect of the forces
can be represented by the resultant vector determined by adding the vectors
that represent the forces.

• A system is in a state of equilibrium when the net effect of all the forces
acting on an object causes no movement of the object. If there are three
forces, this implies that 

• The velocity of a moving object can be influenced by external forces, such 
as wind and the current of a river. The resultant velocity is determined by
adding the vectors that represent the object in motion and the effect of the
external force:

• The dot product between two geometric vectors and is a scalar quantity
defined as where is the angle between the two vectors. 

• The dot product between two algebraic vectors and is:

in R2 in R3

• If 

• The cross product between two vectors and results in a third vector
that is perpendicular to the plane in which the given vectors lie:

and 

Geometrically, is equivalent to the area of the parallelogram formed by 

vectors and .

• Work is an application of the dot product, while torque is an application of
the cross product.

• , where is the force applied to an object measured in newtons (N),
is the objects displacement measured in meters(m), and W is work measured

in Joules (J).

• Torque , where is the vector determined by the lever 
arm acting from the axis of rotation, is the applied force and is the angle
between the force and the lever arm.

uf
!r
!

� r
!
� f
!
� 0r! 0 @ f! @ sin u

s
! F

!
W � F

! # s!

b
!

a
!

�a
!
� b
! @ @a!� b

! @ � @a! @ @b! @ sin u.a
!
� b
!
� 1a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1 2

b
!

a
!

a
!
� b
!

a
! # b!� 0, then a

!
�b
!
.

a
! # b!� a1b1 � a2b2 � a3b3a

! # b!� a1b1 � a2b2

b
!

a
!

ua
! # b!� @a! @ @b! @ cosu,

b
!

a
!

v
!
r � v

!
object � v

!
external force

a
!
� b
!
� c
!
� 0
!
.
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Review Exercise

1. Given that , , and , determine
each of the following:

a.

b.

c.

d. Why is it possible to conclude that the vectors , , and are coplanar?

2. Given that and represent the standard basis vectors,
and determine each of the following:

a. c. e.

b. d. f.

3. a. For what value(s) of a are the vectors and 
collinear?

b. For what value(s) of a are these vectors perpendicular?

4. Determine the angle between the vectors and .

5. A parallelogram has its sides determined by and .

a. Draw a sketch of the parallelogram.

b. Determine the angle between the two diagonals of this parallelogram.

6. An object of mass 10 kg is suspended by two pieces of rope that make an
angle of and with the horizontal. Determine the tension in each of the
two pieces of rope.

7. An airplane has a speed of 300 km h and is headed due west. A wind is blowing
from the south at 50 km h. Determine the resultant velocity of the airplane.

8. The diagonals of a parallelogram are determined by the vectors
and .

a. Construct x, y, and z coordinate axes and draw the two given vectors.
In addition, draw the parallelogram formed by these vectors.

b. Determine the area of the parallelogram.

9. Determine the components of a unit vector perpendicular to and
to .

10. A triangle has vertices and 

a. Determine the largest angle in the triangle.

b. Determine the area of .^ABC

C15, 2, �4 2 .B10, �3, 4 2 ,A12, 3, 7 2 ,12, 3, 1 2 10, 3, �5 2
y
!
� 1�1, 7, 5 2x

!
� 13, �3, 5 2

> >
45°30°

OB
!
� 1�1, 4 2OA

!
� 15, 1 2 y

!
� 1�3, 6, 22 2x

!
� 14, 5, 20 2

y
!
� 1a, 12, 18 2x

!
� 13, a, 9 2a

! # 1a!� 2b
!2@a!� b

! @@b! @ a
! # b!@a!� b

! @0a! 0b
!
� 6i
!
� 3j
!
� 2k
!
,

a
!
� 2i
!
� j
!
� 2k
!

k
!

j
!
,i
!
,

c
!

b
!

a
!

@a!� b
! @ � @b!� c

! @b
!
� c
!

a
!
� b
!

c
!
� 1�5, 4, 5 2b

!
� 1�1, 0, 1 2a

!
� 1�1, 2, 1 2
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11. A mass of 10 kg is suspended by two pieces of string, 30 cm and 40 cm long,
from two points that are 50 cm apart and at the same level. Find the tension in
each piece of string.

12. A particle is acted upon by the following four forces: 25 N pulling east, 30 N
pulling west, 54 N pulling north, and 42 N pulling south.

a. Draw a diagram showing these four forces.

b. Calculate the resultant and equilibrant of these forces.

13. A rectangular box is drawn as shown in the diagram at the left. The lengths of
the edges of the box are and .

a. Select an appropriate origin, and then determine coordinates for the other
vertices.

b. Determine the angle between and .

c. Determine the scalar projection of on .

14. If and are unit vectors, and determine
.

15. Kayla wishes to swim from one side of a river, which has a current speed of
2 km h, to a point on the other side directly opposite from her starting point.
She can swim at a speed of 3 km h in still water.

a. At what angle to the bank should Kayla swim if she wishes to swim
directly across?

b. If the river has a width of 300 m, how long will it take for her to cross 
the river?

c. If Kayla’s speed and the river’s speed had been reversed, explain why it
would not have been possible for her to swim across the river.

16. A parallelogram has its sides determined by the vectors and

a. Determine the coordinates of vectors representing the diagonals.

b. Determine the angle between the sides of the parallelogram.

17. You are given the vectors and .

a. Determine values of a and b if is collinear with .

b. Determine an algebraic condition for and to be perpendicular.

c. Using the answer from part b., determine the components of a unit vector
that is perpendicular to .p

!

q
!

p
!

p
!

q
!

q
!
� 1a, b, 6 2p

!
� 12, �2, �3 2

OB
!
� 1�6, 6, �2 2 . OA

!
� 13, 2, �6 2

>>
12a
!
� 5b

!2 # 1b!� 3a
!2 @a!� b

! @ � �3,b
!

a
!

AC
!

AF
!AC
!

AF
!

BF � 3BC � 2,AB � 4,

3

2
4

H G

FE

D C

BA
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18. For the vectors and determine the
following:

a. the angle between these two vectors, to the nearest degree

b. the scalar projection of on 

c. the vector projection of on 

d. the angle that makes with the z-axis

19. A number of unit vectors, each of which is perpendicular to the other vectors
in the set, is said to form a special set. Determine which of the following sets
are special.

a.

b.

20. If and determine each of the
following:

a. c.

b. d.

21. Two forces of equal magnitude act on an object so that the angle between
their directions is If their resultant has a magnitude of 20 N, find the
magnitude of the equal forces.

22. Determine the components of a vector that is perpendicular to the vectors
and 

23. If and determine the dot product between and 
if the angle between and is 

24. The magnitude of the scalar projection of on is 4. Determine
the value of .

25. Determine the angle that the vector makes with the -axis.

26. A rectangular solid measuring 3 by 4 by 5 is placed on a coordinate axis as
shown in the diagram at the left.

a. Determine the coordinates of points C and F.

b. Determine .

c. Determine the angle between the vectors and .OP
!

CF
!CF

!

ya
!
� 112, �3, 4 2m

12, 2, 1 211, m, 0 260°.y
!

x
!

x
!
� 3y
!

x
!
� 2y
!0 y! 0 � 5,0 x! 0 � 2

b
!
� 15, 0, 1 2 .a

!
� 13, 2, �1 2

60°.

1p!� q
!2 � r

!1p!� q
!2 � 1p!� q

!2 1p!� r
!2 # r!p

!
� q
!

r
!
� j
!
� 2k
!
,q

!
� 2i
!
� j
!
� k
!
,p

!
� i
!
� 2j
!
� k
!
,

a 1

V2
, 

1

V2
, 0 b , a �1

V3
, 

1

V3
, 

1

V3
b , 10, 0, �1 211, 0, 0 2 , 10, 0, �1 2 , 10, 1, 0 2

m
!

m
!

n
!

m
!

n
!

n
!
� 12, V3, �1 2 ,m

!
� 1V3, �2, �3 2

F

ED(0, 0, 5)

C

O(0, 0, 0)

P

B(3, 4, 0)A(3, 0, 0)

z

y

x
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27. The vectors and are such that and where the angle
between the two given vectors is Determine each of the following:

a. b. c.

28. Find the scalar and vector projections of on each of the following vectors:

a. b. c.

29. a. Determine which of the following are unit vectors:

, and

b. Which one of vectors or is perpendicular to vector ? Explain.

30. A 25 N force is applied at the end of a 60 cm wrench. If the force makes a
angle with the wrench, calculate the magnitude of the torque.

31. a. Verify that the vectors and are perpendicular.

b. Find the direction cosines for each vector.

c. If the direction cosines for and if
the direction cosines for , verify that

.

32. The diagonals of quadrilateral ABCD are and 
Show that quadrilateral ABCD is a rectangle.

33. The vector makes an angle of with the x-axis and equal angles with
both the y-axis and z-axis.

a. Determine the direction cosines for .

b. Determine the angle that makes with the z-axis.

34. The vectors and are unit vectors that make an angle of with each
other. If and are perpendicular, determine the value of m.

35. If and verify that 

36. Use the fact that to prove the cosine law for the triangle shown in
the diagram with sides and 

37. Find the lengths of the sides, the cosines of the angles, and the area of the 
triangle whose vertices are and C12, �2, 3 2 .B13, �2, 5 2 ,A11, �2, 1 2 ,

c
!
.a

!
, b
!
,

0 c! 0 2 � c
! # c!

1
4
@a!� b

! @ 2.a
! # b!� 1
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! @ 2 �

b
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!
� b
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a
!
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!
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.3i

!
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!
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b2
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!
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!
,m1
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b
!
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!
� 12, 5, �1 230°

d
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b
!
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!
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d
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1
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, 1
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2, 13, 16 b ,

k
!
� j
!

j
!

i
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!
� j
!
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! @@d!� e

! @@d!� e
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Chapter 7 Test

1. Given the vectors and 
calculate the value of each of the following:

a. b. c. d.

2. Given the vectors and determine the
following:

a. the scalar projection and vector projection of on 

b. the angle that makes with each of the coordinate axes

c. the area of the parallelogram formed by the vectors and 

3. Two forces of 40 N and 50 N act at an angle of to each other. Determine
the resultant and equilibrant of these forces.

4. An airplane is heading due north at 1000 km h when it encounters a wind
from the east at 100 km h. Determine the resultant velocity of the airplane.

5. A canoeist wishes to cross a 200 m river to get to a campsite directly across
from the starting point. The canoeist can paddle at 2.5 m s in still water, and
the current has a speed of 1.2 m s.

a. How far downstream would the canoeist land if headed directly across 
the river?

b. In what direction should the canoeist head in order to arrive directly
across from the starting point?

6. Calculate the area of a triangle with vertices 
and .

7. A 25 kg mass is suspended from a ceiling by two cords. The cords make
angles of and with a perpendicular drawn to the ceiling, as shown.
Determine the tension in each cord.

8. a. Using the vectors and verify that the 

following formula is true:

b. Prove that this formula is true for any two vectors.

x
! # y!� 1

4 0x!� y
! 0 2 �

1
4 0x!� y

! 0 2y
!
� 1�1, 2, �3 2 ,x

!
� 13, 3, 1 225 kg

458
708

70°45°

C1�1, 1, 4 2 A1�1, 3, 5 2 , B12, 1, 3 2 ,

> >
> >

60°
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b
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!
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!
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!
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!
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!
� k
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Qa!� b
!R � Qb!� c

!Ra
! # Qb!� c

!Rb
!
� c
!

a
!
� b
!

c
!
� 15, 1, �7 2 ,b

!
� 12, 1, �3 2 ,a

!
� 1�1, 1, 1 2 ,



Chapter 8

EQUATIONS OF LINES AND PLANES

In this chapter, you will work with vector concepts you learned in the preceding
chapters and use them to develop equations for lines and planes. We begin with lines
in and then move to where lines are once again considered along with planes. 
The determination of equations for lines and planes helps to provide the basis for an
understanding of geometry in All of these concepts provide the foundation for 
the solution of systems of linear equations that result from intersections of lines 
and planes, which are considered in Chapter 9.

R3.

R3,R2

CHAPTER EXPECTATIONS
In this chapter, you will

• determine the vector and parametric equations of a line in two-space, Section 8.1

• make connections between Cartesian, vector, and parametric equations of a line
in two-space, Section 8.2

• determine the vector, parametric, and symmetric equations of a line in 3-space,
Section 8.3

• determine the vector, parametric, and Cartesian equations of a plane, 
Sections 8.4, 8.5

• determine some geometric properties of a plane, Section 8.5

• determine the equation of a plane in Cartesian, vector, or parametric form,
given another form, Section 8.5

• sketch a plane in 3-space, Section 8.6

NEL



Review of Prerequisite Skills

In this chapter, we will develop the equation of a line in two- and three-dimensional
space and the equation of a plane in three-dimensional space. You will find it helpful
to review the following concepts:
• geometric and algebraic vectors
• the dot product
• the cross product
• plotting points and vectors in three-space

We will begin this chapter by examining equations of lines. Lines are not vectors,
but vectors are used to describe lines. The table below shows their similarities
and differences.
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Lines Vectors

Lines are bi-directional. A line defines
a direction, but there is nothing to
distinguish forward from backwards.

Vectors are unidirectional. A vector defines a
direction with a clear distinction between forward
and backwards.

A line is infinite in extent in both
directions. A line segment has a finite
length.

Vectors have a finite magnitude.

Lines and line segments have a definite
location. The opposite sides of a
parallelogram are two different line
segments.

A vector has no fixed location. The opposite sides
of a parallelogram are described by the same
vector.

Two lines are the same when they have
the same direction and same location.
These lines are said to be coincident.

Two vectors are the same when they have the
same direction and the same magnitude. These
vectors are said to be equal.

Exercise

1. Determine a single vector that is equivalent to each of the following expressions:

a. b.

2. Determine if the following sets of points are collinear:

a. c.

b. d. R11, 2, �3 2 ,  S14, 1, 3 2 ,  T12, 4, 0 2J1�4, 3 2 ,  K14, 5 2 ,  L10, 4 2 A11, 2, 1 2 ,   B14, 7, 0 2 ,  C17, 12, �1 2A11, �3 2 ,  B14, 2 2 ,  C1�8, �18 2
512, �3, �4 2 � 311, 1, �7 213, �2, 1 2 � 11, 7, �5 2



3. Determine if is a right-angled triangle, given 
and 

4. Given and for what values of t are the vectors
perpendicular?

5. State a vector perpendicular to each of the following:

a. b. c.

6. Calculate the area of the parallelogram formed by the vectors and

7. Use the cross product to determine a vector perpendicular to each of the 
following pairs of vectors. Check your answer using the dot product.

a. and 

b. and 

8. For each of the following, draw the x-axis, y-axis, and z-axis, and accurately
draw the position vectors:

a. b. c. d.

9. Determine the position vector that passes from the first point to the second.

a. c.

b. d.

10. State the vector that is opposite to each of the vectors you found in question 9.

11. Determine the slope and y-intercept of each of the following linear equations.
Then sketch its graph.

a. c.

b. d.

12. State a vector that is collinear to each of the following and has the same 
direction:

a. b. c. d.

13. If and determine each of the following:

a. d.

b. e.

c. f.

14. Both the dot product and the cross product are ways to multiply two vectors.
Explain how these products differ.

12u
!
� v
!2 � 1u!� 2v

!21u!� v
!2 # 1u!� v

!2 v
!
� u
!

�v
! # u!

u
!
� v
!

u
! # v!

v
!
� 4i
!
� 2j
!
� k
!
,u

!
� 14, �9, �1 2 �5i

!
� 8j
!
� 2k
!

2i
!
� 6j
!
� 4k
!1�5, 4, 3 214, 7 2

5x � 5y � 154x � 8y � 8

3x � 5y � 1 � 0y � �2x � 5

14, 0, �4 2  and 10, 5, 0 21�7, �6 2  and 13, 8 2 11, 2, 4 2  and 13, �6, 9 214, 8 2  and 1�3, 5 2
D1�1, 2, 3 2C11, �2, 3 2B11, 2, �3 2A11, 2, 3 2

b
!
� 1�2, �1, 0 2a

!
� 1�1, �2, 0 2 b

!
� 13, �5, �2 2a

!
� 12, 1, �4 2

13, 1, �2 2 . 14, 10, 9 2c
!
� 1�7, �4, 0 2b

!
� 16, �5 2a

!
� 11, �3 2

v
!
� 12, t, �6 2 ,u

!
� 1t, �1, 3 2C15, 3, 2 2 . A11, 6, �2 2  , B12, 5, 3 2 ,^ABC
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InvestigateCAREER LINK

CHAPTER 8: COMPUTER PROGRAMMING WITH VECTORS

Computer programmers use vectors for a variety of graphics applications. Any
time that two- and three-dimensional images are designed, they are represented
in the form of vectors. Vectors allow the programmer to move the figure easily
to any new location on the screen. If the figure were expressed point by point
using coordinate geometry, each and every point would have to be recalculated
each time the figure needed to be moved. By using vectors drawn from an
anchor point to draw the figure, only the coordinates of the anchor point need
to be recalculated on the screen to move the entire figure. This method is used
in many different types of software, including games, flight simulators, drafting
and architecture tools, and visual design tools. 

Case Study—Breakout

Breakout is a classic video game, and a prime example of using vectors in
computer graphics. A paddle is used to bounce a ball into a section of bricks to
slowly break down a wall. Each time the ball hits the paddle, it bounces off at
an angle to the paddle. The path the ball takes from the paddle can be
described by a vector, which is dependent upon the angle and speed of the ball.
If the wall were not in the path of the ball, the ball would continue along its
path at that speed until it “fell” off of the screen. 

DISCUSSION QUESTIONS 

1. The coordinate plane represents the screen in the game “Breakout.” The ball
is travelling toward the paddle along the vector . Find the equation of the
line determined by vector in its current position. Draw a direction vector for
the line. 

2. Find where the line crosses the x-axis to show where the paddle must move
in order to bounce the ball back. 

3. Since the angle of entry for the ball is 45º, the ball will bounce off the
paddle along a path perpendicular to . Draw a vector perpendicular to 
that emanates from the origin in the direction the ball will travel when it
bounces off the paddle. Then draw a line parallel to vector that passes
through the point where crosses the x-axis.  r

! s
!

r
!

s
!

r
!

r
! r

!y

1

2

3

4

5

6

7

0–1–2–3 1 2
paddle

x
r



Section 8.1—Vector and Parametric Equations
of a Line in 

In this section, we begin with a discussion about how to find the vector and 
parametric equations of a line in To find the vector and parametric equations 
of a line, we must be given either two distinct points or one point and a vector that
defines the direction of the line. In either situation, a direction vector for the line is
necessary. A direction vector is defined to be a nonzero vector parallel
(collinear) to the given line. The direction vector is represented by a 
vector with its tail at the origin and its head at the point The x and y
components of this direction vector are called its direction numbers. For the vector

the direction numbers are a and b.

EXAMPLE 1 Representing lines using vectors

a. A line passing through has as its direction vector. Sketch
this line.

b. A line passes through the points and Determine a direction

vector for this line, and write it using integer components.

Solution
a. The vector is a direction vector for the line and is shown on the

graph. The required line is parallel to and passes through This line
is drawn through parallel to .

b. When determining a direction vector for the line through and 

we determine a vector equivalent to either or 

or BA
!
� a� 

1

4
, � 

7

2
bAB

!
� a 3

4
�

1

2
, 1

2
� 1�3 2 b � a 1

4
, 7

2
b BA

!
.AB

!
B Q34, 12R,AQ12, �3R

m
!

P14, 3 2 , P14, 3 2 .m
!m

!
� 1�7, 1 2

B Q34, 12R.AQ12, �3R
m
!
� 1�7, 1 2P14, 3 2

1a, b 2 , 1a, b 2 .m
!
� 1a, b 2m!� 1a, b 2

R2.

R2
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required line with direction 
vector (– 7, 1)

y

x
0

P (4, 3)

m = (– 7, 1)

6

2 4 6

2

4

–2

–6

–4

–2–4–6



8 . 1 V E C TO R  A N D  PA R A M E T R I C  E Q UAT I O N S  O F  A  L I N E  I N  R 2428

Vector and Parametric Equations of a Line in 

Vector Equation:
Parametric Equations:
where is the vector from to the point and is a direction 
vector with components 1a, b 2 . m

!1x0, y0 210, 0 2r0
! y � y0 � tb,  t�Rx � x0 � ta,

r
!
� r0
!
� tm

!
, t�R

R2

Both of these vectors can be multiplied by 4 to ensure that both direction numbers
are integers. As a result, either or are the best choices
for a direction vector. When we determine the direction vector, any scalar multiple of
this vector of the form is correct, provided that If would
be the direction vector, meaning that the line would not have a defined direction.

Expressing the Equations of Lines Using Vectors
In general, we would like to determine the equation of a line if we have a 
direction for the line and a point on it. In the following diagram, the given point 

is on the line L and is associated with vector designated as 
The direction of the line is given by where is any vector 
collinear with represents a general point on the line, where is the
vector associated with this point.

To find the vector equation of line L, the triangle law of addition is used.

In 

Since and the vector equation of the line is
written as 

When writing an equation of a line using vectors, the vector form of the line is
sometimes modified and put in parametric form. The parametric equations of a
line come directly from its vector equation. How to change the equation of a line
from vector to parametric form is shown below.

The general vector equation of a line is 

In component form, this is written as Expanding
the right side, If we equate
the respective x and y components, the required parametric form is 
and y � y0 � tb, t�R.

x � x0 � ta
1x, y 2 � 1x0, y0 2 � 1ta, tb 2 � 1x0 � ta, y0 � tb 2 , t�R.

1x, y 2 � 1x0, y0 2 � t1a, b 2 , t�R.

r
!
� r0
!
� tm

!
, t�R.

r
!
� r0
!
� tm

!
, t�R.

tm
!
� P0P

!
,r0

!
� OP0

!
,r

!
� OP

!
,

OP
!
� OP0

!
� P0P

!
.^OP0P,

O

tm

m = (a , b)

rr0

P(x, y)P0(x0, y0)

x

L
y r = r0 + tm , t    R  P  

OP
!

P1x, y 2m
!
.

tm
!
,  t�Rm

!
� 1a, b 2 , r0

!
.OP

!
0,P01x0, y0 2

10, 0 2t � 0,t � 0.t11, 14 2 m
!
� 1�1, �14 2m

!
� 11, 14 2

NEL
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In either vector or parametric form, t is called a parameter. This means that t can be
replaced by any real number to obtain the coordinates of points on the line.

EXAMPLE 2 Reasoning about the vector and parametric equations of a line

a. Determine the vector and parametric equations of a line passing through point
with direction vector 

b. Sketch the line, and determine the coordinates of four points on the line.
c. Is either point or point on this line?

Solution
a. Since A(1, 4) is on the line, and The 

vector equation is The parametric equations are

It is also possible to use other scalar multiples of as a direction 
vector, such as which gives the respective vector and parametric 
equations and The
vector has been chosen as our direction vector for the sake of
simplicity. Note that we have written the second equation with parameter
s to avoid confusion between the two lines. Although the two equations,

and appear with
different parameters, the lines they represent are identical.

b. To determine the coordinates of points on the line, the parametric equations
were used, with s chosen to be 0, 1, and 

To find the coordinates of a particular point, such as D, was substituted
into the parametric equations and 

The required point is The coordinates of the other points are 
determined in the same way, using the other values of s.

y

x
0

m = (– 1, 1)

s = 1, A(0, 5)
s = 0, B(1 , 4)

s = –1, C(2 , 3)

s = –6, D(7 , –2)

6

2 4 6

2

4

–2

–6

–4

–2 8

D17, �2 2 . y � 4 � 1�6 2 � �2.x � 1 � 1�6 2 � 7,
s � �6

�6.�1,x � 1 � s, y � 4 � s, s�R,

r
!
� 11, 4 2 � s1�1, 1 2 ,  s�R,r

!
� 11, 4 2 � t1�3, 3 2 ,  t�R,

1�1, 1 2 y � 4 � s, s�R.x � 1 � s,r
!
� 11, 4 2 � s1�1, 1 2 ,  s�R,
1�1, 1 2 , m

!
� 1�3, 3 2x � 1 � 3t, y � 4 � 3t,  t�R.

r
!
� 11, 4 2 � t1�3, 3 2 ,  t�R.

m
!
� 1�3, 3 2 .OP

!
0 � r

!
0 � 11, 4 2

R1�29, 34 2Q1�21, 23 2 m
!
� 1�3, 3 2 .A11, 4 2
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c. If the point lies on the line, then there must be consistency with
the parameter s. We substitute this point into the parametric equations to check
for the required consistency. Substituting gives and 

In the first equation, and in the second equation, Since these
values are inconsistent, the point Q is not on the line.

If the point is on the line, then and 
for both equations.

Since each of these equations has the same solution, we conclude that
is on the line.

Sometimes, the equation of the line must be found when two points are given.
This is shown in the following example.

EXAMPLE 3 Connecting vector and parametric equations with two points on a line

a. Determine vector and parametric equations for the line containing points
and 

b. What are the coordinates of the point where this line crosses the x-axis?

c. Can the equation also represent the line 
containing points E and F?

Solution
a. A direction vector for the line containing points E and F is

A vector equation for the line is
and its parametric equations are 

The equation given for this line is not unique. This is because there are an
infinite number of choices for the direction vector, and any point on the line
could have been used. In writing a second equation for the line, the parametric
equations would also have been correct
because is on the line and the direction vector is 

b. The line intersects the x-axis at a point with coordinates of the form At 

the point of intersection, and, so, Therefore,

and the line intersects the x-axis at the point Q�41
6 , 0R.� �

41

6
,

� �1 � 7 a�5

6
ba � �1 � 7s

s �
�5
6 .5 � 6s � 0,y � 0

1a, 0 2 .17, 6 2 .16, 11 2x � 6 � 7s, y � 11 � 6s,  s�R,

y � 5 � 6s, s�R.x � �1 � 7s,
r
!
� 1�1, 5 2 � s17, 6 2 ,  s�R,

17, 6 2 .m
!
� EF

!
� 16 � 1�1 2 , 11 � 5 2 �

r
!
� 1�15, �7 2 � t Q14

3 , 4R, t�R,

F16, 11 2 .E1�1, 5 2

R1�29, 34 2 s � 30,

s � 30,
34 � 4 � s,�29 � 1 � sR1�29, 34 2

s � 19.s � 22,

23 � 4 � s.�21 � 1 � s

Q1�21, 23 2

NEL
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c. If this equation represents the same line as the equation in part a., it is necessary
for the two lines to have the same direction and contain the same set of points. 

The line has as its direction vector. 

The two lines will have the same direction vectors because 

The two lines have the same direction, and if these lines have a point in
common, then the equations represent the same line. The easiest approach is 
to substitute into the first equation to see if this point is on the line.
Substituting gives or and

Since the solution to both of these equations is the
point is on the line, and the two equations represent the same line.

In the next example, vector properties will be used to determine equations for
lines that involve perpendicularity.

EXAMPLE 4 Selecting a strategy to determine the vector equation of a 
perpendicular line

Determine a vector equation for the line that is perpendicular to
and passes through point 

Solution
The direction vector for the given line is and this line is drawn
through as shown in red in the diagram. A sketch of the required line,
passing through and perpendicular to the given line, is drawn in blue.

Let the direction vector for the required blue line be Since the direction
vector of the given line is perpendicular to that of the required line,

Therefore, or 

The simplest integer values for a and b, which satisfy this equation, are and
This gives the direction vector and the required vector equation for

the perpendicular line is r
!
� 16, 5 2 � t12, 3 2 ,  t�R.

12, 3 2b � 3.
a � 2

�3a � 2b � 0.1a, b 2 # 1�3, 2 2 � 0

v
! # m!� 0.

v
!
� 1a, b 2 .

r = (4, 1) + s (–3, 2)

y

x
0

P (6, 5)

m = (– 3, 2)

6

2 4 6

2

4

–2

–6

–4

–2–4 8

(4, 1)

16, 5 214, 12 , m
!
� 1�3, 2 2 ,

P16, 5 2 .r
!
� 14, 1 2 � s1�3, 2 2 , s�R,

1�15, �7 2 s � �2,�7 � 5 � 6s.
�15 � �1 � 7s1�15, �7 2 � 1�1, 5 2 � s17, 6 21�15, �7 2

3
2Q14

3 , 4R � 17, 6 2 .Q14
3 , 4Rr

!
� 1�15, �7 2 � t Q14

3 , 4R, t�R,
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In this section, the vector and parametric equations of a line in were discussed.
In Section 8.3, the discussion will be extended to where many of the ideas
seen in this section apply to lines in three-space.

The following investigation is designed to aid in understanding the concept of
parameter, when dealing with either the vector or parametric equations of a line.

INVESTIGATION A. i. On graph paper, draw the lines and 
Make sure that you clearly show a direction vector for each line.

ii. Describe geometrically what each of the two equations represent.

iii. Give a vector equation and corresponding parametric equations for each of
the following:

• the line parallel to the x-axis, passing through 

• the line parallel to the y-axis, passing through 

iv. Sketch and 
using your own axes.

v. By examining parametric equations of a line, how is it possible to determine
by inspection whether the line is parallel to either the x-axis or y-axis?

vi. Write an equation of a line in both vector and parametric form that is 
parallel to the x-axis.

vii. Write an equation of a line in both vector and parametric form that is 
parallel to the y-axis.

B. i. Sketch the line on graph paper.

ii. On the set of axes used for part i., sketch each of the following:

•

•

•

•

If you are given the equation what is the
mathematical effect of changing the value of 

iii. For the line show that each of the 
following points are on this line by finding corresponding values of 
s: and 

iv. Which part of the equation indicates that there are an 
infinite number of points on this line? Explain your answer.

r
!
� r0
!
� tm

!
, t�R,

1�202, 101 2 .14, �2 2 , 1�4, 2 2 , 1198, �99 2 ,L1 : r
!
� 1�2, 1 2 � s12, �1 2 , s�R,

r0
!
?

r
!
� r0
!
� s12, �1 2 , s�R,

L4 : r
!
� 14, 2 2 � s12, �1 2 , s�R

L3 : r
!
� 12, �1 2 � s12, �1 2 , s�R

L2 :  r
!
� 1�3, 1 2 � s12, �1 2 , s�R

L1 : r
!
� 1�2, 1 2 � s12, �1 2 , s�R

L : r
!
� 1�3, 0 2 � s12, �1 2 , s�R,

L4: x � 4 � t,  y � 1,  t�R,
L3: x � �3,  y � 1 � s,  s�R,

Q1�2, �1 2P12, 4 2
p�R.

L2 :  r
!
� p11, 0 2 ,L1 : r

!
� t10, 1 2 ,  t�R,

R3,
R2
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Exercise 8.1

PART A

1. A vector equation is given as Explain why 

and are acceptable direction vectors 
for this line.

2. Parametric equations of a line are and 

a. Write the coordinates of three points on this line.

b. Show that the point lies on the given line by determining the
parameter value of t corresponding to this point.

3. Identify the direction vector and a point on each of the following lines:

a.

b.

c.

d.

PART B
4. A line passes through the points and Write two different

vector equations for this line.

5. A line is defined by the parametric equations and

a. Does lie on this line? Explain.

b. Write a vector equation for this line using the given parametric equations.

c. Write a second vector equation for this line, different from the one you
wrote in part b.

R1�9, 18 2y � 4 � 2t, t�R.
x � �2 � t

B1�3, 5 2 .A12, 1 2
x � �5t, y � 6, t�R

r
!
� 14, 1 � 2t 2 ,  t�R

x � 1 � 2t,  y � 3 � 7t,  t�R

r
!
� 13, 4 2 � t12, 1 2 ,  t�R

P1�14, 15 2
y � 5 � 2t,  t�R.x � 1 � 3t

m
!
� Q27, 17Rm

!
� 12, 1 2 ,m

!
� 1�2, �1 2 , r

!
� Q12, �3

4R � sQ13, 16R, s�R.

433

IN SUMMARY

Key Ideas

• The vector equation of a line in is where is
the direction vector and is the vector from the origin to any point on the
line whose general coordinates are This is equivalent to the equation

• The parametric form of the equation of a line is and

Need to Know

• In both the vector and parametric equations, t is a parameter. Every real
number for t generates a different point that lies on the line.

y � y0 � tb,  t�R.
x � x0 � ta

1x, y 2 � 1x0, y0 2 � t 1a, b 2 . 1x0, y0 2 .r0
! m

!
� 1a, b 2r

!
� r0
!
� tm

!
,  t�R,R2
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6. a. If the equation of a line is name the coordinates of three
points on this line.

b. Write a vector equation, different from the one given, in part a., that also
passes through the origin.

c. Describe how the line with equation relates to
the line given in part a.

7. A line has as its vector equation. A student 

decides to “simplify” this equation by clearing the fractions and multiplies the 

vector by 21. The student obtains as a 

“correct” form of the line. Explain why multiplying a point in this way is
incorrect.

8. A line passes through the points and 

a. Sketch this line.

b. Determine vector and parametric equations for this line.

9. A line passes through the points and 

a. Sketch this line.

b. Determine vector and parametric equations for this line.

10. For the line determine the following:

a. an equation for the line perpendicular to L, passing through 

b. the point at which the line in part a. intersects the y-axis

11. The parametric equations of a line are given as 
This line crosses the x-axis at the point with coordinates

and crosses the y-axis at the point with coordinates If O 
represents the origin, determine the area of the triangle AOB.

12. A line has as its vector equation. On this line,
the points A, B, C, and D correspond to parametric values and 3,
respectively. Show that each of the following is true:

a. b. c.

PART C
13. The line has as its parametric equations. If

L intersects the circle with equation at points A and B,
determine the following:

a. the coordinates of points A and B

b. the length of the chord AB

14. Are the lines and parallel?
Explain.

1x, y 2 � 11, 6 2 � t16, 4 22x � 3y � 15 � 0

x2 � y2 � 169
y � 9 � t,  t�R,x � 2 � t,L

AC
!
�

2
3 AD
!

AD
!
� 3AB

!
AC
!
� 2AB

!

s � 0, 1, 2,
r
!
� 11, 2 2 � s1�2, 3 2 ,  s�R,

B10, b 2 .A1a, 0 2y � 8 � s,  s�R.
x � �10 � 2s,

P12, 0 2L : r
!
� 11, �5 2 � s13, 5 2 , s�R,

N19, 5 2 .M14, 5 2
R10, 9 2 .Q10, 7 2

r
!
� 17, 3 2 � p1�2, 3 2 , p�R,Q13, 17R

r
!
� Q13, 17R � p1�2, 3 2 , p�R,

r
!
� 19, 12 2 � t13, 4 2 ,  t�R

r
!
� s13, 4 2 , s�R,

C

K

A

T



Section 8.2—Cartesian Equation of a Line
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In the previous section, we discussed the vector and parametric equations of 
lines in . In this section, we will show how lines of the form 
(slope–y-intercept form) and (Cartesian equation of a line,
also called a scalar equation of a line) are related to the vector and parametric
equations of the line.

The Relationship between Vector and Scalar Equations of Lines in 
The direction, or inclination, of a line can be described in two ways: by its slope
and by a direction vector. The slope of the line joining two points and

is given by the formula It is also possible to describe

the direction of a line using the vector defined by the two points A and B,
This direction vector is equivalent to a vector 

with its tail at the origin and its head at and is shown in the
diagram below.

In the following example, we will show how to take a line in slope–y-intercept form
and convert it to vector and parametric form.

C1x1 � x0, y1 � y0 2� 1x1 � x0, y1 � y0 2 .AB
!
� m
!

m �
rise
run �

y1 � y0

x1 � x0
.B1x1, y1 2 A1x0, y0 2 R2

Ax � By � C � 0
y � mx � bR2

y

x
O(0, 0)

A(x0, y0)

B(x1 , y1)

C(x1 – x0, y1 – y0)
y1 – y0

x1 – x0

Direction Vectors and Slope

In the diagram, a line segment AB with slope is shown 

with a run of a and a rise of b. The vector is used 
to describe the direction of this line or any line parallel to it,
with no restriction on the direction numbers a and b. In 
practice, a and b can be any two real numbers when describing 
a direction vector. If the direction vector of a line is 

this corresponds to a slope of except 

when (which corresponds to a vertical line).a � 0

m �
b
am

!
� 1a, b 2 ,

m
!
� 1a, b 2m �

b
a

A
O(0, 0)

m = b
a

B

Cb

ba

a

= (a, b)m
x

y

NEL



EXAMPLE 1 Representing the Cartesian equation of a line in vector and 
parametric form

Determine the equivalent vector and parametric equations of the line 

Solution
In the diagram below, the line is drawn. This line passes through 

has a slope of and, as a result, has a direction vector 

A vector equation for this line is with parametric 
equations 

In the next example, we will show the conversion of a line in vector form to one
in slope–y-intercept form.

EXAMPLE 2 Representing a vector equation of a line in Cartesian form

For the line with equation determine the
equivalent slope–y-intercept form.

Solution
Method 1:
The direction vector for this line is with slope 

This line contains the point If represents a general point on this
line, then we can use slope–point form to determine the required equation.

Thus,

The required equation for this line is in slope–y-intercept form.y � 4x � 18

4x � 18 � y

4x � 12 � y � 6

41x � 3 2 � y � 6

y � 1�6 2
x � 3

� 4

P1x, y 213, �6 2 . m �
�4
�1 � 4.m

!
� 1�1, �4 2 ,

r
!
� 13, �6 2 � s1�1, �4 2 , s�R,

y � 2 � 3t, t�R.x � 4t,
r
!
� 10, 2 2 � t14, 3 2 , t�R,

m
!
� 14, 3 2 .m �

3
4,10, 2 2 , y �

3
4x � 2

y �
3
4x � 2.

NEL436

y

x
0

m = (4, 3)

6

2 4 6

2

4

–2
–2–6

y = 3 x + 24

–4

(0, 2)
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Method 2:
We start by writing the given line in parametric form, which is

or This gives the
parametric equations and To find the required equation,

we solve for s in each component. Thus, and Since these

equations for s are equal,

Therefore, the required equation is which is the same answer we
obtained using Method 1. The graph of this line is shown below.

In the example that follows, we examine the situation in which the direction
vector of the line is of the form 

EXAMPLE 3 Reasoning about equations of vertical lines

Determine the Cartesian form of the line with the equation

Solution
The given line passes through the point with direction vector as
shown in the diagram below.

x
0

A (1, 4)

B (1, 0)m = (0, 2)

6

2 4

2

4

–2

–4

–2–4

y

10, 2 2 ,11, 4 2 ,
r
!
� 11, 4 2 � s10, 2 2 , s�R.

m
!
� 10, b 2 .

y

x
0

y = 4x – 18

(3, –6)

2 4 6

4

–4

–12

–8

–16

–20

–2

m = (– 1, – 4)

y � 4x � 18,
 y � 4x � 18

 y � 6 � 41x � 3 2 
�41x � 3 2

�1
� y � 6

 
x � 3

�1
�

y � 6

�4

s �
y � 6

�4 .s �
x � 3

�1

y � �6 � 4s.x � 3 � s
1x, y 2 � 13 � s, �6 � 4s 2 .s1�1, �4 21x, y 2 � 13, �6 2 �
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It is not possible, in this case, to calculate the slope because the line has direction

vector meaning its slope would be which is undefined. Since the line is 

parallel to the y-axis, it must have the form where is the point where
the line crosses the x-axis. The equation of this line is 

Developing the Cartesian Equation from a Direction Vector
In addition to making the connection between lines in either slope–y-intercept form
or Cartesian form with those in vector form, we would like to consider how direction
vectors can be used to obtain the equations of lines in Cartesian form.

In the following diagram, the line L represents a general line in A line has 
been drawn from the origin, perpendicular to L. This perpendicular line is called
the normal axis for the line and is the only line that can be drawn from the origin
perpendicular to the given line. If the origin is joined to any point on the normal
axis, other than itself, the vector formed is described as a normal to the given line.
Since there are an infinite number of points on the normal axis, this is a way of
saying that any line in  has an infinite number of normals, none of which is the
zero vector. A general point on the normal axis is given the coordinates 
and so a normal vector, denoted by is the vector 

The important property of the normal vector is that it is perpendicular to any
vector on the given line. This property of normal vectors is what allows us to
derive the Cartesian equation of the line.

In the following diagram, the line L is drawn, along with a normal 
to L. The point represents any point on the line, and the point 
represents a given point on the line.

P0 (x0, y0)
P (x, y)

m = (x – x0, y – y0)

= (A, B)n
normal axis

Ly

x
O(0,0)

P01x0, y0 2P1x, y 2 n
!
� 1A, B 2 ,

= (A, B)n

O(0,0)

normal axis

L
y

x

n
!
� 1A, B 2 .n

!
,

N1A, B 2 ,R2

R2.

x � 1 � 0 or x � 1.
1a, 0 2x � a,

2
0,10, 2 2 ,
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To derive the Cartesian equation for this line, we first determine In 
coordinate form, this vector is which represents a
direction vector for the line. In the diagram, this vector has been shown as 

Since the vectors and are perpendicular to each 

other,

(Expand)

(Rearrange)

Since the point is a point whose coordinates are known, as is 
we substitute C for the quantity to obtain

as the Cartesian equation of the line.

EXAMPLE 4 Connecting the Cartesian equation of a line to its normal

Determine the Cartesian equation of the line passing through which has
as its normal.

Solution
The required line is sketched by first drawing the normal and then

constructing a line L through perpendicular to this normal.

Method 1:
Let be any point on the required line L, other than A. Let be a vector
parallel to L.

AP
!

P1x, y 2

x

y

6

6

4

4

2

2

–6

–4

–2
–2

normal axis

A(4, –2)

n = (5, 3)
P (x, y)

O(0, 0)

L

0

A14, �2 2

n
!
� 15, 3 2

n
!
� 15, 3 2 A14, �2 2 ,

Ax � By � C � 0
�Ax0 � By0n

!
� 1A, B 2 , P01x0, y0 2 Ax � By � Ax0 � By0 � 0

 Ax � Ax0 � By � By0 � 0

 1A, B 2 # 1x � x0, y � y0 2 � 0

n
! # P0P

!
� 0.

P0P
!

n
!

m
!
� 1x � x0, y � y0 2 . P0P

!
� 1x � x0, y � y0 2 , P0P

!
.

Cartesian Equation of a Line in 

In the Cartesian equation of a line (or scalar equation) is given by
where a normal to this line is A normal to this

line is a vector drawn from the origin perpendicular to the given line to the
point .N1A, B 2 n

!
� 1A, B 2 .Ax � By � C � 0,

R2,

R2

C H A P T E R  8 439NEL



Since and are perpendicular,

Therefore, or 

Thus, or 

Method 2:
Since the Cartesian equation of the line is of the form

with C to be determined. Since the point 
is a point on this line, it must satisfy the following equation:

So, and 

Using either method, the required Cartesian equation is 

Since it has been established that the line with equation has a
normal vector of this now provides an easy test to determine whether
lines are parallel or perpendicular. 

n
!
� 1A, B 2 , Ax � By � C � 0

5x � 3y � 14 � 0.

5x � 3y � 14 � 0C � �14,

514 2 � 31�2 2 � C � 0

A14, �2 25x � 3y � C � 0,
n
!
� 15, 3 2 ,

5x � 3y � 14 � 05x � 20 � 3y � 6 � 0

51x � 4 2 � 31y � 2 2 � 015, 3 2 # 1x � 4, y � 2 2 � 0

n
! # AP
!
� 0.AP

!
n
!

AP
!
� 1x � 4, y � 1�2 2 2 � 1x � 4, y � 2 2 .

NEL

Parallel and Perpendicular Lines and their Normals

If the lines and have normals and respectively, we know the
following:

1. The two lines are parallel if and only if their normals are scalar multiples.
It follows that the lines direction vectors are also

scalar multiples in this case.
2. The two lines are perpendicular if and only if their dot product is zero. 

It follows that dot product of the direction vectors is also zero in
this case.

Two perpendicular lines
y

x

L2
L1

n1 
.

 
n2 = 0

normal axis L2normal axis L1

n1

n2

Two parallel lines

normal axis

y

x

L2

n1 = kn2

L1

n1

n2

n1
! # n2
!
� 0

k � 0n1
!
� kn2

!
, k�R,

n2
!
,n1

!
L2L1
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The next examples demonstrate these ideas.



EXAMPLE 5 Reasoning about parallel and perpendicular lines in 

a. Show that the lines and are
parallel and non-coincident.

b. For what value of k are the lines and
perpendicular lines?

Solution
a. The lines are parallel because when the two normals, and

are compared, the two vectors are scalar multiples 
The lines are non-coincident, since there is

no value of t such that In simple terms, lines
can only be coincident if their equations are scalar multiples of each other.

b. If the lines are perpendicular, then the normal vectors and
have a dot product equal to zero—that is or 

This implies that the lines and 

are perpendicular.

The following investigation helps in understanding the relationship between
normals and perpendicular lines.

EXAMPLE 6 Selecting a strategy to determine the angle between two lines in 

Determine the acute angle formed at the point of intersection created by the 
following pair of lines:

Solution
The direction of each line is determined by their respective direction vectors, so
the angle formed at the point of intersection is equivalent to the angle formed by
the direction vectors when drawn tail to tail. For its direction vector is

and for its direction vectors is These lines are clearly
not parallel as their direction vectors are not scalar multiples. They are also not
perpendicular because the dot product of their direction vectors is a nonzero
value. The angle between two vectors is determined by:

(Substitute)

(Simplify)u � cos�1° 1�1, 3 2 # 13, 4 21�1�1 22 � 13 22 2 1�13 22 � 14 22 2 ¢
a a
!
 #  b!@a! @  @b! @ bu � cos�1

b
!
� 13, 4 2 .L2a

!
� 1�1, 3 2 L1

L2: 1x, y 2 � 15, 1 2 � t 13, 4 2 , t�R
L1: 1x, y 2 � 12, 2 2 � s1�1, 3 2 , s�R

R2

8
3x � 4y � 4 � 0

3x � 2y � 3 � 0k �
8
3.3k � 8 � 0,

1k, 4 2 # 13, �2 2 � 0n4
!
� 13, �2 2 n3

!
� 1k, 4 2t13x � 4y � 6 2 .6x � 8y � 12 �

n2
!
� 16, �8 2 � 213, �4 2 � 2n1

!
.

n2
!
� 16, �8 2 , n1

!
� 13, �4 2

L4:3x � 2y � 3 � 0
L3: kx � 4y � 4 � 0

L2:6x � 8y � 12 � 0L1:3x � 4y � 6 � 0

R2
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IN SUMMARY

Key Idea

• The Cartesian (or scalar) equation of a line in is where
is a normal to the line.

Need to Know

• Two planes whose normals are and :

• are parallel if and only if , where k is any nonzero real number.

• are perpendicular if and only if 

• The angle between two lines is defined by the angle between their direction

vectors, and where u � cos�1 a a
!
 #  b!@a! @  @b! @ b .b

!
,a

!

 n1
! # n2
!
� 0.

n1
!
� kn2

!
 n2
!

n1
!

n
!
� 1A, B 2 Ax � By � C � 0,R2

(Evaluate)

The acute angle formed at the point of intersection of the given lines is about 

INVESTIGATION A. A family of lines has as its equation. On graph paper, sketch
the three members of this family when and 

B. What point do the three lines you sketched in part A have in common?

C. A second family of lines has as its equation. Sketch the three
members of this family used in part A for and 

D. What points do the lines in part C have in common?

E. Select the three pairs of perpendicular lines from the two families. Verify that
you are correct by calculating the dot products of their respective normals.

F. By selecting different values for k and t, determine another pair of lines that
are perpendicular.

G. In general, if you are given a line in how many different lines is it possible
to draw through a particular point perpendicular to the given line? Explain
your answer.

R2,

t � �4.t � 2,t � �2,
4x � ty � 8 � 0

k � 2.k � �1,k � 1,
kx � 2y � 4 � 0

55.3°.

u � 55.3°

u � cos�1 a 9

5�10
b

u � cos�1 a �3 � 121�10 2 1�25 2 b
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Exercise 8.2

PART A
1. A line has as its equation.

a. Give a direction vector for a line that is parallel to this line.

b. Give a direction vector for a line that is perpendicular to this line.

c. Give the coordinates of a point on the given line.

d. In both vector and parametric form, give the equations of the line parallel
to the given line and passing through 

e. In both vector and parametric form, give the equations of the line
perpendicular to the given line and passing through 

2. a. Sketch the line defined by the equation 

b. On the same axes, sketch the line 

c. Discuss the impact of switching the components of the direction vector
with the coordinates of the point on the line in the vector equation of a line
in 

3. For each of the given lines, determine the vector and parametric equations.

a. b. c. d.

4. Explain how you can show that the lines with equations and
are coincident.

5. Two lines have equations and 

a. Explain, with the use of normal vectors, why these lines are parallel.

b. For what value of k will these lines be coincident?

PART B
6. Determine the Cartesian equation for the line with a normal vector of 

passing through the point 

7. A line passes through the points and Determine the
Cartesian equation of this line.

8. A line is perpendicular to the line and that passes through
the point Determine the equation of this line in Cartesian form.

9. A line has parametric equations 

a. Sketch this line.

b. Determine a Cartesian equation for this line.

x � 3 � t, y � �2 � 4t, t�R.

P17, 2 2 . 2x � 4y � 7 � 0

B1�2, 4 2 .A1�3, 5 2A1�1, 5 2 . 14, 5 2 ,
4x � 6y � k � 0.2x � 3y � 6 � 0

6x � 18y � 24 � 0
x � 3y � 4 � 0

x � 4y � �1y �
3

2
x � 5y �

7

8
x � 6

R2.

q
!
� 1�2, 5 2 � t12, 1 2 ,  t�R.

s�R.r
!
� 12, 1 2 � s1�2, 5 2 , B1�2, 1 2 .

A17, 9 2 .

y � �
5
6 x � 9
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10. For each pair of lines, determine the size of the acute angle, to the nearest
degree, that is created by the intersection of the lines.

a. and 

b. and 

c. and 

d. and 

e. and 

f. and 

11. The angle between any pair of lines in Cartesian form is also the angle
between their normal vectors. For the lines and

do the following:

a. Sketch the lines.

b. Determine the acute and obtuse angles between these two lines.

12. The line segment joining and is the hypotenuse of a right
triangle. The third vertex, C, lies on the line with the vector equation

a. Determine the coordinates of C.

b. Illustrate with a diagram.

c. Use vectors to show that .

PART C
13. Lines and have and as their respective normals. Prove that the

angle between the two lines is the same as the angle between the two normals.

(Hint: Show that by using the fact that the sum of the angles in a
quadrilateral is )

14. The lines and have an angle of between
them. For what values of k is this true?

60°x � ky � 3 � 0x � y � 1 � 0
360°.

�AOC � u

O

C
B

A
x

y

L1L2

n2

n1u

n2
!

n1
!

L2L1

�ACB � 90°

1x, y 2 � 1�6, 6 2 � t13, �4 2 . B18, 4 2A1�3, 2 2
x � 2y � 7 � 0,

x � 3y � 6 � 0

5x � 10y � 20 � 0x � 3

1x, y 2 � 14, 0 2 � t1�4, 1 2x � 2t, y � 1 � 5t

2x � 4y � 81x, y 2 � 1�1, �1 2 � t12, 4 2y � �0.75x � 1y � 0.5x � 6

x � �1 � t, y � 2 � 6tx � 2 � 5t, y � 3 � 4t

1x, y 2 � 1�3, 4 2 � t1�4, �1 21x, y 2 � 13, 6 2 � t12, �5 2
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Section 8.3—Vector, Parametric, and
Symmetric Equations of 
a Line in 

In Section 8.1, we discussed vector and parametric equations of a line in . In
this section, we will continue our discussion, but, instead of we will examine
lines in 

The derivation and form of the vector equation for a line in is the same as in
If we wish to find a vector equation for a line in it is necessary that either

two points or a point and a direction vector be given. If we are given two points
and wish to determine a direction vector for the corresponding line, the 
coordinates of this vector must first be calculated.

EXAMPLE 1 Determining a direction vector of a line in R3

A line passes through the points and Calculate
possible direction vectors for this line.

Solution
A possible direction vector is 
In general, any vector of the form can be used as a
direction vector for this line. As before, the best choice for a direction vector is
one in which the direction numbers are integers, with common divisors removed.
This implies that either or are the best choices for a
direction vector for this line. Generally speaking, if a line has 
as its direction vector, then any scalar multiple of this vector of the form

can be used as a direction vector.

Vector and Parametric Equations of Lines in R3

Consider the following diagram.

When determining the vector equation of the line passing through P0 and P, we
know that the point is a given point on the line, and m

!
� 1a, b, c 2P01x0, y0, z0 2

O
r0

r

m

P(x, y, z)
P0(x0, y0, z0)

z

y

x

t1a, b, c 2 , t�R, t � 0,

m
!
� 1a, b, c 21�2, 0, �9 212, 0, 9 2

t12, 0, 9 2 , t�R, t � 0,
m
!
� 1�1 � 1�3 2 , 3 � 3, 5 � 1�4 22 � 12, 0, 9 2 .

B1�3, 3, �4 2 .A1�1, 3, 5 2

R3,R2.
R3

R3.
R2,

R2

R3



is its direction vector. If represents a general point on the line, then 
is a direction vector for this line. This allows us

to form the vector equation of the line.

In 

Since and the vector equation of the line is 
In component form, this can be written as 
The parametric equations of the line are found by equating the respective x, y, and z
components, giving x � x0 � ta, y � y0 � tb, z � z0 � tc, t�R.

1x, y, z 2 � 1x0, y0, z0 2 � t1a, b, c 2 , t�R.
r
!
� r0
!
� tm

!
, t�R.P0P

!
� tm

!
,OP0

!
� r0
!

OP
!
� OP0

!
� P0P

!
.OP0P,^

P0P
!
� 1x � x0, y � y0, z � z0 2P1x, y, z 2

Vector and Parametric Equations of a Line in 

Vector Equation:
Parametric Equations:
where the vector from the origin to a point on the line and

is a direction vector of the linem
!
� 1a, b, c 2r0
!
� 1x0, y0, z0 2 ,x � x0 � ta, y � y0 � tb, z � z0 � tc, t�R

r
!
� r0
!
� tm

!
, t�R

R3

EXAMPLE 2 Representing the equation of a line in R3 in vector and parametric form

Determine the vector and parametric equations of the line passing through
and 

Solution
A direction vector is A vector
equation is and its parametric equations are

It would also have been correct to choose
any multiple of as a direction vector and any point on the line. For
example, the vector equation would also
have been correct.

Since a vector equation of a line can be written in many ways, it is useful to be
able to tell if different forms are actually equivalent. In the following example, an
algebraic approach to this problem is considered.

EXAMPLE 3 Reasoning to establish the equivalence of two lines

a. Show that the following are vector equations for the same line:
and

b. Show that the following are vector equations for different lines:
and 

L4 : r
!
� 1�3, 10, 12 2 � k a 1

2
, �

1

2
, �1 b , k�R

L3 : r
!
� 11, 6, 1 2 � l1�1, 1, 2 2 , l�R,

L2 : r
!
� 14, �10, �21 2 � m 1�2, 4, 10 2 , m�R

L1 : r
!
� 1�1, 0, 4 2 � s 1�1, 2, 5 2 , s�R,

r
!
� 1�2, 4, �1 2 � t10, �2, 12 2 , t�R,

10, �1, 6 2x � �2, y � 3 � s, z � 5 � 6s, s�R.
r
!
� 1�2, 3, 5 2 � s10, �1, 6 2 , s�R,

m
!
� 1�2 � 1�2 2 , 3 � 4, 5 � 1�1 2 2 � 10, �1, 6 2 .

Q1�2, 4, �1 2 .P1�2, 3, 5 2
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Solution
a. Since the direction vectors are parallel—that is, —

this means that the two lines are parallel. To show that the equations are
equivalent, we must show that a point on one of the lines is also on the other
line. This is based on the logic that, if the lines are parallel and they share a
common point, then the two equations must represent the same line. To check
whether is also on substitute into its vector equation.

Using the x component, we find or Substituting 
into the above equation, This
verifies that the point is also on 

Since the lines have the same direction, and a point on one line is also on the 
second line, the two given equations represent the same line.

b. The first check is to compare the direction vectors of the two lines. Since 

the lines must be parallel. As in part a,

must be a point on for the equations to be equivalent. Therefore,
must give a consistent value of l for

each component. If we solve, this gives an inconsistent result since for 

the x and y components, and or for the z component. This 

verifies that the two equations are not equations for the same line.

Symmetric Equations of Lines in R3

We introduce a new form for a line in called its symmetric equation. The
symmetric equation of a line is derived from using its parametric equations and
solving for the parameter in each component, as shown below

Combining these statements gives 

These equations are called the symmetric equations of a line in R3.

x � x0
a �

y � y0
b �

z � z0
c , a, b, c � 0.

z � z0 � tc 4 t �
z � z0

c
, c � 0

y � y0 � tb 4  t �
y � y0

b
, b � 0

x � x0 � ta 4  t �
x � x0

a
, a � 0

R3,

l �
11
212 � 1 � 2l,

l � 4
1�3, 10, 12 2 � 11, 6, 1 2 � l1�1, 1, 2 2L31�3, 10, 12 2�2Q12, �1

2, �1R � 1�1, 1, 2 2 ,

L1.14, �10, �21 21�1, 0, 4 2 � � 51�1, 2, 5 2 � 14, �10, �21 2 .s � �5s � �5.4 � �1 � s,

14, �10, �21 2 � 1�1, 0, 4 2 � s1�1, 2, 5 2L114, �10, �21 2
21�1, 2, 5 2 � 1�2, 4, 10 2

Symmetric Equations of a Line in 

where is the vector from the origin to a point on the line, and 
is a direction vector of the line.

1a, b, c 21x0, y0, z0 2
x � x0

a
�

y � y0

b
�

z � z0

c
,  a � 0, b � 0, c � 0

R3



EXAMPLE 4 Representing the equation of a line in R3 in symmetric form

a. Write the symmetric equations of the line passing through the points
and 

b. Write the symmetric equations of the line passing through the points
and 

c. Write the symmetric equations of the line passing through the points
and 

Solution
a. A direction vector for this line is 

Using the point the parametric equations of the line are
and Solving each equation for t

gives the required symmetric equations, It is usually not

necessary to find the parametric equations before finding the symmetric 
equations. The symmetric equations of a line can be written by inspection if 
the direction vector and a point on the line are known. Using point B and the
direction vector found above, the symmetric equations of this line by inspection

are 

b. A direction vector for the line is 
The vector will be used as the direction vector. In a situation like this,
where the y direction number is 0, using point P the equation is written as 

c. A direction vector for the line is 

Using point X, possible symmetric equations are 
y � 2

�1 �
z � 5

�4 , x � �1.

10, �1, �4 2 .m
!
� 1�1 � 1�1 2 , 2 � 3, 5 � 9 2 �x � 2

1 �
z � 1

�1 , y � 3.

11, 0, �1 2 m
!
� 1�2 � 4, 3 � 3, 1 � 1�5 22 � 1�6, 0, 6 2 .x � 3

�4 �
y � 4

9 �
z � 8

�1 .

x � 1
�4 �

y � 5
9 �

z � 7
�1 .

z � 7 � t,  t�R.x � �1 � 4t, y � 5 � 9t,
A1�1, 5, 7 2 , 1�4, 9, �12 .m

!
� 1�1 � 3, 5 � 1�42 , 7 � 82 �

Y1�1, 3, 9 2 .X1�1, 2, 5 2 Q14, 3, �5 2 .P1�2, 3, 1 2 B13, �4, 8 2 .A1�1, 5, 7 2

IN SUMMARY

Key Idea

• In if is determined by a point on a line and 
is a direction vector of the same line, then

• the vector equation of the line is or equivalently

• the parametric form of the equation of the line is 
and 

• the symmetric form of the equation of the line is 

Need to Know

• Knowing one of these forms of the equation of a line enables you to find the
other two, since all three forms depend on the same information about the line.

x � x0
a �

y � y0
b �

z � z0
c  1�t 2 , a � 0, b � 0, c � 0

z � z0 � tc, t�R
x � x0 � ta, y � y0 � tb,

1x, y, z 2 � 1x0, y0, z0 2 � t 1a, b, c 2 r!� r
!
0 � tm

!
, t�R

m
!
� 1a, b, c 2r0

!
� 1x0, y0, z0 2R3,
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Exercise 8.3

PART A
1. State the coordinates of a point on each of the given lines.

a.

b.

c.

d.

e.

f.

2. State a direction vector for each line in question 1, making certain that the
components for each are integers.

PART B
3. A line passes through the points and 

a. Write two vector equations for this line.

b. Write the two sets of parametric equations associated with the vector
equations you wrote in part a.

4. A line passes through the points and 

a. Write a vector equation for the line containing these points.

b. Write parametric equations corresponding to the vector equation you wrote
in part a.

c. Explain why there are no symmetric equations for this line.

5. State where possible vector, parametric, and symmetric equations for each of
the following lines.

a. the line passing through the point with direction vector

b. the line passing through the points and 

c. the line passing through the point and parallel to the line passing
through the points and 

d. the line passing through the points and 

e. the line passing through the points and 

f. the line passing through the point and parallel to the z-axisQ11, 2, 4 2 O10, 0, 0 2X1�4, 3, 0 2 E1�1, 1, 0 2D1�1, 0, 0 2N1�2, 4, 7 2M1�2, �2, 1 2B1�2, 3, 0 2 B1�1, 2, 1 2A1�1, 1, 0 213, �2, 1 2 P1�1, 2, 1 2

B12, 5, �4 2 .A1�1, 5, �4 2
B13, �3, 5 2 .A1�1, 2, 4 2

x �
1
3

1
2

�
y �

3
4

�1
4

�
z �

2
5

1
2

x � 3, y � �2, z � �1 � 2k,  k�R

x � 2

�1
�

z � 1

2
, y � �3

x � �2 � 3t, y � 1 � 1�4t 2 , z � 3 � t,  t�R

x � 1

2
�

y � 1

1
�

z � 3

�1

s�Rr
!
� 1�3, 1, 8 2 � s1�1, 1, 9 2 ,

K



6. a. Determine parametric equations for each of the following lines:

and 

b. Determine the angle between the two lines.

7. Show that the following two sets of symmetric equations represent the same 

straight line: and 

8. a. Show that the points and lie on the line that
passes through (0, 0, 3) and has the direction vector 

b. Use parametric equations with suitable restrictions on the parameter to
describe the line segment from A to B.

9. Determine the value of k for which the direction vectors of the lines 

and are perpendicular.

10. Determine the coordinates of three different points on each line.

a.

b.

c.

d.

11. Express each equation in question 10 in two other equivalent forms. (i.e. vector,
parametric or symmetric form)

PART C
12. Determine the parametric equations of the line whose direction vector is 

perpendicular to the direction vectors of the two lines 

and and passes through the point 

13. A line with parametric equations 
intersects a sphere with the equation at the points A and B.
Determine the coordinates of these points.

14. You are given the two lines and
If the point lies on

and the point lies on determine the coordinates of these two points 
if is perpendicular to each of the two lines. (Hint: The vector is
perpendicular to the direction vector of each of the two lines.)

15. Determine the angle formed by the intersection of the lines defined by

and x � 2
3 �

y � 1
2 �

z
1.x � 1

2 �
y � 3

1 , z � �3

P1P2

!
P1P2

! L2,P2L1

P1L2 : x � �2 � 3s, y � �7 � 2s, z � 2 � 3s, s�R.
L1 : x � 4 � 2t, y � 4 � t, z � �3 � t, t�R,

x2 � y 2 � z 2 � 9
x � 10 � 2s, y � 5 � s, z � 2,  s�R,

12, �5, 0 2 .x � 5
3 �

y � 5
2 �

z � 5
4

x
�4 �

y � 10
�7 �

z � 2
3

x � �4, 
y � 2

3
�

z � 3

5

x � 1

3
�

y � 2

�1
�

z

4

x � �4 � 5s, y � 2 � s, z � 9 � 6s

1x, y, z 2 � 14, �2, 5 2 � t1�4, �6, 8 2
x � 3

�2 �
z
1, y � �1

x � 1
k �

y � 2
2 �

z � 1
k � 1

1�3, 1, �6 2 .B1�15, 5, �27 2A16, �2, 15 2
x � 1

�4 �
y � 1

�1 �
z � 3

1
x � 7

8 �
y � 1

2 �
z � 5

�2

z � 5x � 7
1 �

y � 11
�1 ,x � 6

1 �
y � 10

�1 �
z � 7

1

C

A

T
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Mid-Chapter Review

1. Name three points on each of the following lines:

a. c.

b. d.

2. Find x- and y-intercepts for each of the following lines:

a. b. and 

3. Two lines and 
intersect at the point with coordinates What is the angle between 
and 

4. Determine the angle that the line with equation makes 
with the x-axis and y-axis.

5. Determine a Cartesian equation for the line that passes through the point 
and is perpendicular to the line 

6. Determine an equation in symmetric form of a line parallel to 

and passing through .

7. Determine parametric equations of the line passing through and 
parallel to the line passing through and 

8. Determine direction angles (the angles the direction vector makes with the 
x-axis, y-axis, and z-axis) for the line with parametric equations 

9. Determine an equation in symmetric form for the line passing through
P and having direction angles , , and .

10. Write an equation in parametric form for each of the three coordinate axes 
in 

11. The two lines with equations 
and are given.

a. Determine a value for k if these lines are parallel.

b. Determine a value for k if these lines are perpendicular.

12. Determine the perimeter and area of the triangle whose vertices are the origin

and the x- and y-intercepts of the line x � 6
3  �  

y � 8
�2 .

x � 2 � 3s, y � 1 � 10s, z � 3 � 5s, s�R,t�R,
r
!
� 11, 2, �4 2 � t1k � 1, 3k � 1, k � 3 2 ,R3.

30°90°60°13, �4, 6 2
t�R.z � 5 � 7t,y � 12 � 8t,

x � 5 � 2t,

L13, �5, 6 2 .K12, 4, 5 2 11, 2, 5 210, 0, 2 2x � 3
3 �

y � 5
�4 �

z � 7
4

t�R.r
!
� 12, �3 2 � t15, �7 2 ,14, �3 2

r
!
�  t14, �5 2 , t�R,

L2?
L115, 3 2 . q�R,L2 : r

!
� 15, 3 2 � q12, 1 2 ,L1 : r

!
� 15, 3 2 � p1�4, 7 2 , p�R,

s�Ry � 3 � 2s,x � �6 � 2st�Rr
!
� 13, 1 2 � t1�3, 5 2 ,

x � 1

3
�

y � 2

2
�

z � 5

1
r
!
� 12, 3 2 � s13, �2 2 ,  s�R

3x � 5y � 8 � 0x � 2t � 5, y � 3t � 1,  t�R
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13. The Cartesian equation of a line is given by 

a. Determine a vector equation for this line.

b. Determine the parametric equations of this line.

c. Determine the acute angle that this line makes with the x-axis.

d. Determine a vector equation of the line that is perpendicular to the given
line and passes through the origin.

14. Determine the scalar, vector, and parametric equations of the line that passes
through points 

15. Determine a unit vector normal to the line defined by the parametric equations
and 

16. Determine the parametric equations of each line.

a. the line that passes through and has a slope of 

b. the line that passes through and is perpendicular to the line 

c. the line that passes through and 

17. Given the line 

a. determine the intersections with the coordinate planes, if any

b. determine the intercepts with the coordinate axes, if any

c. graph the line in an x-, y-, z-coordinate system.

18. For each of the following, determine vector, parametric, and, if possible,
symmetric equations of the line that passes through and has direction 
vector .

a.

b.

c.

d.

19. Determine a vector equation of the line that passes through the origin and is
parallel to the line through the points and 

20. Determine the parametric equations of the line through 
and which passes through the midpoint of the segment joining 
and 

21. The symmetric equations of two lines are given. Show that these lines are parallel.

and 

22. Does the point lie on the line with symmetric equations

Explain.x � 4
3 �

y � 2
1 �

z � 6
2 ?

D17, �1, 8 2 L2 : 
x � 1

�3 �
y � 2

�9 �
z � 1

15L1 : 
x � 2

1 �
y � 3

3 �
z � 4

�5

1�4, 4, �8 2 . 12, 6, 10 210, �8, 1 216, �5, 4 2 .1�4, 5, 6 2
d
!
� 10, 0, �2 2P0 � 12, 0, 0 2 , d
!
� 1�1, 5, 1 2P0 � 10, 0, 6 2 , d
!
� 12, 4, 6 2P0 � 13, 6, 9 2 , d
!
� 1�5, �2, 1 2P0 � 11, �2, 8 2 ,d

! P0

1x, y, z 2 � 112, �8, �4 2 � t1�3, 4, 2 2 ,10, 10 210, 7 21x, y 2 � 14, �6 2 � t12, �2 211, �1 2 �
2
31�5, 10 2

y � �5 � 4t.x � 1 � 2t

A1�4, 6 2  and B18, 4 2 .

3x � 4y � 24 � 0.
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 pL
P0

A line and a point
not on the line

 L1
 L2

Two intersecting lines

 p  L1
 L2

Two parallel and 
non-coincident lines

 p

a.

b.

c.

d.

Section 8.4—Vector and Parametric 
Equations of a Plane

In the previous section, the vector, parametric, and symmetric equations of lines
in were developed. In this section, we will develop vector and parametric
equations of planes in Planes are flat surfaces that extend infinitely far in all
directions. To represent planes, parallelograms are used to represent a small part
of the plane and are designated with the Greek letter This is the usual method
for representing planes. In real life, part of a plane might be represented by the
top of a desk, by a wall, or by the ice surface of a hockey rink.

Before developing the equation of a plane, we start by showing that planes can be
determined in essentially four ways. That is, a plane can be determined if we are
given any of the following:

a. a line and a point not on the line
b. three noncollinear points (three points not on a line)
c. two intersecting lines
d. two parallel and non-coincident lines

If we are given any one of these conditions, we are guaranteed that we can form a
plane, and the plane formed will be unique. For example, in condition a, we are
given line L and point not on this line; there is just one plane that can be
formed using this point and this line.

Linear Combinations and their Relationship to Planes
The ideas of linear combination and spanning sets are the two concepts needed to
understand how to obtain the vector and parametric equations of planes. For
example, suppose that vectors and and a linear 

combination of these vectors—that is, —
are formed. As different values are chosen for s and t, a new vector is formed.
Different values for these parameters have been selected, and the corresponding
calculations have been done in the table shown, with vector also calculated.P0P

!

P0P
!
� s11, 2, �1 2 � t10, 2, 1 2 ,  s, t�R

b
!
� 10, 2, 1 2a

!
� 11, 2, �1 2

P0

p.

R3.
R3

 A
 B

 C
 p

Three noncollinear points



is on the plane determined by the vectors and as is its head. The
parameters s and t are chosen from the set of real numbers, meaning that there 
are an infinite number of vectors formed by selecting all possible combinations 
of s and t. Each one of these vectors is different, and every point on the plane 
can be obtained by choosing appropriate parameters. This observation is used in
developing the vector and parametric equations of a plane.

In the following diagram, two noncollinear vectors, and are given. The linear
combinations of these vectors, form a diagonal of the parallelogram
determined by and 

EXAMPLE 1 Developing the vector and parametric equations of a plane

Two noncollinear vectors, are given, and the point Determine the vector
and parametric equations of the plane formed by taking all linear combinations of
these vectors.

Solution
The vectors and can be translated anywhere in When drawn tail to tail they
form and infinite number of parallel planes, but only one such plane contains the
point We start by drawing a parallelogram to represent part of this plane 
This plane contains and b

!
.a

!
,P0,

p.P0.

R3.b
!

a
!

p

P0.a
!
 and b

!
,

tb
!
.sa

! sa
!
� tb
!
,

b
!
,a

!

b
!
,a

!
P0P
!

s t s(1, 2, �1) � t(0, 2, 1), s, t�R P0P
!

�2 1 �211, 2, �1 2 � 110, 2, 1 2 1�2, �4, 2 2 � 10, 2, 1 2 � 1�2, �2, 3 2
4 �3 411, 2, �1 2 � 310, 2, 1 2 14, 8, �4 2 � 10, �6, �3 2 � 14, 2, �7 2

10 �7 1011, 2, �1 2 � 710, 2, 1 2 110, 20, �10 2 � 10, �14, �7 2 � 110, 6, �17 2
�2 �1 �211, 2, �1 2 � 110, 2, 1 2 1�2, �4, 2 2 � 10, �2, �1 2 � 1�2, �6, 1 2

 tb

b

a

P

P0

sa + tb

sa

O

P0

P

z

x

r0 r
a

b

y

p
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From the diagram, it can be seen that vector represents the vector for a
particular point on the plane, and represents the vector for any point P
on the plane. is on the plane and is a linear combination of and —that is,

Using the triangle law of addition in 
Thus,

The vector equation for the plane is s, and can be used to
generate parametric equations for the plane.

If and 
these expressions can be substituted into the vector equation to obtain

Expanding,

Simplifying,

Equating the respective components gives the parametric equations
z � z0 � sa3 � tb3, s, t�R.y � y0 � sa2 � tb2,x � x0 � sa1 � tb1,

1x, y, z 2 � 1x0 � sa1 � tb1, y0 � sa2 � tb2, z0 � sa3 � tb3 21x, y, z 2 � 1x0, y0, z0 2 � 1sa1, sa2, sa3 2 � 1tb1, tb2, tb3 2s, t�R.1x0, y0, z0 2 � s1a1, a2, a3 2 � t1b1, b2, b3 2 ,1x, y, z 2 �

b
!
� 1b1, b2, b3 2 ,a

!
� 1a1, a2, a3 2 ,r0

!
� 1x0, y0, z0 2 ,r

!
� 1x, y, z 2 ,

t�R,r
!
� r0
!
� sa
!
� tb
!
,

s, t�R.r
!
� r0
!
� sa
!
� tb
!
,OP

!
� OP0

!
� P0P

!
.

^OP0P,t�R.P0P
!
� sa
!
� tb
!
, s,

b
!

a
!

P0P
! r

!
P0

r0
!

The vectors and are the direction vectors for the plane. When determining the
equation of a plane, it is necessary to have two direction vectors. As will be seen in
the examples, any pair of noncollinear vectors are coplanar, so they can be used as
direction vectors for a plane. The vector equation of a plane always requires two
parameters, s and t, each of which are real numbers. Because two parameters are
required to define a plane, the plane is described as two-dimensional. Earlier, we saw
that the vector equation of a line, required just one parameter.
For this reason, a line is described as one-dimensional. A second observation about
the vector equation of the plane is that there is a one-to-one correspondence between
the chosen parametric values (s, t) and points on the plane. Each time values for s
and t are selected, this generates a different point on the plane, and because s and t
can be any real number, this will generate all points on the plane.

r
!
� r0
!
� tm

!
, t�R,

b
!

a
!

Vector and Parametric Equations of a Plane in 

In , a plane is determined by a vector where is a
point on the plane, and two noncollinear vectors vector and
vector 
Vector Equation of a Plane: s, or equivalently 

Parametric Equations of a Plane:

s, t�Rz � z0 � sa3 � tb3,
y � y0 � sa2 � tb2,
x � x0 � sa1 � tb1,

1x, y, z 2 � 1x0, y0, z0 2 � s1a1, a2, a3 2 � t 1b1, b2, b3 2 .t�Rr
!
� r0
!
� sa
!
� tb
!
,

b
!
� 1b1, b2, b3 2 . a

!
� 1a1, a2, a3 21x0, y0, z0 2r0

!
� 1x0, y0, z0 2R3

R3



After deriving vector and parametric equations of lines, a symmetric form was also
developed. Although it is possible to derive vector and parametric equations of
planes, it is not possible to derive a corresponding symmetric equation of a plane.

The next example shows how to derive an equation of a plane passing through
three points.

EXAMPLE 2 Selecting a strategy to represent the vector and parametric 
equations of a plane

a. Determine a vector equation and the corresponding parametric equations for
the plane that contains the points and 

b. Do either of the points or lie on this plane?

Solution
a. In determining the required vector equation, it is necessary to have two direction

vectors for the plane. The following shows the calculations for each of the 
direction vectors.

Direction Vector 1:
When calculating the first direction vector, any two points can be used and a
position vector determined. If the points and are
used, then 

Since, a possible first direction vector is

Direction Vector 2:
When finding the second direction vector, any two points (other than A and B)
can be chosen. If B and C are used, then 

A second direction vector is 

To determine the equation of the plane, any of the points A, B, or C can be used.
An equation for the plane is 

Writing the vector equation in component form will give the parametric
equations. Thus,

The parametric equations are and 
s, t�R.

z � 8 � 4s � t,x � �1 � 5t, y � 3 � s,

1x, y, z 2 � 1�1, 3, 8 2 � 10, s, 4s 2 � 15t, 0, t 2 .
s, t�R.r

!
� 1�1, 3, 8 2 � s10, 1, 4 2 � t15, 0, 1 2 ,
b
!
� 15, 0, 1 2 .15, 0, 1 2 .BC

!
� 14 � 1�1 2 ,  1 � 1, 1 � 0 2 �

a
!
� 10, 1, 4 2 .10, �2, �8 2 � �210, 1, 4 2 ,AB

!
� 1�1 � 1�1 2 ,  1 � 3, 0 � 8 2 � 10, �2, �8 2 .B1�1, 1, 0 2A1�1, 3, 8 2

Q114, 1, 5 2P114, 1, 3 2 C14, 1, 1 2 .B1�1, 1, 0 2 ,A1�1, 3, 8 2 ,
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b. If the point lies on the plane, there must be parameters that 
correspond to this point. To find these parameters, and are
substituted into the corresponding parametric equations.

Thus, and 

Solving for s and t, we find that and 
Using these values, consistency will be checked with the 

z component. If and are substituted into then
Since the z value for the point is also 3, this tells us that

the point with coordinates is on the given plane.

From this, it can be seen that the parametric values used for the x and y
components, and will not produce consistent values for 

So, the point is not on the plane.

In the following example, we will show how to use vector and parametric equations
to find the point of intersection of planes with the coordinate axes.

EXAMPLE 3 Solving a problem involving a plane

A plane has as its equation.
Determine the point of intersection between and the z-axis.

Solution
We start by writing this equation in parametric form. The parametric equations of
the plane are and 

The plane intersects the z-axis at a point with coordinates of the form —
that is, where Substituting these values into the parametric equations for
x and y gives and Simplifying gives the fol-
lowing system of equations:

Subtracting equation from equation gives so 

The value of t is found by substituting into either of the two equations. Using equa-
tion , or 

Solving for z using the equation of the third component, we find that

Thus, the plane cuts the z-axis at the point P10, 0, 2 2 .z � �3 � 1�5 2 � 2.

t � �5.4 � 2t � �6,1

s � 4.2s � 8,21

3s � 2t � 22

s � 2t � �61

0 � �2 � 3s � 2t.0 � 6 � s � 2t
x � y � 0.

P10, 0, c 2z � �3 � t.y � �2 � 3s � 2t,x � 6 � s � 2t,

p

r
!
� 16, �2, �3 2 � s11, 3, 0 2 � t12, 2, �1 2 , s, t�R,p

Q114, 1, 5 2z � 5.
t � 3,s � �2

P114, 1, 3 2z � 8 � 41�2 2 � 3 � 3.
z � 8 � 4s � t,t � 3s � �2

or s � �2.
1 � 3 � s,14 � 1 � 5t, or  t � 3

1 � 3 � s.14 � �1 � 5t

y � 1x � 14
P114, 1, 3 2



EXAMPLE 4 Representing the equations of a plane from a point and a line

Determine the vector and parametric equations of the plane containing the point
and the line 

Solution
In the following diagram, a representation of the line L and the point P are given.

To find the equation of the plane, it is necessary to find two direction vectors 
and a point on the plane. The line 
gives a point and one direction vector, so all that is required is a second 
direction vector. Using and 

The equation 
of the plane is 

The corresponding parametric equations are and
z � 1 � 4t, s, t�R.

x � 1 � s, y � 1 � s � 3t,

t10, 3, �4 2 ,  s, t�R.r
!
� 11, 1, 1 2 � s1�1, 1, 0 2 �

�210, 3, �4 2 .AP
!
� 11 � 1, �5 � 1, 9 � 1 2 � 10, �6, 8 2 �

P11, �5, 9 2 ,A11, 1, 1 2 L : r
!
� 11, 1, 1 2 � s1�1, 1, 0 2 , s�R,

p

P(1, –5, 9)
A(1, 1, 1)

L: r  = (1, 1, 1) + s(–1, 1, 0) 

L : r
!
� 11, 1, 1 2 � s1�1, 1, 0 2 , s�R.P11, �5, 9 2

IN SUMMARY

Key Idea

• In if is determined by a point on a plane and 
and are direction vectors, then

• the vector equation of the plane is or
equivalently 

• the parametric form of the equation of the plane is 

• there are no symmetric equations of the plane

Need to Know

• Replacing the parameters in the vector and parametric equations of a plane
with numbers generates points on the plane. Because there are an infinite
number of real numbers that can be used for s and t, there are an infinite
number of points that lie on a plane.

s, t�Rz � z0 � sa3 � tb3,y � y0 � sa2 � tb2,
x � x0 � sa1 � tb1,

1x, y, z 2 � 1x0, y0, z0 2 � s1a1, a2 a3 2 � t 1b1, b2, b3 2s, t�Rr
!
� r0

!
� sa
!
� tb
!
,

b
!
� 1b1, b2, b3 2a

!
� 1a1, a2, a3 2r0

!
� 1x0, y0, z0 2R3,

458 8 . 4 V E C TO R  A N D  PA R A M E T R I C  E Q UAT I O N S  O F  A  P L A N E NEL



C H A P T E R  8 459NEL

Exercise 8.4

PART A
1. State which of the following equations define lines and which define planes.

Explain how you made your decision.

a.

b.

c.

d.

2. A plane has vector equation 

a. Express the first direction vector with only integers.

b. Reduce the second direction vector.

c. Write a new equation for the plane using the calculations from parts a. and b.

3. A plane has as its
parametric equations.

a. By inspection, identify the coordinates of a point that is on this plane.

b. What are the direction vectors for this plane?

c. What point corresponds to the parameter values of and 

d. What are the parametric values corresponding to the point 

e. Using your answer for part d., explain why the point cannot
be on this plane.

4. A plane passes through the points and 

a. Using and as direction vectors, write a vector equation for this plane.

b. Using and one other direction vector, write a second vector equation
for this plane.

5. Explain why the equation 
does not represent the equation of a plane. What does this equation

represent?

PART B
6. Determine vector equations and the corresponding parametric equations of each

plane.

a. the plane with direction vectors and passing
through the point 

b. the plane passing through the points and 

c. the plane passing through points and with direction
vector a

!
� 17, 1, 2 2 B14, 5, �6 2 ,A11, 1, 0 2 C10, 0, 1 2B10, 1, 0 2 ,A11, 0, 0 2 ,A1�1, 2, 7 2 b

!
� 13, 4, �1 2 ,a

!
� 14, 1, 0 2

s, t�R,
r
!
� 1�1, 0, �1 2 � s12, 3, �4 2 � t14, 6, �8 2 ,

QR
! PR

!
PQ
! R11, 0, 1 2 .Q1�2, 3, 2 2 ,P1�2, 3, 1 2 ,

B10, 15, �8 2A10, 15, �7 2?n � �4?m � �1

x � 2m, y � �3m � 5n, z � �1 � 3m � 2n, m, n�R,

s, t�R.

r
!
� 12, 1, 3 2 � s Q13, �2, 34R � t16, �12, 30 2 ,r

!
� m14, �1, 2 2 � t14, �1, 5 2 , m, t�R

x � �3 � t, y � 5, z � 4 � t, t�R

r
!
� 1�2, 3, 0 2 � m13, 4, 7 2 ,  m�R

r
!
� 11, 2, 3 2 � s11, 1, 0 2 � t13, 4, �6 2 , s, t�R

C



7. a. Determine parameters corresponding to the point where P is a
point on the plane with equation 

b. Show that the point does not lie on 

8. A plane has as its
equation.

a. Give the equations of two intersecting lines that lie on this plane.

b. What point do these two lines have in common?

9. Determine the coordinates of the point where the plane with equation
crosses the z-axis.

10. Determine the equation of the plane that contains the point and
the line 

11. Determine the equation of the plane that contains the point and
the line 

12. a. Determine two pairs of direction vectors that can be used to represent the
xy-plane in 

b. Write a vector and parametric equations for the xy-plane in 

13. a. Determine a vector equation for the plane containing the points 
and 

b. Determine a vector equation for the plane containing the points
and 

c. How are the planes found in parts a. and b. related? Explain your answer.

14. Show that the following equations represent the same plane:
and

(Hint: Express each direction vector in the first equation as a linear combination
of the direction vectors in the second equation.)

15. The plane with equation intersects
the y- and z-axes at the points A and B, respectively. Determine the equation
of the line that contains these two points.

PART C
16. Suppose that the lines and are defined by the equations 

and respectively, where and and are noncollinear
vectors. Prove that the plane defined by the equation 
contains both of these lines.

r
!
� OP0

!
� sa
!
� tb
!b

!
a
!

s, t�R,r
!
� OP0

!
� tb
!
,

r
!
� OP0

!
� sa
!

L2L1

r
!
� 11, 2, 3 2 � m11, 2, 5 2 � n11, �1, 3 2

r
!
� s1�1, 5, �3 2 � t1�1, �5, 7 2 ,  s, t�R

v1�4, 7, 1 2 ,  u, v�R,r
!
� u1�3, 2, 4 2 �

R11, 1, 10 2 .Q1�3, 4, 8 2 ,P1�2, 2, 3 2 ,
C13, �1, 7 2 .A1�1, 2, 5 2 , O10, 0, 0 2 , 

R3.

R3.

r
!
� m12, �1, 7 2 , m�R.

A1�2, 2, 3 2r
!
� 12, 1, 3 2 � s14, 1, 5 2 , s�R.

P1�1, 2, 1 2r
!
� 14, 1, 6 2 � s111, �1, 3 2 � t1�7, 2, �2 2 , s, t�R,

r
!
� 1�3, 5, 6 2 � s1�1, 1, 2 2 � v12, 1, �3 2 , s, v�R

p.A10, 5, �4 2 s, t�R.t1�1, 1, 2 2 ,p : r
!
� 12, 0, 1 2 � s14, 2, �1 2 �

P15, 3, 2 2 ,

T

K

A
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Section 8.5—The Cartesian Equation 
of a Plane

In the previous section, the vector and parametric equations of a plane were
found. In this section, we will show how to derive the Cartesian (or scalar)
equation of a plane. The process is very similar to the process used to find the
Cartesian equation of a line in 

In the diagram above, a plane is shown, along with a line L drawn from the
origin, so that L is perpendicular to the given plane. For any plane in there is
only one possible line that can be drawn through the origin perpendicular to the
plane. This line is called the normal axis for the plane. The direction of the
normal axis is given by a vector joining the origin to any point on the normal
axis. The direction vector is called a normal to the plane. In the diagram, is a
normal to the plane because it joins the origin to a point on the normal
axis. Any nonzero vector is a normal to a plane if it lies along the normal axis.
This implies that an infinite number of normals exist for all planes.

A plane is completely determined when we know a point on the
plane and a normal to the plane. This single idea can be used to determine the
Cartesian equation of a plane.

Deriving the Cartesian Equation of a Plane
Consider the following diagram:

normal axis

z

x

y

n = (A, B, C)

O

P(x,y,z)

P 0(x
0, 

y 0, 
z 0)

p

1P01x0, y0, z0 22
N1A, B, C 2 , ON

!

R3,
p

p

N(A, B, C)
LO(0, 0, 0)

normal axis

z

x

y

R2.



To derive the equation of this plane, we need two points on the plane,
(its coordinates given) and a general point, different from 

The vector represents any vector on the plane.

If is a known normal to the plane, then the relationship,
can be used to derive the equation of the plane, since and any

vector on the plane are perpendicular.

Or,

Since the quantities in the expression are known, we’ll
replace this with D to make the equation simpler. The Cartesian equation of the
plane is, thus, Ax � By � Cz � D � 0.

�Ax0 � By0 � Cz0

Ax � By � Cz � 1�Ax0 � By0 � Cz0 2 � 0

Ax � Ax0 � By � By0 � Cz � Cz0 � 0

1A, B, C 2 # 1x � x0, y � y0, z � z0 2 � 0

n
! # P0P

!
� 0

n
!

n
! # P0P

!
� 0

n
!
� ON

!
� 1A, B, C 2P0P

!
� 1x � x0, y � y0, z � z0 2P0.

P1x, y, z 2 ,P01x0, y0, z0 2

EXAMPLE 1 Representing a plane by its Cartesian equation

The point is a point on the plane with normal 
Determine the Cartesian equation of this plane.

Solution
Two different methods can be used to determine the Cartesian equation of this
plane. Both methods will give the same answer.

Method 1:
Let be any point on the plane.

Therefore, represents any vector on the plane. Since
and 

 �x � 2y � 6z � 15 � 0

 �x � 1 � 2y � 4 � 6z � 12 � 0

 �11x � 1 2 � 21y � 2 2 � 61z � 2 2 � 0

1�1, 2, 6 2 # 1x � 1, y � 2, z � 2 2 � 0

n
! # AP
!
� 0,n

!
� 1�1, 2, 6 2AP

!
� 1x � 1, y � 2, z � 2 2P1x, y, z 2

n
!
� 1�1, 2, 6 2 .A11, 2, 2 2

Cartesian Equation of a Plane

The Cartesian (or scalar) equation of a plane in is of the form
with normal The normal is a 

nonzero vector perpendicular to all vectors in the plane.
n
!

n
!
� 1A, B, C 2 .Ax � By � Cz � D � 0

R3
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Multiplying each side by 

Either or is a correct equation
for the plane, but usually we write the equation with integer coefficients and with
a positive coefficient for the x-term.

Method 2:
Since the required equation has the form where

the direction numbers for the normal can be
substituted directly into the equation. This gives with D
to be determined. Since the point is on the plane, it satisfies the equation.

Substituting the coordinates of this point into the equation gives
and thus 

If is substituted into the equation will be
or 

To find the Cartesian equation of a plane, either Method 1 or Method 2 can be used.

The Cartesian equation of a plane is simpler than either the vector or the
parametric form and is used most often.

EXAMPLE 2 Determining the Cartesian equation of a plane from three coplanar
points

Determine the Cartesian equation of the plane containing the points 
and 

Solution
A normal to this plane is determined by calculating the cross product of the 
direction vectors and This results in a vector perpendicular to the plane in
which both these vectors lie.

and

Thus,

If we let be any point on the plane, then 
and since a normal to the plane is (5, 3, 20),

After simplifying, the required equation of the plane is 5x � 3y � 20z � 101 � 0.

 5x � 5 � 3y � 6 � 20z � 100 � 0

 15, 3, 20 2 # 1x � 1, y � 2, z � 5 2 � 0

AP
!
� 1x � 1, y � 2, z � 5 2 ,P1x, y, z 2� �115, 3, 20 2� 1�5, �3, �20 2AB

!
� AC

!
� 10 11 2�1�1 2 1�5 2 , �11�1 2�14 2 11 2 , 41�5 2�10 2 1�1 226 � 5 2 � 1�1, �5, 1 2AC

!
� 1�2 � 1�1 2 , �3 � 2,

AB
!
� 13 � 1�1 2 ,  2 � 2, 4 � 5 2 � 14, 0, �1 2

AC
!
.AB

!

C1�2, �3, 6 2 .B13, 2, 4 2 , A1�1, 2, 5 2 ,

x � 2y � 6z � 15 � 0.�x � 2y � 6z � 1�15 2 � 0
�x � 2y � 6z � D � 0,D � �15

D � �15.�11 2 � 212 2 � 612 2 � D � 0,

A11, 2, 2 2 �x � 2y � 6z � D � 0,
n
!
� 1A, B, C 2 � 1�1, 2, 6 2 , Ax � By � Cz � D � 0,

x � 2y � 6z � 15 � 0�x � 2y � 6z � 15 � 0

x � 2y � 6z � 15 � 0.�1,



A number of observations can be made about this calculation. If we had used 
and as direction vectors, for example, we would have found that

and 
When finding the equation of a plane, it is possible to use any pair of direction
vectors on the plane to find a normal to the plane. Also, when finding the value
for D, if we had used the method of substitution, it would have been possible
to substitute any one of the three given points in the equation.

In the next example, we will show how to convert from vector or parametric form
to Cartesian form. We will also show how to obtain the vector form of a plane if
given its Cartesian form.

EXAMPLE 3 Connecting the various forms of the equation of a plane 

a. Determine the Cartesian form of the plane whose equation in vector form is
.

b. Determine the vector and parametric equations of the plane with Cartesian
equation 

Solution
a. To find the Cartesian equation of the plane, two direction vectors are needed so

that a normal to the plane can be determined. The two given direction vectors
for the plane are and Their cross product is

A normal to the plane is and the Cartesian equation of the plane is
of the form Substituting the point into this
equation gives or 

Therefore, the Cartesian equation of the plane is 

b. Method 1:
To find the corresponding vector and parametric equations of a plane, the 
equation of the plane is first converted to its parametric form. The simplest way
to do this is to choose any two of the variables and replace them with a
parameter. For example, if we substitute and and solve for x, we
obtain or 

This gives us the required parametric equations and
The vector form of the plane can be found by rearranging the parametric

form.
z � t.

y � s,x � 2s � 5t � 6,

x � 2s � 5t � 6.x � 2s � 5t � 6 � 0
z � ty � s

2x � 2y � z � 7 � 0.

D � �7.211 2 � 212 2�1�1 2 � D � 0,
11, 2, �1 22x � 2y � z � D � 0.

12, 2, �1 2 ,� �312, 2, �1 211, 0, 2 2 � 1�1, 3, 4 2 � 1014 2�213 2 , 21�1 2�114 2 ,113 2�01�1 2 21�1, 3, 4 2 .11, 0, 2 2
x � 2y � 5z � 6 � 0.

r
!
� 11, 2, �1 2 � s11, 0, 2 2 � t1�1, 3, 4 2 ,  s, t�R

AB
!
� BC

!
� 14, 0, �1 2 � 1�5, �5, 2 2 � �115, 3, 20 2 .1�5, �5, 2 2BC

!
�

BC
!

AB
!

8 . 5 T H E  C A RT E S I A N  E Q UAT I O N  O F  A  P L A N E464 NEL



C H A P T E R  8 465NEL

Therefore,

The parametric equations of this plane are and
and the corresponding vector form is

Check:
This vector equation of the plane can be checked by converting to Cartesian form.
A normal to the plane is The plane has the
form If is substituted into the equation to find D,
we find that so and the equation is the given
equation 

Method 2:
We rewrite the given equation as We are going to find the
coordinates of three points on the plane, and writing the equation in this way
allows us to choose integer values for y and z that will give an integer value
for x. The values in the table are chosen to make the computation as simple 
as possible.

The following table shows our choices for y and z, along with the calculation for x.

x � 2y � 5z � 6.

x � 2y � 5z � 6 � 0.
D � �66 � 210 2 � 510 2 � D � 0,

16, 0, 0 2x � 2y � 5z � D � 0.
12, 1, 0 2 � 1�5, 0, 1 2 � 11, �2, 5 2 .

r
!
� 16, 0, 0 2 � s12, 1, 0 2 � t1�5, 0, 1 2 ,  s, t�R.

z � t,
y � s,x � 2s � 5t � 6,

r
!
� 16, 0, 0 2 � s12, 1, 0 2 � t1�5, 0, 1 2 ,  s, t�R

1x, y, z 2 � 16, 0, 0 2 � 12s, s, 0 2 � 1�5t, 0, t 21x, y, z 2 � 12s � 5t � 6, s, t 2

and

A vector equation is 

The corresponding parametric form is and

Check:
To check that these equations are correct, the same procedure shown in Method 1
is used. This gives the identical Cartesian equation, 6 � 0.x � 2y � 5z �

z � q.
x � 6 � 2p � 7q, y � �p � q,

r
!
� 16, 0, 0 2 � p1�2, �1, 0 2 � q1�7, �1, 1 2 ,  p, q�R.

 1 � 0 2 � 1�7, �1, 1 2AC
!
� 1�1 � 6, �1 � 0,

AB
!
� 14 � 6, �1 � 0, 0 � 0 2 � 1�2, �1, 0 2

y z x � 2y � 5z � 6 Resulting Point

0 0 x � 210 2�510 2 � 6 � 6 A16, 0, 0 2
�1 0 x � 21�1 2�510 2 � 6 � 4 B14, �1, 0 2
�1 1 x � 21�1 2�511 2 � 6 � �1 C1�1, �1, 1 2



EXAMPLE 4 Reasoning about parallel and perpendicular planes

a. Show that the planes and are
perpendicular.

b. Show that the planes and 
are parallel but not coincident.

Solution
a. For and for 

Since the two planes are perpendicular to each other.

b. For and so the planes are parallel. Because the
planes have different constants (that is, and the planes are not coincident.�3 2 ,�1

n3
!
� n4
!
� 12, �3, 2 2 ,p4,p3

n1
! # n2
!
� 0,

� 0
� 8 � 9 � 17
� 214 2 � 31�3 2 � 11�17 2n1

! # n2
!
� 12, �3, 1 2 # 14, �3, �17 2p2 : n2

!
� 14, �3, �17 2 .n1

!
� 12, �3, 1 2p1:

2z � 3 � 0p4 : 2x � 3y �p3 : 2x � 3y � 2z � 1 � 0

p2 : 4x � 3y � 17z � 0p1 : 2x � 3y � z � 1 � 0

Parallel and Perpendicular Planes

1. If and are two perpendicular planes, with normals and respectively,
their normals are perpendicular 

2. If and are two parallel planes, with normals and respectively,
their normals are parallel for all nonzero real numbers k.1that is, n1

!
 � kn2

!2 n2
!
,n1

!
p2p1

1that is, n1
! # n2
!
� 0 2 . n2

!
,n1

!
p2p1

Perpendicular Planes

p1

p2

n2

n1

Parallel Planes
n1

n2
p2

p1

When we considered lines in we showed how to determine whether lines were
parallel or perpendicular. It is possible to use the same formula to determine
whether planes are parallel or perpendicular.

R2,
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EXAMPLE 5 Calculating the angle formed between two intersecting planes

Determine the angle between the two planes and

Solution
For For 

Since and 

Therefore, the angle between the two planes is Normally, the angle between
planes is given as an acute angle, but it is also correct to express it as 120°.

60°.

cos u �
1

2

cos u �
2 � 1 � 2

6

cos u �
11, �1, �2 2 # 12, 1, �1 2

�6 �6

0n2
! 0 � V12 22 � 11 22 � 1�1 22 � V6,

V11 22 � 1�1 22 � 1�2 22 � V60n1
! 0 � p2 : n2

!
� 12, 1, �1 2 .p1 : n1

!
� 11, �1, �2 2 .

p2 : 2x � y � z � 2 � 0.
p1 : x � y � 2z � 3 � 0

Angle between Intersecting Planes

The angle between two planes, and with normals of and 

respectively, can be calculated using the formula 
n1
! # n2
!0n1

! 0 0n2
! 0 .cos u �

n2
!
,n1

!
p2,p1u

n2

n1

p1

p2

u

u

In general, if planes are coincident, it means that the planes have equations 
that are scalar multiples of each other. For example, the two planes

and are coincident 
because 

It is also possible to find the angle between intersecting planes using their
normals and the dot product formula for calculating the angle between two
vectors. The angle between two planes is the same as the angle between their
normals.

�312x � y � z � 13 2 .�6x � 3y � 3z � 39 �
�6x � 3y � 3z � 39 � 02x � y � z � 13 � 0



Exercise 8.5

PART A
1. A plane is defined by the equation 

a. What is a normal vector to this plane?

b. Explain how you know that this plane passes through the origin.

c. Write the coordinates of three points on this plane.

2. A plane is defined by the equation 

a. What is a normal vector to this plane?

b. Explain how you know that this plane passes through the origin.

c. Write the coordinates of three points on this plane.

3. A plane is defined by the equation 

a. What is a normal vector to this plane?

b. Explain how you know that this plane passes through the origin.

c. Write the coordinates of three points on this plane.

4. a. A plane is determined by a normal, and passes through
the origin. Write the Cartesian equation of this plane, where the normal is in
reduced form.

b. A plane has a normal of and passes through the origin.

Determine the Cartesian equation of this plane.

PART B
5. A plane is determined by a normal, and contains the point

Determine a Cartesian equation for this plane using the two
methods shown in Example 1.
P1�3, 3, 5 2 . n

!
� 11, 7, 5 2 ,

n
!
� Q�1

2, 34, 7
16R

n
!
� 115, 75, �105 2 ,

x � 0.

2x � 5y � 0.

x � 7y � 18z � 0.

IN SUMMARY

Key Idea

• The Cartesian equation of a plane in is where 

is a normal to the plane and and are any two
noncollinear direction vectors of the plane.

Need to Know

• Two planes whose normals are and 

• are parallel if and only if for any nonzero real number k.

• are perpendicular if and only if 

• have an angle between the planes determined by a n1
! # n2

!0n1
! 0 0n2

! 0 b .u � cos�1u

n1
!
 .n2
!
� 0.

n1
!
� kn2

!
n2
!

n1
!

b
!

a
!
 n

!
� a
!
 �  b

!
.n

!
� 1A, B, C 2 Ax � By � Cz � D � 0,R3
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6. The three noncollinear points and lie on
a plane.

a. Using and as direction vectors and the point determine
the Cartesian equation of this plane.

b. Using and as direction vectors and the point determine
the Cartesian equation of this plane.

c. Explain why the two equations must be the same.

7. Determine the Cartesian equation of the plane that contains the points
and 

8. The line with vector equation lies on the
plane as does the point Determine the Cartesian equation of 

9. Determine unit vectors that are normal to each of the following planes:

a.

b.

c.

10. A plane contains the point and the line 
Determine the Cartesian equation of this plane.

11. Determine the Cartesian equation of the plane containing the point 
and perpendicular to the line joining the points and 

12. a. Explain the process you would use to determine the angle formed between
two intersecting planes.

b. Determine the angle between the planes and

13. a. Determine the angle between the planes and

b. Determine the Cartesian equation of the plane that passes through the 

point and is perpendicular to the line 

14. a. What is the value of k that makes the planes and
parallel?

b. What is the value of k that makes these two planes perpendicular?

c. Can these two planes ever be coincident? Explain.

15. Determine the Cartesian equation of the plane that passes through the points
and and is perpendicular to the plane 

PART C
16. Determine an equation of the plane that is perpendicular to the plane

contains the origin, and has a normal that makes an angle of
with the z-axis.

17. Determine the equation of the plane that lies between the points 
and and is equidistant from them.13, 1, �4 2 1�1, 2, 4 230°
x � 2y � 4 � 0,

2x � y � z � 1 � 0.13, 2, 1 211, 4, 5 2
2x � 4y � z � 4 � 0

4x � ky � 2z � 1 � 0

x � 3

�2
�

y � 1

3
�

z � 4

1
.P11, 2, 1 2

1 � 0.x � 2y �
x � 2y � 3z � 4 � 0

2x � y � z � 8 � 0.
x � z � 7 � 0

13, �2, 0 2 .11, 2, 1 2 1�1, 1, 0 2s�R.
r
!
� 11, 1, 5 2 � s12, 1, 3 2 ,A12, 2, �1 23x � 4y � 12z � 1 � 0

4x � 3y � z � 3 � 0

2x � 2y � z � 1 � 0

p.P11, 3, 0 2 .p,
r
!
� 12, 0, 1 2 � s1�4, 5, 5 2 , s�R,

C11, 1, 0 2 .B13, 4, 5 2 ,A1�2, 3, 1 2 ,
P1�1, 2, 1 2 ,PR

!
QP
!

R1�2, 3, 5 2 ,QR
!

PQ
!

R1�2, 3, 5 2Q13, 1, 4 2 ,P1�1, 2, 1 2 ,K

A

C

T



Section 8.6—Sketching Planes in 

In previous sections, we developed methods for finding the equation of planes in
both vector and Cartesian form. In this section, we examine how to sketch a plane
if the equation is given in Cartesian form. When graphing planes in many of
the same methods used for graphing a line in will be used.

An important first observation is that, if we are given an equation such as 
and are asked to find its related graph, then a different graph is produced
depending on the dimension in which we are working. 

1. On the real number line, this equation refers to a point at 

2. In this equation represents a line parallel to the y-axis and 4 units to 
its right.

3. In the equation represents a plane that intersects the x-axis at 
(4, 0, 0) and is 4 units in front of the plane formed by the y- and z-axes.

We can see that the equation results in a different graph depending on
whether it is drawn on the number line, in or in 

Different interpretations of the graph with equation 

Varying the Coefficients in the Cartesian Equation
In the following situations, the graph of in is
considered for different cases.

Case 1– The equation contains one variable

Case 1a: Two of A, B, or C equal zero, and D equals zero.

In this case, the resulting equation will be of the form 
or If for example, this equation represents the yz-plane,
since every point on this plane has an x-value equal to 0. Similarly,

represents the xz-plane, and represents the xy-plane.z � 0y � 0

x � 0,z � 0.
x � 0, y � 0,

R3Ax � By � Cz � D � 0

x � 4

R3.R2,
x � 4

x � 4R3,

R2,

x � 4.

x � 4

R2
R3,

R3

3 410 2

real number line, R

x = 4
–1

R
O(0, 0) (4, 0)

(4, s), s[R 

x

y x= 4

R2

x

y

z

(4, 0, 0)

(4, s, t)

R3

x = 4
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Case 1b: Two of A, B, or C equal zero, and D does not equal zero.

If two of the three coefficients are equal to zero, the resulting equation
will be of the form or The following examples
show that these equations represent planes parallel to the yz-, xz-, and
xy-planes, respectively.

EXAMPLE 1 Representing the graphs of planes in whose Cartesian equations
involve one variable

Draw the planes with equations and 

Solution

Descriptions of the planes in Example 1 are given in the following table.

p3 : z � 6.p2 : y � 6,p1 : x � 5,

R3

z � c.y � b,x � a,

Plane Description Generalization

p1 :  x � 5
A plane parallel to the yz-plane 
crosses the x-axis at (5, 0, 0). This
plane has an x-intercept of 5.

A plane with equation is parallel
to the yz-plane and crosses the x-axis
at the point The plane 
is the yz-plane.

x � 01a, 0, 0 2 . x � a

p2 :  y � 6
A plane parallel to the xz-plane
crosses the y-axis at (0, 6, 0). This
plane has a y-intercept of 6.

A plane with equation is parallel
to the xz-plane and crosses the y-axis
at the point The plane 
is the xz-plane.

y � 010, b, 0 2 . y � b

p3 : z � 6

A plane parallel to the xy-plane
crosses the x-axis at the point 
(0, 0, 6). This plane has a 
z-intercept of 6.

A plane with equation is parallel
to the xy-plane and crosses the z-axis
at the point The plane 
is the xy-plane.

z � 010, 0, c 2 . z � c

x

y

z

p1

p1: x = 5
(5, 0 ,0)

x

y

z

(0, 6, 0)

p2

p2: y = 6
x

y

z

(0, 0, 6)
p3

p3: z = 6

Case 2– The equation contains two variables

Case 2a: One of A, B, or C equals zero, and D equals zero.

In this case, the resulting equation will have the form 
or The following example demonstrates

how to graph an equation of this type.
By � Cz � 0.Ax � Cz � 0,

Ax � By � 0,



EXAMPLE 2 Representing the graph of a plane in whose Cartesian equation
involves two variables, 

Sketch the plane defined by the equation 

Solution
For we note that the origin lies on the plane, and 
it also contains the z-axis. We can see that contains the z-axis because, if 
it is written in the form (0, 0, t) is on the plane because

Since (0, 0, t), represents any point on the z-axis,
this means that the plane contains the z-axis.

In addition, the plane cuts the xy-plane along the line All that is
necessary to graph this line is to select a point on the xy-plane that satisfies the 
equation and join that point to the origin. Since the point with coordinates 
satisfies the equation, we draw the parallelogram determined by the z-axis and the line
joining to and we have a sketch of the plane 

EXAMPLE 3 Describing planes whose Cartesian equations involve two 
variables, 

Write descriptions of the planes and 

Solution
These equations can be written as and

Using the same reasoning as above, this implies that contains the origin 
and the y-axis, and cuts the xz-plane along the line with equation 
Similarly, contains the origin and the x-axis, and cuts the yz-plane along the
line with equation 

Case 2b: One of A, B, or C equals zero, and D does not equal zero.

If one of the coefficients equals zero and the resulting 
equations can be written as 
or By � Cz � D � 0.

Ax � Cz � D � 0,Ax � By � D � 0,
D � 0,

y � 2z � 0.
p2

2x � z � 0.
p1

p2 : 0x � y � 2z � 0.
p1 : 2x � 0y � z � 0

p2 : y � 2z � 0.p1 : 2x � z � 0

D � 0

2x � y � 0.A11, 2, 0 2 ,O10, 0, 0 2 A11, 2, 0 22x � y � 0.

t�R,210 2 � 0 � 01t 2 � 0.
2x � y � 0z � 0,

p1

O10, 0, 0 2p1:2x � y � 0,

p1 : 2x � y � 0.

D � 0
R3

(1, 0, 0)

(0, 2, 0)

A( 1, 2, 0)

O(0, 0, 0)

2x–y =0

y

x

z

p1
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EXAMPLE 4 Graphing planes whose Cartesian equations involve two variables, 

Sketch the plane defined by the equation 

Solution
It is best to write this equation as so that we can easily calculate
the intercepts.

x-intercept: We calculate the x-intercept for this plane in exactly the same way that
we would calculate the x-intercept for the line If we let

then or This means that the plane has
an x-intercept of 5 and that it crosses the x-axis at 

y-intercept: To calculate the y-intercept, we let Thus,
This means that the plane has a y-intercept of and it crosses the
y-axis at 

To complete the analysis for the plane, we write the equation as
If the plane did cross the z-axis, it would do so at a point

where Substituting these values into the equation, we obtain
or This implies that the plane has no z-intercept

because there is no value of z that will satisfy the equation. Thus, the plane passes
through the points (5, 0, 0) and and is parallel to the z-axis. The plane
is sketched in the diagram below. Possible direction vectors for the plane are

and m2
!
� 10, 0, 1 2 .m1

!
� 15 � 0, 0 � 1�2 2 , 0 � 0 2 � 15, 2, 0 210, �2, 0 20z � 10.210 2 � 510 2 � 0z � 10

x � y � 0.
2x � 5y � 0z � 10.

10, �2, 0 2 . �2
�5y � 10, y � �2.x � 0.

15, 0, 0 2 .x � 5.2x � 510 2 � 10y � 0,
2x � 5y � 10.

2x � 5y � 10

p1 : 2x � 5y � 10 � 0.

D 	 0

(5, 0, 0)

(0, – 2, 0)

2x – 5y = 10

y

x

z

p1

Using the same line of reasoning as above, if A, C and D are nonzero when
the resulting plane is parallel to the y-axis. If B, C and D are nonzero

when the resulting plane is parallel to the x-axis.

Case 3– The equation contains three variables

Case 3b: A, B, and C do not equal zero, and D equals zero.

This represents an equation of the form, which is
a plane most easily sketched using the fact that a plane is uniquely
determined by three points. The following example illustrates this
approach.

Ax � By � Cz � 0,

A � 0,
B � 0,



EXAMPLE 5 Graphing planes whose Cartesian equations involve three 
variables, 

Sketch the plane 

Solution
Since there is no constant in the equation, the point is on the plane. To
sketch the plane, we require two other points. We first find a point on the xy-plane
and a second point on the xz-plane.

Point on xy-plane: Any point on the xy-plane has If we first substitute
into then or which means

that the given plane cuts the xy-plane along the line Using this
equation, we can now select convenient values for x and y to obtain the
coordinates of a point on this line. The easiest values are and 
implying that the point is on the plane.

Point on xz-plane: Any point on the xz-plane has If we substitute 
into then or which means that the
given plane cuts the xz-plane along the line As before, we choose
convenient values for x and z. The easiest values are implying that

is a point on the plane.

Since three points determine a plane, we locate these points in and form the
related triangle. This triangle, OAB, represents part of the required plane.

Case 3b: A, B, and C do not equal zero, and D does not equal zero.

This represents the plane with equation 
which is most easily sketched by finding its intercepts. Since we
know that three noncollinear points determine a plane, knowing these
three intercepts will allow us to graph the plane.

Ax � By � Cz � D � 0,

y

x

z

O(0, 0, 0)

B(1, 0, 1)

A(–3, 1, 0)

L2: x –z=0

L1: x+3y = 0
p1

R3

B11, 0, 1 2 x � z � 1,
x � z.

x � z,x � 310 2 � z � 0,x � 3y � z � 0,
y � 0y � 0.

A1�3, 1, 0 2 y � 1,x � �3

x � 3y � 0.
x � 3y � 0,x � 3y � 0 � 0,x � 3y � z � 0,z � 0

z � 0.

10, 0, 0 2
p1 : x � 3y � z � 0.

D � 0
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EXAMPLE 6 Graphing planes whose Cartesian equations involve three 
variables, 

Sketch the plane defined by the equation 

Solution
To sketch the plane, we calculate the coordinates of the points where the plane 
intersects each of the three coordinate axes (that is, we determine the three intercepts 
for the plane). This is accomplished by setting 2 of the 3 variables equal to zero 

and solving for the remaining variable. The x-, y-, and z-intercepts are and 

respectively. These three points form a triangle that forms part of the required
plane.

EXAMPLE 7 Reasoning about direction vectors of planes

Determine two direction vectors for the planes and

Solution
The plane crosses the x-axis at the point and 
the y-axis at the point One direction vector is thus 

Since the plane can be written 
as this implies that it does not intersect the z-axis, and 
therefore has as a second direction vector.

The plane passes through and cuts the 
xz-plane along the line Convenient choices for x and z are 5 and 1,
respectively. This means that is on Similarly, the given plane cuts
the xy-plane along the line Convenient values for x and y are 1 and 1.
This means that is on 

Possible direction vectors for are and
m2
!
� 11, 1, 0 2 . m1

!
� 15 � 0, 0 � 0, 1 � 0 2 � 15, 0, 1 2p2

p2.B11, 1, 0 2 x � y � 0.
p2.A15, 0, 1 2x � 5z � 0.

O10, 0, 0 2p2 : x � y � 5z � 0

m2
!
� 10, 0, 1 23x � 4y � 0z � 12,

� 14, �3, 0 2 .0 � 3, 0 � 0 2m1
!
� 14 � 0,

10, 3, 0 2 . 14, 0, 0 2p1 : 3x � 4y � 12

p2 : x � y � 5z � 0.
p1 : 3x � 4y � 12

y

x

z

O(0, 0, 0)

(2, 0, 0)

(0, 0, –4)

2x +3y–z=4

(0,    , 0)4
3

p1

�4,2, 43,

p1 : 2x � 3y � z � 4.

D 	 0



Exercise 8.6

PART A

1. Describe each of the following planes in words:

a. b. c.

2. For the three planes given in question 1, what are coordinates of their point of
intersection?

3. On which of the planes or could the point 
lie? Explain.

P15, �3, �3 2p2 : y � 6p1: x � 5

z � 4y � 3x � �2

IN SUMMARY

Key Idea

• A sketch of a plane in can be created by using a combination of points
and lines that help to define the plane.

Need to Know

• To sketch the graph of a plane, consider each of the following cases as it
relates to the Cartesian equation :

Case 1: The equation contains one variable.

a. Two of the coefficients (two of A, B, or C ) equal zero, and D equals zero.

These are the three coordinate planes—xy-plane, xz-plane, and yz-plane.

b. Two of the coefficients (two of A, B, or C ) equal zero, and D does not
equal zero.

These are parallel to the three coordinate planes.

Case 2: The equation contains two variables.

a. One of the coefficients (one of A, B, or C ) equals zero, and D equals zero.

Find a point with missing variable set equal to 0. Join this point to (0, 0, 0),
and draw a plane containing the missing variable axis and this point.

b. One of the coefficients (one of A, B, or C ) equals zero, and D does not
equal zero.

Find the two intercepts, and draw a plane parallel to the missing variable axis.

Case 3: The equation contains three variables.

a. None of the coefficients (none of A, B, or C) equals zero, and D equals zero.

Determine two points in addition to and draw the plane through
these points.

b. None of the coefficients (none of A, B, or C ) equals zero, and D does not
equal zero.

Find the three intercepts, and draw a plane through these three points.

10, 0, 0 2 ,

Ax � By � Cz � D � 0

R3

C
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PART B
4. Given that sketch the two graphs associated with

in and 

5. a. State the x-, y-, and z-intercepts for each of the following three planes:

i.

ii.

iii.

b. State two direction vectors for each plane.

6. a. For the plane with equation determine 

i. the coordinates of three points on this plane

ii. the equation of the line where this plane intersects the xy-plane

b. Sketch this plane.

7. Name the three planes that the equation represents in 

8. For each of the following equations, sketch the corresponding plane:

a. c.

b. d.

9. a. Write the expression in factored form.

b. Sketch the lines corresponding to this expression in 

c. Sketch the planes corresponding to this expression in 

10. For each given equation, sketch the corresponding plane.

a.

b.

c.

PART C
11. It is sometimes useful to be able to write an equation of a plane in terms of its

intercepts. If a, b, and c represent the x-, y-, and z-intercepts, respectively,

then the resulting equation is 

a. Determine the equation of the plane that has x-, y-, and z-intercepts of 
3, 4, and 6, respectively.

b. Determine the equation of the plane that has x- and z-intercepts of 5 and 
respectively, and is parallel to the y-axis.

c. Determine the equation of the plane that has no x- or y-intercept, but has a z-
intercept of 8.

–7,

x
a �

y
b �

z
c � 1.

5y � 15 � 0

3x � 4z � 12

2x � 2y � z � 4 � 0

R3.

R2.

xy � 2y � 0

p4 : y � z � 4p2 : 2x � y � z � 4

p3 : z � 4p1 : 4x � y � 0

R3.xyz � 0

p : 2x � y � 5z � 0,

p3 : 13y � z � 39

p2 : 3x � 4y � 5z � 120

p1 : 2x � 3y � 18

R3.R2x2 � 1 � 0

x2 � 1 � 1x � 1 2 1x � 1 2 ,A

K

T



CHAPTER 8: COMPUTER PROGRAMMING WITH VECTORS

A computer programmer is designing a 3-D space game. She wants to have an
asteroid fly past a spaceship along the path of vector m, collide with another 
asteroid, and be deflected along vector path . The spaceship is treated as the
origin and is travelling along vector d.

a. Determine the vector and parametric equations for the line determined by 
vector in its current position.  

b. Determine the vector and parametric equations for the line determined by
vector in its current position. 

c. By using the previous parts, can you determine if the asteroid and spaceship
could possibly collide as they travel along their respective trajectories? Explain 
in detail all that would have to take place for this collision to occur (if, indeed,
a collision is even possible).

d
!

ml
!

ml
!

y
z

x

m(15, 25, 5)d(10, 10, 10)

l(5, 20, 20)

(0, 0, 0)

Investigate and ApplyCAREER LINK WRAP-UP
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This concept was then extended to planes in R3. The following table summarizes the
various forms of the equation of a plane, where the coordinates of a point on the plane
are known as well as two direction vectors. s and t are parameters where s, .t�R

Form R2 R3

Vector equation 1x, y 2 � 1x0, y0 2 � t 1a, b 2 1x, y, z 2 � 1x0, y0, z0 2 � t 1a, b, c 2
Parametric equations x � x0 � at, y � y0 � bt x � x0 � at, y � y0 � bt, z � z0 � ct

Symmetric equations
x � x0

a
�

y � y0

b

x � x0

a
�

y � y0

b
�

z � z0

c

Cartesian equation Ax � BY � C � 0: n
!
� 1A, B 2 not applicable

Form R3

Vector equation 1x, y, z 2 � 1x0, y0, z0 2 � s 1a1, a2, a3 2 � t 1b1, b2, b3 2
Parametric equations x � x0 � sa1 � tb1, y � y0 � sa2 � tb2, z � z0 � sa3 � tb3

Cartesian equation Ax � BY � Cz � D � 0: n
!
� 1A, B, C 2

You also saw that when lines and planes intersect, angles are formed between them.
Both lines and planes have normals, which are vectors that run perpendicular to the
respective line or plane. The size of an angle can be determined using the normal
vectors and the following formula:

Sketching the graph of a plane in R3 can be accomplished by examining the
Cartesian equation of the plane. Determine whether the equation contains one, two,
or three variables and whether it contains a constant. This information helps to
narrow down which case you need to consider to sketch the graph. Once you have
determined the specific case (see the In Summary table in Section 8.6), you can determine
the appropriate points and lines to help you sketch a representation of the plane.

cos u �
n1
! # n2
!0n1

! 0 0n2
! 0

Key Concepts Review

In Chapter 8, you examined how the algebraic description of a straight line could 
be represented using vectors in both two and three dimensions. The form of the
vector equation of a line, is the same whether the line lies in a
two-dimensional plane or a three-dimensional space. The following table summarizes
the various forms of the equation of a line, where the coordinates of a point on the
line are known as well as a direction vector. t is a parameter where t�R.

r
!
� r0
!
� t d
!
,
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Review Exercise

1. Determine vector and parametric equations of the plane that contains the
points and 

2. In question 1, there are a variety of different answers possible, depending on
the points and direction vectors chosen. Determine two Cartesian equations
for this plane using two different vector equations, and verify that these two
equations are identical.

3. a. Determine the vector, parametric, and symmetric equations of the line
passing through points and 

b. Determine the vector and parametric equations of the plane containing the
points and 

c. Explain why a symmetric equation cannot exist for a plane.

4. Determine the vector, parametric, and symmetric equations of the line passing
through the point and perpendicular to the plane with equation

5. Determine the Cartesian equation of each of the following planes:

a. through the point , with normal 

b. through the points and and perpendicular to the plane
with equation 

c. through the points and , and parallel to the x-axis

6. Determine the Cartesian equation of the plane that passes through the origin and 
contains the line 

7. Find the vector and parametric equations of the plane that is parallel to the 
yz-plane and contains the point 

8. Determine the Cartesian equation of the plane that contains the line 
and the point 

9. Determine the Cartesian equation of the plane that contains the following lines:
and 

10. Determine an equation for the line that is perpendicular to the plane
passing through Give your answer in vector,

parametric, and symmetric form.

11. A plane has as its Cartesian equation. Determine
the vector and parametric equations of this plane.

3x � 2y � z � 6 � 0

12, 3, �3 2 .3x � 2y � z � 1

L2 : r
!
� 14, 4, 5 2 � s12, �3, �4 2 ,  s�R

L1 : r
!
� 14, 4, 5 2 � t15, �4, 6 2 ,  t�R,

14, �3, 2 2 .r
!
� 12, 3, 2 2 � t11, 1, 4 2 ,  t�R,

A1�1, 2, 1 2 .
r
!
� 13, 7, 1 2 � t12, 2, 3 2 ,  t�R.

12, 1, 4 211, 2, 1 2x � y � z � 1 � 0
10, 1, �1 2 ,13, 0, 1 2 n

!
� 1�1, 3, 3 2P10, 1, �2 2

2x � 3y � z � 1 � 0.
A17, 1, �2 2

C1�2, �1, 3 2 .B14, 3, 9 2 ,A1�3, 2, 8 2 ,
B14, 3, 9 2 .A1�3, 2, 8 2

C13, 1, 4 2 .B12, 1, 1 2 ,A11, 2, �1 2 ,
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12. Determine an equation for the line that has the same x- and z-intercepts as the
plane with equation Give your answer in vector,
parametric, and symmetric form.

13. Determine the vector, parametric, and Cartesian forms of the equation of the
plane containing the lines and

14. Sketch each of the following planes:

a.

b.

c.

d.

e.

15. Determine the vector, parametric, and Cartesian equations of each of the
following planes:

a. passing through the points and and parallel to the
line with equation 

b. containing the point and perpendicular to the line joining the
points and 

c. passing through the points and and parallel to the 
z-axis

d. passing through the points , , and 

16. Show that s, and 
are equations for 

the same plane.

17. The two lines and
are parallel but do not coincide. The

point is on Determine the coordinates of a point B on such

that is perpendicular to 

18. Write a brief description of each plane.

a.

b.

c.

19. a. Which of the following points lies on the line ?

b. If the point lies on the line, determine the values of a and b.1a, b, �3 2 D16, 6, 2 2C14, 5, 2 2B1�2, 2, 1 2A12, 4, 2 2 x � 2t, y � 3 � t, z � 1 � t

p3 : 2y � z � 6

p2 : x � 3z � 6

p1 : 2x � 3y � 6

L2.AB
! L2L1.A15, 4, �3 2 t12, 1, �1 2 , t�R,L2 : r

!
� 12, 1, 2 2 �

L1 : r
!
� 1�1, 1, 0 2 � s12, 1, �1 2 , s�R,

u, v�R,L2 : r
!
� 11, �1, �6 2 � u11, 1, 1 2 � v12, 5, 11 2 , t�R,L1 : r

!
� 11, 2, 3 2 � s1�3, 5, 21 2 � t10, 1, 3 2 ,13, �3, 3 212, 6, 4 211, 3, �5 2

15, �2, 4 214, 1, �1 2C1�2, 1, 5 2B12, 1, �6 2 A11, 1, 2 2L : r
!
� 2ti

!
� 14t � 3 2 j!� 1t � 1 2k!, t�R

Q13, 1, 2 2P11, �2, 5 2
p5 : 2x � 3y � 6z � 0

p4 : y � 2z � 4 � 0

p3 : x � 3z � 6 � 0

p2 : 2x � 3y � 12 � 0

p1 : 2x � 3y � 6z � 12 � 0

L2 : r2
!
� 17, �1, 0 2 � t12, �6, �10 2 ,  t�R.

L1 : r
!
� 13, �4, 1 2 � s11, �3, �5 2 ,  s�R,

2x � 5y � z � 7 � 0.



20. Calculate the acute angle that is formed by the intersection of each pair 
of lines.

a. and 

b. and 

c. and 

d. and

21. Calculate the acute angle that is formed by the intersection of each pair 
of planes.

a. and 

b. and 

22. a. Which of the following lines is parallel to the plane 

i.

ii.

iii.

b. Do any of these lines lie in the plane in part a.?

23. Does the point (4, 5, 6) lie in the plane 

Support your answer with the appropriate calculations.

24. Determine the parametric equations of the plane that contains the following
two parallel lines:

and

25. Explain why the vector equation of a plane has two parameters, while the
vector equation of a line has only one.

26. Explain why any plane with a vector equation of the form
will always pass through the origin.

27. a. Explain why the three points and do not
determine a plane.

b. Explain why the line and the point 
do not determine a plane.

28. Find a formula for the scalar equation of a plane in terms of a, b, and c, where
a, b, and c are the x-intercept, the y-intercept, and the z-intercept of a plane,
respectively. Assume that all intercepts are nonzero.

18, �7, 5 2r
!
� 14, 9, �3 2 � t11, �4, 2 2

1�1, 2, 1 212, 3, �1 2 , 18, 5, �5 21x, y, z 2 � 1a, b, c 2 � s1d, e, f 2 � t1a, b, c 2
L2: 1x, y, z 2 � 11, 4, 4 2 � t1�6, 2, �2 2L1: 1x, y, z 2 � 12, 4, 1 2 � t13, �1, 1 2

q1�6, 6, �1 2?1x, y, z 2 � 14, 1, 6 2 � p13, �2, 1 2 �

x � 1

4
�

y � 6

�1
�

z

1

x � �3t, y � �5 � 2t, z � �10t

r
!
� 13, 0, 2 2 � t11,�2, 2 2 4x � y � z � 10 � 0?

2x � 3y � z � 4 � 0x � y � z � 1 � 0

x � 2y � 4 � 02x � 3y � z � 9 � 0

s1�1, 2 ,3 2L2: 1x, y, z 2 � 11, 5, 4 2 �

L1: 1x, y, z 2 � 14, 7,�1 2 � t14, 8,�4 2z � �7 � sL2: x � �1 � 2s, y � 3s,
L1: x � �1 � 3t, y � 1 � 4t, z � �2t

y � �x � 3y � 4x � 2

L2 : 
x � 2

2
�

1 � y

3
L1 : 

x � 1

1
�

y � 3

5
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29. Determine the Cartesian equation of the plane that has normal vector
and passes through the point 

30. A plane passes through the points , and 

a. Determine a vector equation of the plane.

b. Determine a set of parametric equations of the plane.

c. Determine the Cartesian equation of the plane.

d. Determine if the point lies on the plane.

31. Determine the Cartesian equation of the plane that is parallel to the plane
and passes through each point below.

a.

b.

c.

32. Show that the following pairs of lines intersect. Determine the coordinates of
the point of intersection and the angles formed by the lines.

a. and

b. and

33. Determine the vector equation, parametric equations, and, if possible,
symmetric equation of the line that passes through the point and

a. has direction vector 

b. also passes through the point 

c. is parallel to the line that passes through and 

d. is parallel to the x-axis

e. is perpendicular to the line 

f. is perpendicular to the plane determined by the points 
, and 

34. Determine the Cartesian equation of the plane that

a. contains the point and has normal vector 

b. contains the point and the line 

c. contains the point and is parallel to the xy-plane

d. contains the point and is parallel to the plane 

e. is perpendicular to the yz-plane and has y-intercept 4 and z-intercept 

f. is perpendicular to the plane and contains the line1x, y, z 2 � 12, �1, �1 2 � t13, 1, 2 2x � 2y � z � 6

�2

4z � 8 � 03x � y �
P1�4, 2, 4 2P13, 3, 3 2 x � 4

3 �
y � 2

�5 �
z � 1

2P1�2, 0, 6 2 12, �4, 5 2P1�2, 6, 1 2
C1�3, 2, 1 2B13, �4, 2 2 A14, 2, 1 2 ,1x, y, z 2 � 11, 0, 5 2 � t1�3, 4, �6 2

S1�2, �5, 9 2R14, 8, �5 2Q1�7, 9, 3 21�2, �4, �10 2 P11, 3, 5 2
L2: 

x � 6

3
�

y � 2

�2
L1: 

x � 3

3
�

y � 1

4

y � 6 � sy � �3 � t
L2: x � 23 � 2sL1: x � 5 � 2t

12, �2, 2 21�1, 5, �1 210, 0, 0 24x � 2y � 5z � 10 � 0

13, 5, �4 2
C13, 2, 1 2 .A11, �3, 2 2 , B1�2, 4, �2 215, 8, �3 2 .16, �5, 12 2

C H A P T E R  8
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Chapter 8 Test

1. a. Given the points and 

i. determine the vector and parametric equations of the plane that
contains these three points

ii. determine the corresponding Cartesian equation of the plane that
contains these three points

b. Does the point with coordinates lie on this plane?

2. The plane intersects the coordinate axes at and .

a. Write an equation for this plane, expressing it in the form 

b. Determine the coordinates of a normal to this plane.

3. a. Determine a vector equation for the plane containing the origin and the line
with equation 

b. Determine the corresponding Cartesian equation of this plane.

4. a. Determine a vector equation for the plane that contains the following 
two lines:

and 

b. Determine the corresponding Cartesian equation of this plane.

5. a. A line has as its symmetric equations. Determine the 

coordinates of the point where this line intersects the yz-plane.

b. Write a second symmetric equation for this line using the point you found
in part a.

6. a. Determine the angle between and where the two planes are defined
as and 

b. Given the planes and ,

i. determine a value of k if these planes are parallel

ii. determine a value of k if these planes are perpendicular

c. Explain why the two given equations that contain the parameter k in part b
cannot represent two identical planes.

7. a. Using a set of coordinate axes in sketch the line 

b. Using a set of coordinate axes in sketch the plane 

c. The equation represents an equation of a plane in
Explain why this plane must always contain the z-axis.R3.

A, B � 0,Ax � By � 0,

x � 2y � 0.R3,

x � 2y � 0.R2,

p4 : kx � 2y � 8z � 9p3 : 2x � y � kz � 5

p2 : x � y � z � 0.p1 : x � y � z � 0
p2p1

x � 2
4 �

y � 4
�2 � z 

s�RL2 : r
!
� 14, �3, 5 2 � s15, 1, �1 2 , t�R,L1 : r
!
� 14, �3, 5 2 � t12, 0, �3 2 ,

t�R.r
!
� 12, 1, 3 2 � t11, 2, 5 2 ,

x
a �

y
b �

z
c � 1.

10, 0, 4 212, 0, 0 2 , 10, 3, 0 2 ,p

Q1, �1, �1
2R

C14, 4, 4 2 ,A11, 2, 4 2 , B12, 0, 3 2 ,

C H A P T E R  8  T E S T484



Chapter 9

RELATIONSHIPS BETWEEN POINTS, LINES, 
AND PLANES

In this chapter, we will introduce perhaps the most important idea associated with
vectors, the solution of systems of equations. In previous chapters, the solution of
systems of equations was introduced in situations dealing with two equations in
two unknowns. Geometrically, the solution of two equations in two unknowns is
the point of intersection between two lines on the xy-plane. In this chapter, we are
going to extend these ideas and consider systems of equations in and interpret
their meaning. We will be working with systems of up to three equations in three
unknowns, and we will demonstrate techniques for solving these systems.

R3

CHAPTER EXPECTATIONS
In this chapter, you will 

• determine the intersection between a line and a plane and between two lines in
three-dimensional space, Section 9.1

• algebraically solve systems of equations involving up to three equations in three
unknowns, Section 9.2

• determine the intersection of two or three planes, Sections 9.3, 9.4

• determine the distance from a point to a line in two- and three-dimensional
space, Section 9.5

• determine the distance from a point to a plane, Section 9.6

• solve distance problems relating to lines and planes in three-dimensional space
and interpret the results geometrically, Sections 9.5, 9.6

NEL



Review of Prerequisite Skills

In this chapter, you will examine how lines can intersect with other lines and
planes, and how planes can intersect with other planes. Intersection problems are
geometric models of linear systems. Before beginning, you may wish to review
some equations of lines and planes.

R E V I E W  O F  P R E R E Q U I S I T E  S K I L L S486 NEL

In the table above,
• is the position vector whose tail is located at the origin and whose head 

is located at the point in and in 
• is a direction vector whose components are in and in 
• and are noncollinear direction vectors whose components are 

and respectively in 
• s and t are parameters where and 
• is a normal to the line defined by in 
• is a normal to the plane defined by in 

Vector Equation of a Line in Vector Equation of a Line in 

Vector Equation of a Plane in Scalar Equation of a Plane in R3R3

normal axis

z

x

y

n = (A, B, C)

O

P(x,y,z)

Ax + By + Cz + D = 0

P 0(x
0, 

y 0, 
z 0)

p

O

P0

P

z

x

r0 r
a

b

y

p

r = r0 + sa + tb, s, t    R P  

R2R2

O
r0

r

m

P(x, y, z)
P0(x0, y0, z0)

z

y

L

x

r = r0 + tm , t    R 

tm

P  

O

tm

m = (a , b)

rr0

P(x, y)P0(x0, y0)

x

L
y r = r0 + tm , t    R  P  

R3Ax � By � Cz � D � 01A, B, C 2 R2Ax � By � C � 01A, B 2 t�Rs�R
R31b1, b2, b3 2 1a1, a2, a3 2b

!
a
! R31a, b, c 2R21a, b 2m
! R31x0, y0, z0 2R21x0, y0 2r0
!

Type of Equation Lines Planes

Vector equation r
!
� r
!
0 � tm

!
r
!
� r
!
0 � sa

!
� tb
!

Parametric equation

z � z0 � tc

y � y0 � tb

x � x0 � ta

z � z0 � sa3 � tb3

y � y0 � sa2 � tb2

x � x0 � sa1 � tb1

Cartesian equation Ax � By � C � 0
in three-dimensional space

Ax � By � Cz � D � 0



Exercise

1. Determine if the point is on the given line.

a. ,

b.

c. ,

d. ,

2. Determine the vector and parametric equations of the line that passes through
each of the following pairs of points:

a. d.

b. e.

c. f.

3. Determine the Cartesian equation of the plane passing through point and 
perpendicular to 

a. d.

b. e.

c. f.

4. Determine the Cartesian equation of the plane that has the vector equation

5. Which of the following lines is parallel to the plane 
Do any of the lines lie on this plane?

L1: ,

L2: ,

L3:

6. Determine the Cartesian equations of the planes that contain the following 
sets of points:

a.

b.

7. Determine the vector and Cartesian equations of the plane containing
and and parallel to the y-axis.

8. Determine the Cartesian equation of the plane that passes through 
and is perpendicular to and 5x � y � 3z � 6 � 0.2x � y � 3z � 1 � 0

A1�1, 3, 4 2Q12, �1, 6 2P11, �4, 3 2
R10, 0, �3 2Q16, 4, 0 2 ,P14, 1, �2 2 , C16, �1, 5 2B12, 0, 0 2 ,A11, 0, �1 2 ,

x � 1

4
�

y � 6

�1
�

z

1

t�Rz � �10ty � �5 � 2t,x � �3t,

t�Rr
!
� 13, 0, 2 2 � t11, �2, 2 2

4x � y � z � 10?

r
!
� 12, 1, 0 2 � s11, �1, 3 2 � t12, 0, �5 2 , s, t�R.

n
!
� 11, 1, �1 2P012, 5, 1 2 ,n

!
� 14, �3, 0 2P013, �1, �2 2 , n

!
� 111, �6, 0 2P014, 1, 8 2 ,n

!
� 10, 7, 0 2P01�2, 0, 5 2 , n

!
� 16, �5, 3 2P010, 0, 0 2 ,n

!
� 12, 6, �1 2P014, 1, �3 2 , n
!
.

P0

P2112, �5, �7 2P112, 5, �1 2 ,P21�3, �11 2P11�1, 0 2 , P21�1, 5, 2 2P112, 0, �1 2 ,P214, �7 2P11�3, 7 2 , P216, �7, 0 2P111, 3, 5 2 ,P217, 3 2P112, 5 2 ,
t�Rr

!
� 12, 1, �2 2 � t14, �1, 2 2P011, 0, 5 2 , t�Rr
!
� 11, 0, �4 2 � t12, �1, 4 2P017, �3, 8 2 ,12x � 5y � 13 � 0P011, 2 2 , t�Rr

!
� 110, �12 2 � t18, �7 2P012, �5 2 , P0
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CHAPTER 9: RELATIONSHIPS BETWEEN POINTS, LINES, AND PLANES

InvestigateCAREER LINK

Much of the world’s reserves of fossil fuels are found in places that are not
accessible to water for shipment. Due to the enormous volumes of oil that are
currently being extracted from the ground in places such as northern Alberta,
Alaska, and Russia, shipment by trucks would be very costly. Instead, pipelines
are built to move the fuel to a place where it can be processed or loaded onto a
large sea tanker for shipment. The construction of the pipelines is a costly
undertaking, but, once completed, pipelines save vast amounts of time, energy,
and money. 

A team of pipeline construction engineers is needed to design a pipeline. The
engineers have to study surveys of the land that the pipeline will cross and
choose the best path. Often the least difficult path is above ground, but
engineers will choose to have the pipeline go below ground. In plotting the
course for the pipeline, vectors can be used to determine if the intended path
of the pipeline will cross an obstruction or to determine where two different
pipelines will meet.

Case Study—Pipeline Construction Engineer

New pipelines must be a certain distance away from existing pipelines and
buildings, depending on the type of product that the pipeline is carrying. To
calculate the distance between the two closest points on two pipelines, the lines
are treated as skew lines on two different planes. (Skew lines are lines that
never intersect because they lie on parallel planes.) 

Suppose that an engineer wants to lay a pipeline according to the line
There is an existing pipeline that has a

pathway determined by Determine whether
the proposed pathway for the new pipeline is less than 2 units away from the
existing pipeline.

DISCUSSION QUESTIONS

1. Construct two parallel planes, and The first plane contains and a
second intersecting line that has a direction vector of the
same direction vector as The second plane contains and a second
intersecting line that has a direction vector of the same
direction vector as 

2. Find the distance between and 

3. Write the equation of and in parametric form.

4. Determine the point on each of the two lines in problem 3 that produces
the minimal distance.

L2L1

p2.p1

L1.
b
!
� 12, �1, 1 2 ,L2L2.

a
!
� 11, �2, 0 2 ,L1p2.p1

t�R.L2: r � 11, 0, 1 2 � t11, �2, 0 2 ,s�R.L1: r � 10, 2, 1 2 � s12, �1, 1 2 ,



Section 9.1—The Intersection of a Line with 
a Plane and the Intersection 
of Two Lines

We start by considering the intersection of a line with a plane.

Intersection between a Line and a Plane
Before considering mathematical techniques for the solution to this problem, we
consider the three cases for the intersection of a line with a plane.

Case 1: The line L intersects the plane at exactly one point, P.
Case 2: The line L does not intersect the plane so it is parallel to the plane.

There are no points of intersection.
Case 3: The line L lies on the plane Every point on L intersects the plane.

There are an infinite number of points of intersection.

For the intersection of a line with a plane, there are three different possibilities,
which correspond to zero, one, or an infinite number of intersection points. It is
not possible to have a finite number of intersection points, other than zero or one.
These three possible intersections are considered in the following examples.

EXAMPLE 1 Selecting a strategy to determine the point of intersection 
between a line and a plane

Determine points of intersection between the line
and the plane , if

any exist.

Solution
To determine the required point of intersection, first convert the line from its 
vector form to its corresponding parametric form. The parametric form is

Using parametric equations allows for direct
substitution into p.

z � 2 � 8s.y � 1 � 4s,x � 3 � s,

p : 4x � 2y � z � 8 � 0s�R,L : r
!
� 13, 1, 2 2 � s11, �4, �8 2 ,

p.

p
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L
Case 1:  L intersects p at a point.

P p

Case 2:  L is parallel to, but not on, p.

p

n

L, direction vector m
L

Case 3:  L is on p.

p



This means that the point where L meets corresponds to a single point on the
line with a parameter value of To obtain the coordinates of the required
point, is substituted into the parametric equations of L. The point of
intersection is

Check (by substitution):
The point lies on the plane because

The point that satisfies the equation of the plane and the line is 
Now we consider the situation in which the line does not intersect the plane.

EXAMPLE 2 Connecting the algebraic representation to the situation with no
points of intersection 

Determine points of intersection between the line 

and the plane , if any exist.

Solution
Method 1:
Because the line L is already in parametric form, we substitute the parametric
equations into the equation for 

Since there is no value of t that, when multiplied by zero, gives there is no
solution to this equation. Because there is no solution to this equation, there is 
no point of intersection. Thus, L and do not intersect. L is a line that lies on 
a plane that is parallel to .p

p

�3,

 0t � �3

 4 � 2t � 10 � 10t � 9 � 8t � 6 � 0

 212 � t 2 � 512 � 2t 2 � 19 � 8t 2 � 6 � 0

p.

p : 2x � 5y � z � 6 � 0
t�R,z � 9 � 8t,y � 2 � 2t,L : x � 2 � t,

12, 5, 10 2 .412 2 � 215 2 � 10 � 8 � 8 � 10 � 10 � 8 � 0.

z � 2 � 81�1 2 � 10

y � 1 � 41�1 2 � 5

x � 3 � 1�1 2 � 2

s � �1
s � �1.

p

 s � �1

 4s � �4

 12 � 4s � 2 � 8s � 2 � 8s � 8 � 0

 413 � s 2 � 211 � 4s 2 � 12 � 8s 2 � 8 � 0
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(Use substitution)

(Isolate s)

(Use substitution)

(Isolate t)



Method 2:
It is also possible to show that the given line and plane do not intersect by first
considering which is the normal for the plane, and 
which is the direction vector for the line, and calculating their dot product. If the
dot product is zero, this implies that the line is either on the plane or parallel to
the plane.

We can prove that the line does not lie on the plane by showing that the point
which we know is on the line, is not on the plane.

Substituting into the equation of the plane, we get

Since the point does not satisfy the equation of the plane, the point is not on the
plane. The line and the plane are parallel and do not intersect.

Next, we examine the intersection of a line and a plane where the line lies on the
plane.

EXAMPLE 3 Connecting the algebraic representation to the situation with infinite
points of intersection

Determine points of intersection of the line
and the plane , if any exist.

Solution
Method 1:
As before, we convert the equation of the line to its parametric form. Doing so,
we obtain the equations , and 

Since any real value of s will satisfy this equation, there are an infinite number of
solutions to this equation, each corresponding to a real value of s. Since any value
will work for s, every point on L will be a point on the plane. Therefore, the given
line lies on the plane.

 0s � 0

 3 � 14s � 2 � 5s � 3 � 9s � 4 � 0

 13 � 14s 2 � 1�2 � 5s 2 � 311 � 3s 2 � 4 � 0

z � 1 � 3s.y � �2 � 5sx � 3 � 14s,

x � y � 3z � 4 � 0s�R,
L : r
!
� 13, �2, 1 2 � s114, �5, �3 2 ,

212 2 � 512 2 � 9 � 6 � �3 � 0.
12, 2, 9 212, 2, 9 2 ,

 � 0

 � 211 2 � 512 2 � 118 2 n
!
� m
!
� 12, �5, 1 2 # 11, 2, 8 2

m
!
� 11, 2, 8 2 ,n

!
� 12, �5, 1 2 ,

(Definition of dot product)

(Use substitution)

(Isolate s)
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Method 2:
Again, this result can be achieved by following the same procedure as in 
the previous example. If and then

implying that the line and plane are
parallel. We substitute the coordinates , which is a point on the line,
into the equation of the plane and find that . So this
point lies on the plane as well. Since the line and plane are parallel, and

lies on the plane, the entire line lies on the plane.

Next, we consider the intersection of a line with a plane parallel to a coordinate
plane.

EXAMPLE 4 Reasoning about the intersection between a line and the yz-plane

Determine points where and
intersect, if any exist.

Solution
At the point of intersection, the x-values for the line and the plane will be equal.

Equating the two gives or The y- and z-values for the 
point of intersection can now be found by substituting into the other 
two parametric equations. Thus, and 

The point of intersection between L and 
is 

Intersection between Two Lines
Thus far, we have discussed the possible intersections between a line and a plane.
Next, we consider the possible intersection between two lines.

There are four cases to consider for the intersection of two lines in .

Intersecting Lines
Case 1: The lines are not parallel and intersect at a single point.
Case 2: The lines are coincident, meaning that the two given lines are identical. 

There are an infinite number of points of intersection.

Non-intersecting Lines
Case 3: The two lines are parallel, and there is no intersection.
Case 4: The two lines are not parallel, and there is no intersection. The lines in this

case are called skew lines. (Skew lines do not exist in only in )R3.R2,

R3

1�3, 14, �6 2 . p�6.4 � 215 2 �z � 4 � 2s �
y � �1 � 3s � �1 � 315 2 � 14

s � 5
s � 5.2 � s � �3,

p : x � �3
s�R,z � 4 � 2s,y � �1 � 3s,L : x � 2 � s,

13, �2, 1 2 3 � 1�2 2 � 311 2 � 4 � 0
13, �2, 1 2n

!
� m
!
� 1114 2 � 11�5 2 � 31�3 2 � 0,

m
!
� 114, �5, �3 2 ,n

!
� 11, 1, 3 2
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EXAMPLE 5 Selecting a strategy to determine the intersection of two lines in 

For and
determine points of intersection,

if any exist.

Solution
Before calculating the coordinates of points of intersection between the two lines,
we note that these lines are not parallel to each other because their direction 
vectors are not scalar multiples of each other—that is,
This indicates that these lines either intersect each other exactly once or are skew
lines. If these lines intersect, there must be a single point that is on both lines. To use
this idea, the vector equations for and must be converted to parametric form.L2L1

1�1, 1, 4 2 � k1�6, �1, 6 2 .

t�R,L2 : r
!
� 11, 4, 6 2 � t1�6, �1, 6 2 , s�R,L1 : r
!
� 1�3, 1, 4 2 � s1�1, 1, 4 2 , R3

y

z

x

Case 4: Skew Lines

y

z

x

Case 3: Parallel Lines

y

z

x

Case 2: Coincident Lines

y

A

z

x

Case 1: Intersecting Lines at a Point
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These four cases are shown in the diagram below.

NEL

L1 L2

x � �3 � s x � 1 � 6t

y � 1 � s y � 4 � t

z � 4 � 4s z � 6 � 6t

Intersecting Lines

Non-intersecting Lines



We can now select any two of the three equations from each line and equate them.
Comparing the x and y components gives and 
Rearranging and simplifying gives

Subtracting from yields the following:

Substituting into equation ,

We find and These two values can now be substituted into the 
parametric equations to find the corresponding values of x, y, and z.

Since we found that substituting and into the corresponding 
parametric equations gives the same values of x, y, and z, the point of 
intersection is 

It is important to understand that when finding the points of intersection between
any pair of lines, the parametric values must be substituted back into the original
equations to check that a consistent result is obtained. In other words, and

must give the same point for each line. In this case, there were consistent 
values, and so we can be certain that the point of intersection is 

In the next example, we will demonstrate the importance of checking for
consistency to find the possible point of intersection.

EXAMPLE 6 Connecting the solution to a system of equations to the case 
of skew lines

For and 
determine points of 

intersection, if any exist.

Solution
We use the same approach as in the previous example. In this example, we’ll start
by equating corresponding y- and z-coordinates.

t�R,z � 30 � 5t,y � 17 � 2t,L2 : x � 4 � t,
s�R,z � 6 � 5s,y � 3 � 4s,L1 : x � �1 � s,

1�5, 3, 12 2 .t � 1
s � 2

1�5, 3, 12 2 . t � 1s � 2

t � 1.s � 2

 s � 2

 s � 611 2 � �4
1t � 1

 t � 1
 �7t � �7

12

s � t � 32

s � 6t � �41

1 � s � 4 � t.�3 � s � 1 � 6t

9 . 1 T H E  I N T E R S E C T I O N  O F  A  L I N E  W I T H  A  P L A N E  A N D  T H E  I N T E R S E C T I O N  O F  T W O  L I N E S494 NEL

L1 L2

x � �3 � 2 � �5 x � 1 � 611 2 � �5

y � 1 � 2 � 3 y � 4 � 1 � 3

z � 4 � 412 2 � 12 z � 6 � 611 2 � 12



Comparing y- and z-values, we get and 
Rearranging and simplifying gives

If is substituted into either equation or equation , we obtain the value of t.

Substituting into equation ,

We found that and These two values can now be substituted back 

into the parametric equations to find the values of x, y, and z.

For these lines to intersect at a point, we must obtain equal values for each 
coordinate. From observation, we can see that the x-coordinates are different,
which implies that these lines do not intersect. Since the two given lines do not
intersect and have different direction vectors, they must be skew lines.

t �
13
15.s �

59
15

 t �
13

15

 
236

15
�

210

15
� 2t

 4 a 59

15
b � 2t � 14

1

21s �
59
15

s �
59

15

3�215s � 59

1�
5

2
10s � 5t � 353

5s � 5t � 242

4s � 2t � 141

6 � 5s � 30 � 5t.3 � 4s � 17 � 2t
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L1 L2

x � �1 �
59
15

�
44
15

x � 4 �
13
15

�
47
15

y � 3 � 4 a 59
15
b �

281
15

y � 17 � 2 a 13
15
b �

281
15

z � 6 � 5 a 59
15
b �

77
3

z � 30 � 5 a 13
15
b �

77
3

L1 L2

x � �1 � s x � 4 � t

y � 3 � 4s y � 17 � 2t

z � 6 � 5s z � 30 � 5t



Exercise 9.1

PART A
1. Tiffany is given the parametric equations for a line L and the Cartesian equation

for a plane and is trying to determine their point of intersection. She makes 
a substitution and gets 

a. Give a possible equation for both the line and the plane.

b. Finish the calculation, and describe the nature of the intersection between
the line and the plane.

2. a. If a line and a plane intersect, in how many different ways can this occur?
Describe each case.

b. It is only possible to have zero, one, or an infinite number of intersections
between a line and a plane. Explain why it is not possible to have a finite
number of intersections, other than zero or one, between a line and a plane.

3. A line has the equation and a plane has the equation
.

a. Describe the line.

b. Describe the plane.

y � 1
s�R,r

!
� s11, 0, 0 2 ,

11 � 5s 2 � 212 � s 2 � 31�3 � s 2 � 6 � 0.
p
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C

IN SUMMARY

Key Ideas

• Line and plane intersections can occur in three different ways.

Case 1: The line L intersects the plane at exactly one point, P.

Case 2: The line L does not intersect the plane and is parallel to the plane In
this case, there are no points of intersection and solving the system of
equations results in an equation that has no solution (0 3 variable 5 a
nonzero number).

Case 3: The line L lies on the plane In this case, there are an infinite
number of points of intersection between the line and the plane, and
solving the system of equations results in an equation with an infinite
number of solutions (0 3 variable 5 0).

• Line and line intersections can occur in four different ways.

Case 1: The lines intersect at a single point.

Case 2: The two lines are parallel, and there is no intersection.

Case 3: The two lines are not parallel and do not intersect. The lines in this
case are called skew lines.

Case 4: The two lines are parallel and coincident. They are the same line.

p.

p.
p



c. Sketch the line and the plane.

d. Describe the nature of the intersection between the line and the plane.

PART B
4. For each of the following, show that the line lies on the plane with the given

equation. Explain how the equation that results implies this conclusion.

a.

b.

5. For each of the following, show that the given line and plane do not intersect.
Explain how the equation that results implies there is no intersection.

a.

b.

6. Verify your results for question 5 by showing that the direction vector of the
line and the normal for the plane meet at right angles, and the given point on
the line does not lie on the plane.

7. For the following, determine points of intersection between the given line 
and plane, if any exist:

a.

b.

8. Determine points of intersection between the following pairs of lines, if any
exist:

a.

b.

9. Determine which of the following pairs of lines are skew lines:

a. ;

b. ; 

c. ; 

d. ; 

10. The line with the equation intersects the
z-axis at the point Determine the value of q.Q10, 0, q 2 . s�R,r

!
� 1�3, 2, 1 2 � s13, �2, 7 2 , s�Rr

!
� 18, 2, 3 2 � s14, 1, �2 2 ,m�Rr

!
� 19, 1, 2 2 � m15, 0, 4 2 , p�Rr
!
� 1�2, 2, 1 2 � p13, �1, �1 2 ,m�Rr
!
� 12, 2, 1 2 � m11, 1, 1 2 , s�Rr

!
� 12, 1, �8 2 � s11, 0, 5 2 ,t�Rr

!
� 14, 1, 6 2 � t11, 0, 4 2 , q�Rr
!
� 1�2, 3, �4 2 � q16, �2, 11 2 ,p�Rr
!
� 1�2, 3, 4 2 � p16, �2, 3 2 ,

s�RL4 : r
!
� 1�3, 2, 8 2 � s17, �1, �6 2 ,m�R;L3 : r
!
� 13, 7, 2 2 � m11, �6, 0 2 , t�Rz � 5t,y � 1 � 5t,L2 : x � 4 � 13t,

s�R;L1 : r
!
� 13, 1, 5 2 � s14, �1, 2 2 ,

p : 2x � 7y � z � 15 � 0L : 
x � 1

4
�

y � 2

�1
� z � 3;

p : x � 2y � z � 29 � 0p�R;L : r
!
� 1�1, 3, 4 2 � p16, 1, �2 2 ,

p : 2x � 4y � 4z � 13 � 0
t�R;z � 1 � 4t,y � �2 � 5t,L : x � 1 � 2t,

p : 2x � 2y � 3z � 1 � 0s�R;L : r
!
� 1�1, 1, 0 2 � s1�1, 2, 2 2 ,

p : 2x � 3y � 4z � 11 � 0t�R;L : r
!
� 11, 5, 6 2 � t11, �2, �2 2 , p : x � 4y � z � 4 � 0t�R;z � 2 � 3t,y � 1 � t,L : x � �2 � t,

K
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11. a. Show that the lines and
are coincident by writing each

line in parametric form and comparing components 

b. Show that the point lies on How does this show that 
the lines are coincident?

12. The lines and
, intersect at a point.

a. Determine the value of k.

b. What are the coordinates of the point of intersection?

13. The line intersects the xz- and 
yz-coordinate planes at the points A and B, respectively. Determine the 
length of line segment AB.

14. The lines and 
intersect at the point A.

a. Determine the coordinates of point A.

b. What is the distance from point A to the xy-plane?

15. The lines and
intersect at point A.

a. Determine the coordinates of point A.

b. Determine the vector equation for the line that is perpendicular to the two
given lines and passes through point A.

16. a. Sketch the lines and 

b. At what point do these lines intersect?

c. Verify your conclusion for part b. algebraically.

PART C

17. a. Show that the lines and ,

lie on the plane with equation 

b. Determine the point of intersection of these two lines.

18. A line passing through point intersects the two lines with
equations and

Determine a vector equation 
for this line.

t�R.L2 : r
!
� 10, 1, 3 2 � t1�2, 1, 3 2 , s�R,L1 : r

!
� 11, 1, �1 2 � s11, 1, 0 2 ,P1�4, 0, �3 2

2x � y � 3z � 10 � 0.

y � �1
x � 4

3
�

z � 1

�2
,

x

1
�

y � 7

�8
�

z � 1

2

q�R.L2 : r
!
� q10, 1, 1 2 ,p�R,L1 : r

!
� p10, 1, 0 2 ,

t�R,r
!
� 14, �1, 1 2 � t10, 2, 11 2 , s�R,r

!
� 1�1, 3, 2 2 � s15, �2, 10 2 ,

q�R,q19, �2, �2 2 ,r
!
� 13, �1, 1 2 �

p�R,r
!
� 12, 1, 1 2 � p14, 0, �1 2 ,

s�R,r
!
� 1�8, �6, �1 2 � s12, 2, 1 2 ,

t�Rr
!
� 11, 4, 2 2 � t1�3, k, 8 2 , s�R,r

!
� 1�3, 8, 1 2 � s11, �1, 1 2 ,

L2.1�2, 3, 4 2
t�R,L2 : r

!
� 1�30, 11, �4 2 � t17, �2, 2 2 , s�R,L1 : r

!
� 1�2, 3, 4 2 � s17, �2, 2 2 ,
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Section 9.2—Systems of Equations

To solve problems in real-life situations, we often need to solve systems of
linear equations. Thus far, we have seen systems of linear equations in a
variety of different contexts dealing with lines and planes. The following is 
a typical example of a system of two equations in two unknowns:

Each of the equations in this system is a linear equation. A linear equation is 
an equation of the form where 

and b are real numbers with the variables being the
unknowns. Typical examples of linear equations are and

All the variables in each of these equations are raised to
the first power only (degree of one). Linear equations do not include 
any products or powers of variables, and there are no trigonometric, logarithmic,
or exponential functions making up part of the equation. Typical examples of
nonlinear equations are and 

A system of linear equations is a set of one or more linear equations. When we
solve a system of linear equations, we are trying to find values that will
simultaneously satisfy the unknowns in each of the equations. In the following
example, we consider a system of two equations in two unknowns and possible
solutions for this system.

EXAMPLE 1 Reasoning about the solutions to a system of two equations 
in two unknowns

The number of solutions to the following system of equations depends on the
value(s) of a and b. Determine values of a and b for which this system has no
solutions, an infinite number of solutions, and one solution.

Solution
Each of the equations in this system represents a line in For these two lines,
there are three cases to consider, each depending on the values of a and b.

Case 1: These equations represent two parallel and non-coincident lines.
If these lines are parallel, they must have the same slope, implying that 

This means that the second equation is and the slope of each line 
is If this implies that the two lines are parallel and have different a � 8,�

1
4.

x � 4y � 8,

b � 4.

R2.

x � by � 82

x � 4y � a1

y � sin 2x.2x � xyz � 4,x � 3y2 � 3,

x � 3y � 2z � 2 � 0.
x � 4y � 9,y � 2x � 3,

x1, x2, x3, p  , xna3, p , an

a1, a2,a1x1 � a2x2 � a3x3 � p � anxn � b,

x � 2y � �62

2x � y � �91
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equations. Since the lines would be parallel and not intersect, there is no solution
to this system when and 

Case 2: These equations represent two parallel and coincident lines. This means
that the two equations must be equivalent. If and then both
equations are identical and this system would be reduced to finding values of x
and y that satisfy the equation Since there are an infinite number of
points that satisfy this equation, the original system will have an infinite number
of solutions.

Case 3: These two equations represent two intersecting, non-coincident lines.
The third possibility for these two lines is that they intersect at a single point in

These lines will intersect at a single point if they are not parallel—that is, if
In this case, the solution is the point of intersection of these lines.

This system of linear equations is typical in that it can only have zero, one, or an
infinite number of solutions. In general, it is not possible for any system of linear
equations to have a finite number of solutions greater than one.

y

(8, 0)

point of
intersection

x

x + 4y = a

x + by = 8, b 3 42

4

6

2 4 6 8 10 12
–2

b � 4.
R2.

y
(0, 2)

(8, 0) x
x + 4y = 82

2 4 6 8–2
–2

x � 4y � 8.

b � 4,a � 8

y
(0, 2)

(8, 0) x
x + 4y = 8

x + 4y = a, a 3 8

2

2 4 6 8
–2

–2

–4

–6

a � 8.b � 4
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Number of Solutions to a Linear System of Equations

A linear system of equations can have zero, one, or an infinite number of solutions.

In Example 2, the idea of equivalent systems is introduced as a way of understanding
how to solve a system of equations. Equivalent systems of equations are defined in
the following way:

The idea of equivalent systems is important because, when solving a system of
equations, what we are attempting to do is create a system of equations that is easier
to solve than the previous system. To construct an equivalent system of equations,
the new system is obtained in a series of steps using a set of well-defined operations.
These operations are referred to as elementary operations.

Elementary Operations Used to Create Equivalent Systems

1. Multiply an equation by a nonzero constant.

2. Interchange any pair of equations.

3. Add a nonzero multiple of one equation to a second equation to replace the
second equation.

In previous courses, when we solved systems of equations, we often multiplied two
equations by different constants and then added or subtracted to eliminate variables.
Although these kinds of operations can be used algebraically to solve systems,
elementary operations are used because of their applicability in higher-level
mathematics.

The use of elementary operations to create equivalent systems is illustrated in the
following example.

EXAMPLE 2 Using elementary operations to solve a system of two equations 
in two unknowns

Solve the following system of equations:

x � 2y � �62

2x � y � �91

Definition of Equivalent Systems

Two systems of equations are defined as equivalent if every solution to one 
system is also a solution to the second system of equations, and vice versa.



Solution
1: Interchange equations and .

The equations have been interchanged to make the coefficient of x in the first equation
equal to 1. This is always a good strategy when solving systems of linear equations.

This original system of equations is illustrated in the following diagram.

2: Multiply equation by and then add equation to eliminate the 
variable x from the second equation to create equation . Note that the 
coefficient of the x-term in the new equation is 0.

When solving a system of equations, the elementary operations that are used are
specified beside the newly created equation.

3: Multiply each side of equation by to obtain a new equation that is 
labelled equation .

This new system of equations is illustrated in the diagram below.
y

(–6, 0)

(–4, –1)

(0, –3)

(0, –1)

After Step 3

x

x + 2y = –6

y = –1

3�
1

3
�0x � y � �14

x � 2y � �61

4

�
1
3

3

2�1�2 �0x � 3y � 33

x � 2y � �61

3

2�2,1

y

(–6, 0)
(–4.5, 0)

(–4, –1)

(0, –3)

(0, –9)

After Step 1

x

x + 2y = –6
2x + y = –9

2x � y � �92

x � 2y � �61

21
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The new system of equations that we produced is easier to solve than the original
system. If we substitute into equation , we obtain or

The solution to this system of equations is which is shown in
the graph below.

The equivalence of the systems of equations was illustrated geometrically at different
points in the calculations. As each elementary operation is applied, we create an
equivalent system such that the two lines always have the point in common.
When we create the various equivalent systems, the solution to each set of equations
remains the same. This is what we mean when we use elementary operations to
create equivalent systems.

The solution to the original system of equations is and This means
that these two values of x and y must satisfy each of the given equations. It is easy to
verify that these values satisfy each of the given equations. For the first equation,

For the second equation,

A solution to a system of equations must satisfy each equation in the system for it to
be a solution to the overall system. This is demonstrated in the following example.

EXAMPLE 3 Reasoning about the solution to a system of two equations 
in three unknowns

Determine whether and is a solution to the following system:

Solution
For the given values to be a solution to this system of equations, they must satisfy
both equations.

Substituting into the first equation,

21�3 2 � 315 2 � 516 2 � �6 � 15 � 30 � �21

x � 6y � 6z � 82

2x � 3y � 5z � �211

z � 6y � 5,x � �3,

�4 � 21�1 2 � �6.21�4 2 � 1�1 2 � �9.

y � �1.x � �4

1�4, �1 2

y

(–4, 0)

(–4, –1) (0, –1)

Final system

x

x = –4

y = –1

y � �1,x � �4,
x � �4.

x � 21�1 2 � �61y � �1
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Substituting into the second equation,

Since the values of x, y, and z do not satisfy both equations, they are not a
solution to this system.

If a system of equations has no solutions, it is said to be inconsistent. If a system
has at least one solution, it is said to be consistent.

�3 � 615 2 � 616 2 � �3 � 30 � 36 � 3 � 8
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Consistent and Inconsistent Systems of Equations

A system of equations is consistent if it has either one solution or an infinite
number of solutions. A system is inconsistent if it has no solutions.

In the next example, we show how to use elementary operations to solve a system
of three equations in three unknowns.

EXAMPLE 4 Using elementary operations to solve a system of three equations 
in three unknowns

Solve the following system of equations for x, y, and z using elementary operations:

Solution
1: Use equation to eliminate x from equations and .

2: Use equations and to eliminate y from equation , and then scale 
equation .

We can now solve this system by using a method known as back substitution. Start
by solving for z in equation , and use this value to solve for y in equation .
From there, we use the values for y and z to solve for x in equation .1

67

5�4�
4

3
� 0x � 0y � 3z � �37

4
1

3
� 0x � y � z � 36

 x � y � z � 11

4

554

3�1�3 � 0x � 4y � z � 95

2�1�2 � 0x � 3y � 3z � 94

 x � y � z � 11

321

 3x � y � 2z � 123

 2x � y � z � 112

 x � y � z � 11



From equation ,

If we then substitute into equation ,

If and these values can now be substituted into equation to obtain
or 

Therefore, the solution to this system is 

Check:
These values should be substituted into each of the original equations and checked
to see that they satisfy each equation.

To solve this system of equations, we used elementary operations and ended up
with a triangle of zeros in the lower left part:

The use of elementary operations to create the lower triangle of zeros is our objective
when solving systems of equations. Large systems of equations are solved using
computers and elementary operations to eliminate unknowns. This is by far the 
most efficient and cost-effective method for their solution.

In the following example, we consider a system of equations with different 
possibilities for its solution.

EXAMPLE 5 Connecting the value of a parameter to the nature of the intersection
between two lines in 

Consider the following system of equations:

Determine the value(s) of k for which this system of equations has

a. no solutions
b. one solution
c. an infinite number of solutions

Solution
Original System of Equations:

kx � 4y � 82

x � ky � 41

kx � 4y � 82

x � ky � 41

R2

 0x � 0y � hz � i

 ax � by � cz � d

14, 2, �1 2 .x � 4.x � 2 � 1�1 2 � 1,

1z � �1,y � 2
y � 2

y � 1�1 2 � 3

6

z � �1
3z � �37

 0x � ey � fz � g
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1: Multiply equation by , and add it to equation to eliminate 
x from equation .

Actual Solution to Problem:
To solve the problem, it is only necessary to deal with the equation 

to determine the necessary conditions on k.

(Factor)

(Multiply by )

There are three different cases to consider.

Case 1:
If this results in the equation or 

Since this equation is true for all real values of y, we will have an infinite number 
of solutions. Substituting into the original system of equations gives

This system can then be reduced to just a single equation, which,
as we have seen, has an infinite number of solutions.

Case 2:
If this equation becomes or

There are no solutions to this equation. Substituting into the original 
system of equations gives

This system can be reduced to the two equations, and 
which are two parallel lines that do not intersect. Thus, there are no solutions.

Case 3:
If we get an equation of the form This equation will
always have a unique solution for y, which implies that the original system of
equations will have exactly one solution, provided that k � ; 2.

a � 0.ay � b,k � ; 2,
k � ; 2

x � 2y � �4,x � 2y � 4

�21x � 2y 2 � �21�4 22

x � 2y � 41

k � �2

0y � �16.
1�2 � 2 2 1�2 � 2 2y � 41�2 � 2 2 ,k � �2,

k � �2

x � 2y � 4,

21x � 2y 2 � 214 22

x � 2y � 41

k � 2

0y � 0.12 � 2 2 12 � 2 2y � 412 � 2 2 ,k � 2,
k � 2

1k � 2 2 1k � 2 2y � 41k � 2 2y1k2 � 4 2 � 41k � 2 2 �1y1�k2 � 4 2 � �41k � 2 2�k2y � 4y � �4k � 8

4y � �4k � 80x � k2y �

2�1�k �0x � k2y � 4y � �4k � 8,3

x � ky � 41

2

2�k1
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Exercise 9.2

PART A
1. Given that k is a nonzero constant, which of the following are linear 

equations?

a. c.

b. d.

2. a. Create a system of three equations in three unknowns that has 
and as its solution.

b. Solve this system of equations using elementary operations.

3. Determine whether and is a solution to the following
systems:

a. b.

8x � y � 4z � �583x � 2y � 33

3x � 2y � �232x � 8z � �132

3x � 2y � 16z � �191x � 3y � 4z � �191

z �
3
4y � 5,x � �7,

z � �8y � 4,
x � �3,

1
x

� y � 32  sin x � kx

2kx � 3y � z � 0kx �
1

k
y � 3
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IN SUMMARY

Key Idea
• A system of two (linear) equations in two unknowns geometrically represents

two lines in These lines may intersect at zero, one, or an infinite number
of points, depending on how the lines are related to each other.

Need to Know
• Elementary operations can be used to solve a system of equations. The

operations are defined as follows:

1. Multiply an equation by a nonzero constant.

2. Interchange any pair of equations.

3. Add a multiple of one equation to a second equation to replace the
second equation.

As each elementary operation is applied, we create an equivalent system,
which gets progressively easier to solve.

• The solution to a system of equations consists of the values of the variables
that satisfy all the equations in the system simultaneously.

• A system of equations is consistent if it has either one solution or an infinite
number of solutions. The system is inconsistent if it has no solutions.

R2.



PART B
4. Solve each system of equations, and state whether the systems given in 

parts a. and b. are equivalent or not. Explain.

a. b.

5. Solve each of the following systems using elementary operations:

a. b. c.

6. Solve the following systems of equations, and explain the nature 
of each intersection:

a. b.

7. Write a solution to each equation using parameters.

a. b.

8. a. Determine a linear equation that has as its
general solution.

b. Show that is also a general solution to
the linear equation found in part a.

9. Determine the value(s) of the constant k for which the following system of
equations has

a. no solutions
b. one solution
c. infinitely many solutions

10. For the equation determine

a. the number of solutions
b. a generalized parametric solution
c. an explanation as to why it will not have any integer solutions

11. a. Solve the following system of equations for x and y:

b. Explain why this system of equations will always be consistent, irrespective
of the values of a and b.

2x � 3y � b2

x � 3y � a1

2x � 4y � 11,

2x � 2y � k2

x � y � 61

t�R,y � �6t � 17,x � 3t � 3,

t�R,y � �2t � 11,x � t,

x � 2y � z � 02x � y � 3

35x � 15y � 4522x � y � 42

7x � 3y � 912x � y � 31

3x � 5y � 323x � 4y � 112x � 5y � 112

�x � 2y � 1012x � 5y � 1912x � y � 111

1

6
x �

1

2
y �

7

6
23y � �92

3x � 5y � �211x � �21
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12. Solve each system of equations using elementary operations.

a. d.

b. e.

c. f.

13. A system of equations is given by the lines
and 

Sketch the lines under the following conditions:

a. when the system of equations represented by these lines has no solutions

b. when the system of equations represented by these lines has exactly one 
solution

c. when the system of equations represented by these lines has an infinite 
number of solutions

14. Determine the solution to the following system of equations:

PART C
15. Consider the following system of equations:

Determine the values of k for which this system of equations has

a. no solutions

b. an infinite number of solutions

c. a unique solution

2x � k2y � k2

x � 2y � �11

y � z � c3

x � y � b2

x � y � z � a1

L3: gx � hy � r.ey � q,L2: dx �L1: ax � by � p,

x � y � 4z � 193x � z � �43

2y � 3z � �122y � z � �22

x � y � 2z � 131x � y � 101

2z � x � 03x � 2y � z � �173

2y � z � 72x � y � 2z � 312

2x � y � 012x � 3y � z � 61

x

5
�

y

3
�

z

4
� 73

y � z � �53

x

4
�

y

5
�

z

3
� �212

x � y � 12

x

3
�

y

4
�

z

5
� 141x � y � z � 01

A

T
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Section 9.3—The Intersection of Two Planes

In the previous section, we introduced elementary operations and their use in the
solution of systems of equations. In this section, we will again examine systems
of equations but will focus specifically on dealing with the intersections of two
planes. Algebraically, these are typically represented by a system of two equations
in three unknowns.

In our discussion on the intersections of two planes, there are three different cases
to be considered, each of which is illustrated below.

Case 1: Two planes can intersect along a line. The corresponding system of 
equations will therefore have an infinite number of solutions.

Case 2: Two planes can be parallel and non-coincident. The corresponding 
system of equations will have no solutions.

Case 3: Two planes can be coincident and will have an infinite number of solutions.

Possible Intersections for Two Planes

Case 3: Two Coincident Planes

p1, p2

L

Case 1: Two Planes Intersecting along a Line

p1

p2

Case 2:  Two Parallel Planes

p2

p1

Solutions for a System of Equations Representing Two Planes

The system of equations corresponding to the intersection of two planes 
will have either zero solutions or an infinite number of solutions.

It is not possible for two planes to intersect at a single point.



EXAMPLE 1 Reasoning about the nature of the intersection between 
two planes (Case 2)

Determine the solution to the system of equations and
Discuss how these planes are related to each other.

Solution
Since the two planes have the same normals, this implies
that the planes are parallel. Since the equations have different constants on the
right side, the equations represent parallel and non-coincident planes. This
indicates that there are no solutions to this system because the planes do not 
intersect.

The corresponding system of equations is

Using elementary operations, the following equivalent system of equations 
is obtained:

Since there are no values that satisfy equation , there are no solutions to this
system, confirming our earlier conclusion.

EXAMPLE 2 Reasoning about the nature of the intersection between 
two planes (Case 3)

Determine the solution to the following system of equations:

Solution
Since equation can be written as the two equations
represent coincident planes. This means that there are an infinite number of 
values that satisfy the system of equations. The solution to the system of 
equations can be written using parameters in equation . If we let and

then 

The solution to the system is This is 
the equation of a plane, expressed in parametric form. Every point that lies on the
plane is a solution to the given system of equations.

s, t�R.z � t,y � s,x � �2s � 3t � 1,

x � �2s � 3t � 1.z � t,
y � s1

41x � 2y � 3z 2 � 41�1 2 ,2

4x � 8y � 12z � �42

x � 2y � 3z � �11

3

2�1�1 �0x � 0y � 0z � 13

x � y � z � 41

x � y � z � 52

x � y � z � 41

n1
!
� n2
!
� 11, �1, 1 2 ,

x � y � z � 5.
x � y � z � 4
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If we had solved the system using elementary operations, we would have arrived
at the following equivalent system:

There are an infinite number of ordered triples (x, y, z) that satisfy both equations
and , confirming our earlier conclusion.

The normals of two planes give us important information about their intersection.

31

2�1�4 �0x � 0y � 0z � 03

x � 2y � 3z � �11
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Intersection of Two Planes and their Normals

If the planes and have and as their respective normals, we know
the following:

1. If for some scalar, k, the planes are coincident or they are parallel
and non-coincident. If they are coincident, there are an infinite number of
points of intersection. If they are parallel and non-coincident, there are no
points of intersection.

2. If the two planes intersect in a line. This results in an infinite
number of points of intersection.

n1
!
� kn2

!
,

n1
!
� kn2

!

n2
!

n1
!

p2p1

EXAMPLE 3 Reasoning about the nature of the intersection between 
two planes (Case 1)

Determine the solution to the following system of equations:

Solution
When solving a system involving two planes, it is useful to start by determining
the normals for the two planes. The first plane has normal and
the second plane has Since these vectors are not scalar multiples
of each other, the normals are not parallel, which implies that the two planes intersect.
Since the planes intersect and do not coincide, they intersect along a line.

We will use elementary operations to solve the system.

2�1�2 �0x � 4y � 4z � �33

x � y � z � 31

n2
!
� 12, 2, �2 2 . n1

!
� 11, �1, 1 2 ,

2x � 2y � 2z � 32

x � y � z � 31



To determine the equation of the line of intersection, a parameter must be
introduced. From equation , which is written as we start by
letting Substituting gives

Substituting and into equation , we obtain

Therefore, the line of intersection expressed in parametric form is  

Check:
To check, we’ll substitute into each of the two original equations.

Substituting into equation ,

Substituting into equation ,

This confirms our conclusion.

EXAMPLE 4 Selecting the most efficient strategy to determine the intersection
between two planes

Determine the solution to the following system of equations:

Solution
As in the first example, we note that the first plane has normal and
the second These normals are not scalar multiples of each other,
implying that the two planes have a line of intersection.

To find the line of intersection, it is not necessary to use elementary operations to
reduce one of the equations. Since the second equation is missing a y-term, the
best approach is to write the second equation using a parameter for z. If z � s,

n2
!
� 11, 0, �3 2 . n1

!
� 12, �1, 3 2

x � 3z � 12

2x � y � 3z � �21

9
2 �

3
2 � 32x � 2y � 2z � 2Q94R � 2Qs �

3
4R � 2s �

2

s � s � 39
4 �

3
4 �x � y � z �

9
4 � Qs �

3
4R � s �

1

s�R.z � s,y � s �
3
4,x �

9
4,

x �
9

4

x � a s �
3

4
b � s � 3

1y � s �
3
4z � s

 y � s �
3

4

 4y � 4s � 3
 4y � 4s � �3

z � sz � s.
4y � 4z � �3,3
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then . Now it is a matter of substituting these parametric values into
the first equation and determining y in terms of s. Substituting gives

The line of intersection is given by the parametric equations 
and 

Check:
Substituting into equation ,

Substituting into equation ,

In the next example, we will demonstrate how a problem involving the
intersection of two planes can be solved in more than one way.

EXAMPLE 5 Selecting a strategy to solve a problem involving two planes

Determine an equation of a line that passes through the point and 
is parallel to the line of intersection of the planes and

Solution
Method 1:
Since the required line is parallel to the line of intersection of the planes, then 
the direction vectors for both of these lines must be parallel. Since the line of
intersection is contained in both planes, its direction vector must then be
perpendicular to the normals of each plane.

If represents the direction vector of the required line, and it is perpendicular to
and then we can choose 

Thus,

� 15, �2, 1 2� 1212 2 � 1�1 2 11 2 , �110 2 � 112 2 , 111 2 � 210 22m
!
� 11, 2, �1 2 � 10, 1, 2 2 m

!
� n1
!
� n2
!
.n2

!
� 10, 1, 2 2 ,n1

!
� 11, 2, �1 2m
!

n1

n2

P(5, –2, 3)

p1

p2

line with
direction
vector m

line of intersection with
direction vector m

p2: y � 2z � 1.
p1: x � 2y � z � 6

P15, �2, 3 2

13s � 1 2 � 3s � 12

9s � 4 � 3s � �2213s � 1 2 � 19s � 4 2 � 3s � 6s � 2 �

1

s�R.z � s,y � 9s � 4,
x � 3s � 1,

9s � 4 � y
6s � 2 � y � 3s � �2

213s � 1 2 � y � 31s 2 � �2

x � 3s � 1
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Thus, the required line that passes through P(5, 2, 3) and has direction vector 
(5, 2, 1) has parametric equations and

Method 2:
We start by finding the equation of the line of intersection between 
the two planes. In equation , if then by substitution.
Substituting these values into equation gives

The line of intersection has , and as its parametric
equations . Since the direction vector for this line is we can
choose the direction vector for the required line to also be 

The equation for the required line is t�R.z � 3 � t,y � �2 � 2t,x � 5 � 5t,

15, �2, 1 2 .15, �2, 1 2 ,t�R
z � ty � �2t � 1x � 5t � 4,

x � 5t � 4

x � 4t � 2 � t � 6

x � 21�2t � 1 2 � t � 6

1

y � �2t � 1z � t,2

t�R.z � 3 � t,
y � �2 � 2t,x � 5 � 5t,��m

! �
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IN SUMMARY

Key Ideas

• A system of two (linear) equations in three unknowns geometrically represents
two planes in R3. These planes may intersect at zero points or an infinite
number of points, depending on how the planes are related to each other.

Case 1: Two planes can intersect along a line and will therefore have an
infinite number of points of intersection.

Case 2: Two planes can be parallel and non-coincident. In this case, there are
no points of intersection.

Case 3: Two planes can be coincident and will have an infinite number of
points of intersection.

Need to Know

• If the normals of two planes are known, examining how these are related 
to each other provides information about how the two planes are related.

If planes and have and as their respective normals, 
we know the following:

1. If for some scalar k, the planes are either coincident or they 
are parallel and non-coincident. If they are coincident, there are an 
infinite number of points of intersection, and if they are parallel and 
non-coincident, there are no points of intersection.

2. If for some scalar k, the two planes intersect in a line. 
This results in an infinite number of points of intersection.

n1
!
� kn2

!

n1
!
� kn2

!

n2
!

n1
!

p2p1



Exercise 9.3

PART A
1. A system of two equations in three unknowns has been manipulated, and,

after correctly using elementary operations, a student arrives at the following
equivalent system of equations:

a. Explain what this equivalent system means.
b. Give an example of a system of equations that might lead to this solution.

2. A system of two equations in three unknowns has been manipulated, and,
after correctly using elementary operations, a student arrives at the following
equivalent system of equations:

a. Write a solution to this system of equations, and explain what your 
solution means.

b. Give an example of a system of equations that leads to your solution in part a.

3. A system of two equations in three unknowns has been manipulated, and,
after correctly using elementary operations, a student arrives at the following
equivalent system of equations:

a. Write a solution to this system of equations, and explain what your 
solution means.

b. Give an example of a system of equations that leads to your solution in part a.

PART B
4. Consider the following system of equations:

a. Determine values of m, p, and q such that the two planes are coincident. 
Are these values unique? Explain.

b. Determine values of m, p, and q such that the two planes are parallel and
not coincident. Are these values unique? Explain.

c. A value of m such that the two planes intersect at right angles. 
Is this value unique? Explain.

d. Determine values of m, p, and q such that the two planes intersect at right
angles. Are these values unique? Explain.

x � my � 3z � q2

2x � y � 6z � p1

0x � 0y � 2z � �43

x � y � z � �11

0x � 0y � 0z � 03

2x � y � 2z � 11

0x � 0y � 0z � 33

x � y � z � 11

9 . 3 T H E  I N T E R S E C T I O N  O F  T W O  P L A N E S516 NEL

C

K



5. Consider the following system of equations:

a. Solve this system of equations by letting 

b. Solve this system of equations by letting 

c. Show that the solution you found in part a. is the same as the solution you
found in part b.

6. The following systems of equations involve two planes. State whether the planes
intersect, and, if they do intersect, specify if their intersection is a line or a plane.

a. c. e.

b. d. f.

7. Determine the solution to each system of equations in question 6.

8. A system of equations is given as follows:

a. For what value of k does the system have an infinite number of solutions? 
Determine the solution to the system for this value of k.

b. Is there any value of k for which the system does not have a solution? Explain.

9. Determine the vector equation of the line that passes through and is
parallel to the line of intersection of the planes and

10. For the planes and , show that their line of 
intersection lies on the plane with equation 

11. The line of intersection of the planes and
is L.

a. Determine parametric equations for L.

b. If L meets the xy-plane at point A and the z-axis at point B, determine the 
length of line segment AB.

PART C
12. Determine the Cartesian equation of the plane that is parallel to the line with 

equation and that contains the line of intersection of the 
planes with equations and 2y � z � 0.x � y � z � 1

x � �2y � 3z

p2: x � 2y � z � �1
p1: 2x � y � 3z � 3

5x � 3y � 16z � 11 � 0.
2x � y � 6z � 42x � y � 2z � 0

p2: y � 4z � 0.
p1: 2x � y � z � 0

A1�2, 3, 6 2
kx � 2y � 4z � k2

x � y � 2z � 11

z � 42x � y � 622x � y � z � 2 � 02

x � y � 2z � 01x � y � 2z � 412x � y � z � 1 � 01

�x � 2y � z � 12x � y � 2z � �222x � 2y � 2z � 22

2x � y � 2z � 21x � y � 2z � 21x � y � z � 11

y � t.

z � s.

y � 3z � 02

x � 2y � 3z � 01

A

T
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Mid-Chapter Review

1. Determine the point of intersection between the line 
and each of the following planes:

a. the xy-plane

b. the xz-plane

c. the yz-plane

2. and are three points in that form 
a triangle.

a. Determine the parametric equations for any two of the three medians. 
(A median is a line drawn from one vertex to the midpoint of the 
opposite side.)

b. Determine the point of intersection of the two medians you found in part a.

c. Determine the equation of the third median for this triangle.

d. Verify that the point of intersection you found in part b. is a point on the
line you found in part c.

e. State the coordinates of the point of intersection of the three medians.

3. a.  Determine an equation for the line of intersection of the planes
and 

b. Determine an equation for the line of intersection of the planes
and 

c. Determine the point of intersection between the line you found in part a.
and the line you found in part b.

4. a.  Determine the line of intersection of the planes 
and 

b. Determine the line of intersection of the planes 
and 

c. Show that the lines you found in parts a. and b. do not intersect.

5. Consider the following system of equations:

Determine the value(s) of a for which the system of equations has

a. no solution

b. an infinite number of solutions

c. one solution

ax � 9y � �272

x � ay � 91

p4: 6x � 13y � 8z � 28 � 0.
p3: x � 3y � z � 11 � 0

p2: x � 13y � 3z � 38 � 0.
p1: 3x � y � 7z � 3 � 0

5x � 2y � 3z � 5 � 0.4x � 3y � 3z � 2 � 0

4x � y � 2z � 8 � 0.5x � y � 2z � 15 � 0

R3C1�8, �5, 7 2B13, �2, 5 2 ,A12, 1, 3 2 ,
t�R,t12, �3, 5 2 ,r

!
� 14, �3, 15 2 �

NEL
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6. Show that and 
are skew lines.

7. a.  Determine the intersection of the lines 

and 
b. What conclusion can you make about these lines?

8. Determine the point of intersection between the lines 
and 

9. Determine the point of intersection for each pair of lines.
a. and 

b. and 

10. You are given a pair of vector equations that both represent lines in .
a. Explain all the possible ways that these lines could be related to each

other. Support your explanation with diagrams.
b. Explain how you could use the equations you are given to help you identify

which of the situations you described in part a. you are dealing with.

11. a.  Explain when a line and a plane can have an infinite number of points 
of intersection.

b. Give an example of a pair of vector equations (one for a line and one for a
plane) that have an infinite number of points of intersection.

12. Use elementary operations to solve each system of equations.
a.

b.

c.

13. For the system of equations given in parts a. and b. of question 12, describe
the corresponding geometrical representation.

14. is the line of intersection of planes and and is 
the line of intersection of the planes 
a. Determine the point of intersection of and .
b. Determine the angle between the lines of intersection.
c. Determine the Cartesian equation of the plane that contains the point 

you found in part a. and the two lines of intersection.

L1L
y � z � 0 and x � �

1
2.

L1y � z � �3,x � y � 1L

�3x � 6y � 2z � 83

2x � 5y � z � 32

x � 3y � 2z � �91

2x � 8y � 6z � 11 � 02

x � 4y � 3z � 6 � 01

x � 2y � �132

2x � 3y � 301

R3

t�Rr
!
� 1�8, 1, �9 2 � t15, �1, 6 2 ,s�R,r
!
� 12, �1, 3 2 � s15, �1, 6 2 , t�Rr
!
� 1�1, �1, 3 2 � t14, 2, �1 2 ,s�R,r
!
� 15, 1, 7 2 � s12, 0, 5 2 ,

t�R.z � 2t,y � t � 3,x � �3,
s�R,z � �3s,y � 4 � s,x � 1 � 2s,

x � 5
2 � y � 2 �

z � 4
�3 .t�R,t12, �4, 5 2 ,1x � 3, y � 20, z � 7 2 �

t�R,
z � 3 � 2t,y � 1 � 3t,x � 0,x � 11

2 �
y � 4

�4 �
z � 27

5

NEL
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Section 9.4—The Intersection of Three Planes

In the previous section, we discussed the intersection of two planes. In this
section, we will extend these ideas and consider the intersection of three planes.
Algebraically, the three planes are typically represented by a system of three 
linear equations in three unknowns.

First we will consider consistent systems. Later in the section, we will consider
inconsistent systems.

Consistent Systems for Three Equations Representing Three Planes
There are four cases that should be considered for the intersection of three planes.
These four cases, which all result in one or more points of intersection between
all three planes, are shown below.

p1, p2, p3

Case 3: The plane of intersection of three
coincident planes is the plane itself.

p1, p2

p3 L

Case 2b: L is the line of intersection of two
coincident planes and a third plane not

parallel to the coincident planes.

L

p1p2

p3

Case 2a: L is the line of intersection
of three planes.

P

p1

p2

p3

Case 1: P  is the point of 
intersection of three planes.
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Possible Intersections for Three Planes
A description is given below for each situation represented in the diagram 
on the previous page.

Case 1: There is just one solution to the corresponding system of equations.
This is a single point. The coordinates of the point of intersection will
satisfy each of the three equations.

This case can be visualized by looking at the ceiling in a rectangular
room. The point where the plane of the ceiling meets two walls represents
the point of intersection of three planes. Although planes are not usually
at right angles to each other and they extend infinitely far in all directions,
this gives some idea of how planes can intersect at a point.

Case 2: There are an infinite number of solutions to the related system of equations.
Geometrically, this corresponds to a line, and the solution is given in terms
of one parameter. There are two sub-cases to consider.

Case 2a: The three planes intersect along a line and are mutually non-coincident.

Case 2b: Two planes are coincident, and the third plane cuts through these two
planes intersecting along a line.

Case 3: Three planes are coincident, and there are an infinite number of solutions
to the related system of equations. The number of solutions corresponds
to the infinite number of points on a plane, and the solution is given in
terms of two parameters. In this case, there are three coincident planes
that have identical equations or can be reduced to three equivalent 
equations.

In the following examples, we use elementary operations to determine the solution
of three equations in three unknowns.

EXAMPLE 1 Using elementary operations to solve a system of three equations 
in three unknowns

Determine the intersection of the three planes with the equations
and 

Solution
For the intersection of the three planes, we must find the solution to the following
system of equations:

3x � y � z � �23

2x � y � 2z � �92

x � y � z � �21

3x � y � z � �2.2x � y � 2z � �9,x � y � z � �2,

C H A P T E R  9 521NEL



NEL

1: Create two new equations, and , each containing an x-term with 
a coefficient of 0.

To determine the required intersection, we use elementary operations and solve
the system of equations as shown earlier.

2: We create equation by eliminating y from equation .

This equivalent system can now be solved by first solving equation for z. 

Thus,

If we use the method of back substitution, we can substitute into equation and
solve for y.

Substituting into equation ,

If we now substitute and into equation , we obtain the value of x. 

Thus, the three planes intersect at the point with coordinates 

Check:
Substituting into equation ,

Substituting into equation ,

Substituting into equation ,

Checking each of the equations confirms the solution.

Two of the other possibilities involving consistent systems are demonstrated 
in the next two examples.

3x � y � z � 31�1 2 � 3 � 2 � �2.3

2x � y � 2z � 21�1 2 � 3 � 212 2 � �9.2

x � y � z � �1 � 3 � 2 � �2.1

1�1, 3, 2 2 . x � �1
 x � 3 � 2 � �2

1z � 2y � 3

y � 3

y � 412 2 � �5

4

4

z � 2

12z � 24

6

5�4�4 � 0x � 0y � 12z � 246

 0x � y � 4z � �54

 x � y � z � �21

56

3�1�3 � 0x � 4y � 4z � 45

2�1�2 � 0x � y � 4z � �54

 x � y � z � �21

54
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EXAMPLE 2 Selecting a strategy to determine the intersection of three planes 

Determine the solution to the following system of equations:

Solution
In this situation, there is not a best way to solve the system. Because the
coefficients of x for two of the equations are equal, however, the computation
might be easier if we arrange them as follows (although, in situations like this, it
is often a matter of individual preference).

(Interchange equations and )

Again, we try to create a zero for the coefficient of x in two of the equations.

Applying elementary operations gives the following system of equations:

Before proceeding with further computations, we should observe that equations
and are scalar multiples of each other and that, if equation is multiplied 

by 3, there will be two identical equations.

By using elementary operations again, we create the following equivalent system:

Equation , in conjunction with equations and , indicates that this system
has an infinite number of solutions. To solve this system, we let and solve
for y in equation .4

z � t
417

6�4�1 �0x � 0y � 0z � 07

0x � 7y � 5z � 34

3x � 2y � z � 01

53 �0x � 7y � 5z � 36

0x � 7y � 5z � 34

3x � 2y � z � 01

554

3�1�
2

3
 � 0x �

7

3
 y �

5

3
 z � 15

2�1�1 � 0x � 7y � 5z � 34

 3x � 2y � z � 01

 2x � y � z � 13

 3x � 5y � 4z � 32

31 3x � 2y � z � 01

 3x � 2y � z � 03

 3x � 5y � 4z � 32

 2x � y � z � 11
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Thus, Dividing by 

We determine the parametric equation for x by substituting in equation .

Substituting and into equation gives

Therefore, the solution to this system is and 

To help simplify the verification, we will remove the fractions from the direction
numbers of this line by multiplying them by 7. (Recall that we cannot multiply
the points by 7.)

In simplified form, the solution to the system of equations is  

and 

Check:
Substituting into equation ,

Substituting into equation ,

Substituting into equation ,

The solution to the system of equations is a line with parametric equations

and This is a line that has direction vector

and passes through the point 

It is useful to note that the normals for these three planes are 
and Because none of these normals are

collinear, this situation corresponds to Case 2a.
n3
!
� 12, �1, 1 2 .n2

!
� 13, �5, 4 2 , n1

!
� 13, 2, �1 2 ,Q27, �3

7, 0R.m
!
� 1�1, 5, 7 2 z � 7t, t�R.x � �t �

2
7, y � 5t �

3
7,

3
7 � 7t � 12 Q�t �

2
7R � Q5t �

3
7R � 7t � �2t �

4
7 � 5t �

3

25t �
15
7 � 28t � 33 Q�t �

2
7R � 5 Q5t �

3
7R � 417t 2 � �3t �

6
7 �

2

10t �
6
7 � 7t � 03 Q�t �

2
7R � 2 Q5t �

3
7R � 7t � �3t �

6
7 �

1

z � 7t, t�R.y � 5t �
3
7,x � �t �

2
7,

z � t.x � �
1
7 t �

2
7, y �

5
7 t �

3
7,

 x � �
1

7
 t �

2

7

 3x �
3

7
 t �

6

7
� 0

 3x � 2 a 5

7
 t �

3

7
b � t � 0

1y �
5
7 t �

3
7z � t

1

�7, we get y �
5
7 t �

3
7.�7y � �5t � 3.
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EXAMPLE 3 More on solving a consistent system of equations

Determine the solution to the following system of equations:

Solution
Again, using elementary operations,

Continuing, we obtain

Equation indicates that this system has an infinite number of solutions.

We can solve this system by using a parameter for either y or z.

Substituting in equation gives or 

Substituting into equation , or 

Therefore, the solution to this system is and 

Check:
Substituting into equation ,

Substituting into equation ,

There is no need to check in our third equation since . Equation 
represents the same plane as equation .

It is worth noting that the normals of the second and third planes,
and are scalar multiples of each other, and that the constants on
the right-hand side are related by the same factor. This indicates that the two
equations represent the same plane. Since neither of these normals and the first
plane’s normal are scalar multiples of each other, the first plane must
intersect the two coincident planes along a line passing through the point 
with direction vector This corresponds to Case 2b.m

!
� 10, 1, �1 2 . 11, 0, �1 2n1

!
� 12, 1, 1 2

n3
!
� 18, �2, �2 2 , n2

!
� 14, �1, �1 22

33�22 �

411 2 � s � 1�s � 1 2 � 4 � s � s � 1 � 5.2

211 2 � s � 1�s � 1 2 � 2 � s � s � 1 � 1.1

z � �s � 1, s�R.y � s,x � 1,

x � 1.2x � s � 1�s � 1 2 � 11

z � �s � 1.�3s � 3z � 34y � s

6

5�4�2 � 0x � 0y � 0z � 06

 0x � 3y � 3z � 34

 2x � y � z � 11

3�1�4 � 0x � 6y � 6z � 65

2�1�2 � 0x � 3y � 3z � 34

 2x � y � z � 11

 8x � 2y � 2z � 103

 4x � y � z � 52

 2x � y � z � 11
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Inconsistent Systems for Three Equations Representing Three Planes
There are four cases to consider for inconsistent systems of equations that
represent three planes.

The four cases, which all result in no points of intersection between all three
planes, are shown below.

Non-intersections for Three Planes
A description of each case above is given below.

Case 1: Three planes and form a triangular prism as shown.
This means that, if you consider any two of the three planes, they
intersect in a line and each of these three lines is parallel to the 
others. In the diagram, the lines and represent the lines of
intersection between the three pairs of planes, and these lines have
direction vectors that are identical to, or scalar multiples of, each
other.

Even though the planes intersect in a pair-wise fashion, there is no
common intersection between all three of the planes.

L3L2,L1,

p3 21p1, p2,

p1, p2

p3

Case 4: Two planes are coincident; a third 
plane is parallel to and non-coincident 

with the first two planes.
p1

p2

p3

Case 3: Three planes are parallel; 
none are coincident.

p1 p2

p3

Case 2: Two parallel planes intersect
a third plane.

L1 L2 L3

p1

p2 p3

Case 1: A triangular prism is formed
by three parallel lines.
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As well, the normals of the three planes are not scalar multiples of
each other, and the system is inconsistent. The only geometric
possibility is that the planes form a triangular prism. This idea is
discussed in Example 4.

Case 2: We consider two parallel planes, each intersecting a third plane.
Each of the parallel planes has a line of intersection with the third
plane, but there is no intersection between all three planes.

Cases 3 and 4: In these two cases, which again implies that all three planes do not
have any points of intersection.

EXAMPLE 4 Selecting a strategy to solve an inconsistent system of equations

Determine the solution to the following system of equations:

Solution
Applying elementary operations to this system, the following system is obtained:

At this point, it can be observed that there is an inconsistency between equations 
and . If equation is multiplied by it becomes 

which is inconsistent with equation This implies that 
there is no solution to the system of equations. It is instructive, however, to continue
using elementary operations and observe the results.

Equation , tells us there is no solution to the system, because
there are no values of x, y, and z that satisfy this equation. The system is inconsistent.

If we use the normals for these three equations, we can calculate direction vectors
for each pair of intersections. The normals for the three planes are 

and 
Let be a direction vector for the line of intersection between and 
Let be a direction vector for the line of intersection between and 
Let be a direction vector for the line of intersection between and p3.p2m3

! p3.p1m2
! p2.p1m1
! n3

!
� 11, �5, �1 2 .n2

!
� 11, 1, 2 2 , n1

!
� 11, �1, 1 2 ,

0x � 0y � 0z � 2,6

5�42 � 0x � 0y � 0z � 26

 0x � 2y � z � 14

 x � y � z � 11

10x � 4y � 2z � 0 2 .5

0x � 4y � 2z � �2,�2,454

3�1�1 � 0x � 4y � 2z � 05

2�1�1 � 0x � 2y � z � 14

 x � y � z � 11

 x � 5y � z � 13

 x � y � 2z � 22

 x � y � z � 11

C H A P T E R  9 527



NEL

Therefore, we can choose

We can see from our calculations that the system of equations corresponds to 
Case 1 for systems of inconsistent equations (triangular prism).

This conclusion could have been anticipated without doing any calculations. We have
shown that the system of equations is inconsistent, and, because the normals are not
scalar multiples of each other, we can reach the same conclusion.

In the following example, we deal with another inconsistent system.

EXAMPLE 5 Reasoning about an inconsistent system of equations

Determine the solution to the following system of equations:

Solution
Using elementary operations,

It is only necessary to use elementary operations once, and we obtain equation .
As before, we create an equivalent system of equations that does not have a
solution, implying that the original system has no solution.

4

 x � 3y � z � 03

2�1�1 � 0x � 0y � 0z � 44

 x � y � 2z � �11

x � 3y � z � 03

x � y � 2z � 32

x � y � 2z � �11

� �31�3, �1, 2 2 211 2 � 11�1 2 , 11�5 2 � 111 22� 11 1�1 2 � 21�5 2 ,� 11, 1, 2 2 � 11, �5, �1 2m3
!
� n2
!
� n3
!

� �21�3, �1, 2 2 111 2 � 11�1 2 , 11�5 2 � 1�1 2 11 22� 1�11�1 2 � 11�5 2 ,� 11, �1, 1 2 � 11, �5, �1 2m2
!
� n1
!
� n3
!

 � 1�3, �1, 2 2 � 1�112 2 � 111 2 , 111 2 � 112 2 , 111 2 � 1�1 2 11 22 � 11, �1, 1 2 � 11, 1, 2 2 m1
!
� n1
!
� n2
!
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It should be noted that it is not necessary to use elementary operations in this
example. Because equations and are the equations of non-coincident parallel
planes, no intersection is possible. This corresponds to Case 2 for systems of
inconsistent equations, since the third plane is not parallel to the first two.

EXAMPLE 6 Identifying coincident and parallel planes in an inconsistent system

Solve the following system of equations:

Solution
It is clear, from observation, that this system of equations is inconsistent.
Equations and represent the same plane, and equation represents a plane
that is parallel to, but different from, the other plane. This corresponds to Case 4
for systems of inconsistent equations, so there are no solutions.

231

x � y � z � 53

x � y � z � 42

x � y � z � 51

21
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IN SUMMARY

Key Idea

• A system of three (linear) equations in three unknowns geometrically represents
three planes in R3. These planes may intersect at zero, one, or an infinite
number of points, depending on how the planes are related to each other.

Need to Know

• Consistent Systems for Three Equations Representing Three Planes

Case 1 (one solution): There is a single point.

Case 2 (infinite number of solutions): The solution uses one parameter.

Case 2a: The three planes intersect along a line.

Case 2b: Two planes are coincident, and the third plane cuts through these
two planes.

Case 3 (infinite number of solutions): The solution uses two parameters.
There are three planes that have identical equations (after reducing the
equations) that coincide with one another.

• Inconsistent Systems for Three Equations Representing Three Planes (No
Intersection)

Case 1: Three planes , and form a triangular prism.

Case 2: Two non-coincident parallel planes each intersect a third plane.

Case 3: The three planes are parallel and non-coincident.

Case 4: Two planes are coincident and parallel to the third plane.

p3 21p1, p2
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Exercise 9.4

PART A
1. A student is manipulating a system of equations and obtains the following

equivalent system:

a. Determine the solution to this system of equations.

b. How would your solution be interpreted geometrically?

2. When manipulating a system of equations, a student obtains the following
equivalent system:

a. Give a system of equations that would produce this equivalent system.

b. How would you interpret the solution to this system geometrically?

c. Write the solution to this system using parameters for x and y.

d. Write the solution to this system using parameters for y and z.

3. When manipulating a system of equations, a student obtains the following
equivalent system:

a. Give two systems of equations that could have produced this result.

b. What does this equivalent system tell you about possible solutions for the
original system of equations?

4. When manipulating a system of equations, a student obtains the following
equivalent system:

a. Without using any further elementary operations, determine the solution 
to this system.

b. How can the solution to this system be interpreted geometrically?

 2x � 0y � 0z � �63

 x � 0y � 2z � 02

 x � 2y � z � 41

 0x � 0y � 0z � 13

 x � y � 4z � 32

 2x � y � 3z � �21

 0x � 0y � 0z � 03

 0x � 0y � 0z � 02

 x � y � z � 41

 0x � 0y � 3z � �123

 0x � y � z � �12

 x � 3y � z � 21
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PART B
5. a. Without solving the following system, how can you deduce that these three

planes must intersect in a line?

b. Find the solution to the given system using elementary operations.

6. Explain why there is no solution to the following system of equations:

7. Avery is solving a system of equations using elementary operations and
derives, as one of the equations,

a. Is it true that this equation will always have a solution? Explain.

b. Construct your own system of equations in which the equation
appears, but for which there is no solution to the

constructed system of equations.

8. Solve the following systems of equations using elementary operations.
Interpret your results geometrically.

a.

b.

c.

d.

 x � 1 � 53

 y � 2 � 02

 x � y � z � �11

 y � z � 2013

 x � z � �2002

 x � y � �1991

 x � 2y � 3z � 23

 2x � 2y � 3z � �202

 
x

3
�

y

4
� z �

7

8
1

 3x � 2y � z � �53

 x � y � 2z � 02

 2x � y � z � �31

0x � 0y � 0z � 0

0x � 0y � 0z � 0.

 5x � 5y � 15z � �10043

 x � y � 3z � �2012

 2x � 3y � 4z � �51

 �3x � 3y � 3z � 33

 x � y � z � �12

 2x � y � z � 11

C

K
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9. Solve each system of equations using elementary operations. Interpret your
results geometrically.

a.

b.

c.

10. Determine the solution to each system.

a. b.

11. a. Use elementary operations to show that the following system does not have
a solution:

b. Calculate the direction vectors for the lines of intersection between each
pair of planes, as shown in Example 4.

c. Explain, in your own words, why the planes represented in this system 
of equations must correspond to a triangular prism.

d. Explain how the same conclusion could have been reached without doing
the calculations in part b.

12. Each of the following systems does not have a solution. Explain why.

a. c.

b. d.

6x � 4y � 2z � 53 5x � 2y � 3z � 133

 9x � 6y � 3z � 122 5x � 2y � 3z � �12

3x � 2y � z � 41 5x � 2y � 3z � 11

 2x � 2y � 2z � 1733x � 5z � 03

 2x � 2y � 2z � 182x � y � 3z � 62

 x � y � z � 91x � y � 3z � 31

 x � y � z � 03

 x � 2y � z � 02

 x � y � z � 11

 �2x � y � 3z � 03 x � y � z � �23

 4x � 2y � 6z � 02 2x � 2y � 2z � 42

 2x � y � 3z � 01 x � y � z � 21

 x � 3y � z � �63

 x � y � z � 22

 x � y � z � �21

 x � 3y � z � �63

 x � y � z � 22

 x � 2y � z � 31

 5x � 3y � 2z � 03

 2x � 3y � z � �92

 x � 2y � z � 31

A
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13. Determine the solution to each system of equations, if a solution exists.

a. d.

b. e.

c.  f.

PART C
14. The following system of equations represents three planes that intersect 

in a line:

a. Determine p and q.

b. Determine an equation in parametric form for the line of intersection.

15. Consider the following system of equations:

Determine the value(s) of m for which this system of equations will have

a. no solution

b. one solution

c. an infinite number of solutions

16. Determine the solution to the following system of equations:

 
4
a

�
2

b
�

3
c

�
5

2
3

 
2
a

�
3

b
�

2
c

�
13

6
2

 
1
a

�
1

b
�

1
c

� 01

3x � 2y � 1m2 � 6 2z � m � 43

2x � y � z � �42

4x � 3y � 3z � �81

4x � qy � z � 23

x � y � z � p2

2x � y � z � 41

2x � y � 3z � 034x � 5y � 5z � 03

x � 2y � 3z � 022x � y � z � 02

x � y � z � 01x � y � z � 01

3x � y � 3z � 235x � 2y � 5z � 03

x � y � z � 22x � y � 2z � 12

x � y � z � �212x � y � z � �31

x � 10y � 13z � �830x � y � z � 83

2x � 20y � 26z � �82x � y � 0z � 72

x � 10y � 13z � �412x � y � z � 101

T
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Section 9.5—The Distance from a Point to a
Line in and 

In this section, we consider various approaches for determining the distance 

between a point and a line in and 

Determining a Formula for the Distance between a Point 
and a Line in 

Consider a line in that has as its general equation, as 
shown in the diagram above. The point is a point not on the line 
and whose coordinates are known. A line from is drawn perpendicular to

and meets this line at R. The line from is extended to 
point Q. The point represents a second point on the line different 

from R. We wish to determine a formula for the distance from to the
line. (Note that when we are calculating the distance between a point and either a
line or a plane, we are always calculating the perpendicular distance, which is
always unique. In simple terms, this means that there is only one shortest distance
that can be calculated between and )

To determine the formula, we are going to take the scalar projection of on 
Since is perpendicular to what we are doing is 

equivalent to taking the scalar projection of on the normal to the line,
since n and are parallel. P0Qn � 1A, B 2 , P0P1

!Ax � By � C � 0,P0Q
!

P0Q
!
.

P0P1

!Ax � By � C � 0.P0

P0@P0 R
! @ ,P11x1, y1 2 P0Ax � By � C � 0

P0

P01x0, y0 2Ax � By � C � 0R2

y

xO

Q

R

Ax + By + C = 0 

u

P0(x0, y0)

P1(x 1, y1)

= (A, B)n

R2

R3.R2

R3R2
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We know that and The formula for the 

dot product is where is the angle between 
and Rearranging this formula gives

(Equation 1)

From triangle 

Substituting into the dot product formula (equation 1 above) gives

Since and 

(by substitution) we obtain

The point is on the line meaning that 
or Substituting this into the formula for 

gives

To ensure that this quantity is always positive, it is written as @P0R
! @ � 0Ax0 � By0 � C 0

�A2 � B2

@P0R
! @ � �C � Ax0 � By0

�A2 � B2
�

�1C � Ax0 � By0 2
�A2 � B2

@P0R
! @ Ax1 � By1 � �C.C � 0Ax1 � By1 �

Ax � By � C � 0,P11x1, y1 2
@P0R
! @ � Ax1 � By1 � Ax0 � By0

�A2 � B2

0n! 0 � �A2 � B2,

P0P1

!
� n
!
� 1x1 � x0, y1 � y0 2 1A, B 2 � Ax1 � Ax0 � By1 � By0

@P0R
! @ � P0P1

!
� n
!0n! 0

@P0P1

! @ cos u � @P0R
! @@P0P1

! @ cos u � @P0R
! @cos u �

@P0R
! @@P0P1

! @
P0RP1

@P0P1

! @ cos u �
P0P1

!
� n
!0n! 0

n
!
.

P0P1

!
uP0P1

!
� n
!
� @P0P1

! @ 0n! 0 cos u,

n
!
� 1A, B 2 .P0P1

!
� 1x1 � x0, y1 � y0 2

Distance from a Point to the Line with Equation 

where d represents the distance between the point

and the line defined by , where the point does not
lie on the line. But we don't really need this since the formula gives the correct
value of 0 when the point does lie on the line.

Ax � By � C � 0P01x0, y0 2 ,d �
0Ax0 � By0 � C 0

�A2 � B2
,

Ax � By � C � 0P01x0, y0 2
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EXAMPLE 1 Calculating the distance between a point and a line in 

Determine the distance from point to the line with equation

Solution

Since and 

The distance from to the line with equation is
approximately 4.63.

It is not immediately possible to use the formula for the distance between a point
and a line if the line is given in vector form. In the following example, we show
how to find the required distance if the line is given in vector form.

EXAMPLE 2 Selecting a strategy to determine the distance between a point 
and a line in 

Determine the distance from point to the line with equation

Solution
To use the formula, it is necessary to convert the equation of the line in vector
form to its corresponding Cartesian form. The given equation must first be written
using parametric form. The parametric equations for this line are 

and Solving for the parameter s in each equation gives 

and Therefore, The required equation is 

or 

Therefore,

The required distance is 3.80.

d �
03115 2 � 41�9 2 � 10 0

V32
� 42

�
19
5 � 3.80.

3x � 4y � 10 � 0.31x � 2 2 � �41y � 1 2 x � 2
�4 �

y � 1
3 � s.y � 1

3 � s.

x � 2
�4 � sy � �1 � 3s.

x � �2 � 4s

s�R.s1�4, 3 2 ,r
!
� 1�2, �1 2 �

P115, �9 2R2

5x � 3y � 15 � 0P1�6, 4 2
d �

051�6 2 � 314 2 � 15 0
�52 � 1�3 22 �

0�27 0
�34

� 4.63

C � 15,B � �3,A � 5,y0 � 4,x0 � �6,

y

P(–6, 4)

D(–3, 0)

E(0, 5)

x

5x – 3y + 15 = 0

d

5x � 3y � 15 � 0.
P1�6, 4 2 R2
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EXAMPLE 3 Selecting a strategy to determine the distance between 
two parallel lines

Calculate the distance between the two parallel lines and

Solution
To find the required distance, it is necessary to determine the coordinates of a
point on one of the lines and then use the distance formula. For the line with
equation we can determine the coordinates of the point
where the line crosses either the x-axis or the y-axis. (This point was chosen
because it is easy to calculate and it also makes the resulting computation simpler.
In practice, however, any point on the chosen line is satisfactory.) If we let 
then or The line crosses the y-axis at To
find the required distance, d, it is necessary to find the distance from to
the line with equation 

Therefore, the distance between the two parallel lines is 

Determining the Distance between a Point and a Line in 
It is not possible to use the formula we just developed for finding the distance 
between a point and a line in because lines in are not of the form

We need to use a different approach.

The most efficient way to find the distance between a point and a line in 

is to use the cross product. In the following diagram, we would like to find d,
which represents the distance between point P, whose coordinates are known, and
a line with vector equation Point Q is any point on the line

whose coordinates are also known. Point T is the point on the line such that is
a vector representing the direction which is known. 

The angle between and is Note that, for computational purposes, it is 

possible to determine the coordinates of a position vector equivalent to either 

or PQ
!
.

QP
!u.QT

!
QP
!

Q

R
T

P

d

u m

r = r0 + sm, sPR 

m
!
,

QT
!s�R.r

!
� r
!
0 � sm

!
,

R3

Ax � By � C � 0.
R3R3

R3

120
13 � 9.23.

d �
0510 2 � 121�5 2 � 60 0

�52 � 1�12 22 �
0120 0
13

�
120

13

5x � 12y � 60 � 0.
10, �5 210, �5 2 .y � �5.510 2 � 12y � 60 � 0,

x � 0,

5x � 12y � 60 � 0,

5x � 12y � 60 � 0.
5x � 12y � 60 � 0
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In triangle 

equivalently 

From our earlier discussion on cross products, we know that

If we substitute into this formula, we find that

Solving for d gives d �
@m!� QP

! @0m! 0 .

@m!� QP
! @ � 0m! 0 1d 2 .d � @QP

! @ sin u

@m!� QP
! @ � 0m! 0 @QP

! @ sin u.

d � @QP
! @ sin u

sin u �
d@QP
! @PQR,

Distance, d, from a Point, P, to the Line 

In R3, where Q is a point on the line and P is any other point,

both of whose coordinates are known, and is the direction vector of the line.m
!

d �
@m!� QP

! @0m! 0 ,

r
!
� r
!
0 � sm

!
, s�R

EXAMPLE 4 Selecting a strategy to calculate the distance between a point and
a line in 

Determine the distance from point to the line with equation

Solution
Method 1: Using the Formula
Since Q is and P is 

From the equation of the line, we note that 

Thus,

Calculating,

and

Therefore, the distance from the point to the line is d �
6�2
�2

� 6.

0 10, 1, 1 2 0 � �02 � 12 � 12 � �2

0 18, �2, 2 2 0 � �82 � 1�2 22 � 22 � �72 � 6�2

10, 1, 1 2 � 1�2, �1, 7 2 � 17 � 1�1 2 , �2 � 0, 0 � 2 2 � 18, �2, 2 2
d �

0 10, 1, 1 2 � 1�2, �1, 7 2 00 10, 1, 1 2 0 .

m
!
� 10, 1, 1 2 .QP

!
� 1�1 � 1, 1 � 2, 6 � 1�1 22 � 1�2, �1, 7 2 .1�1, 1, 6 2 ,11, 2, �1 2

t�R.r
!
� 11, 2, �1 2 � t10, 1, 1 2 , P1�1, 1, 6 2R3
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This calculation is efficient and gives the required answer quickly. (Note that the
vector cannot be reduced by dividing by the common factor 2, or by
any other factor.) 

Method 2: Using the Dot Product
We start by writing the given equation of the line in parametric form. 
Doing so gives and We construct a vector 
from a general point on the line to P and call this vector Thus,

What we
wish to find is the minimum distance between point and the given
line. This occurs when is perpendicular to the given line, or when 

Calculating gives 

This means that the minimal distance between and the line occurs
when which implies that the point corresponding to produces the 
minimal distance between the point and the line. This point has coordinates 

and In other words, the minimal distance
between the point and the line is the distance between and the point,

Thus,

This gives the same answer that we found using Method 1. It has the advantage
that it also allows us to find the coordinates of the point on the line that produces
the minimal distance.

d � �1�1 � 1 22 � 11 � 5 22 � 16 � 2 22 � �4 � 16 � 16 � �36 � 6

11, 5, 2 2 . P1�1, 1, 6 2z � �1 � 3 � 2.y � 2 � 3 � 5,
x � 1,

t � 3t � 3,
P1�1, 1, 6 2 t � 3

 �1 � t � 7 � t � 0
 01�2 2 � 11�1 � t 2 � 117 � t 2 � 0
10, 1, 1 2 # 1�2, �1 � t, 7 � t 2 � 0

m
! # a!� 0.a

! P1�1, 1, 6 21 � 12 � t 2 , 6 � 1�1 � t 22 � 1�2, �1 � t, 7 � t 2 .a
!
� 1�1 � 1,

a
!
.

z � �1 � t.y � 2 � t,x � 1,

18, �2, 2 2

IN SUMMARY

Key Ideas

• In R2, the distance from point to the line with equation

is , where d represents the distance.

• In R3, the formula for the distance d from point P to the line 

, is , where Q is a point on the line whose coordinates 

are known.

d �
@m!� QP

! @0m! 0s�R

r
!
� r0
!
� sm

!
,

d �
0Ax0 � By0 � C 0

�A2 � B2
Ax � By � C � 0

P01x0, y0 2

C H A P T E R  9 539



NEL

Exercise 9.5

PART A
1. Determine the distance from to each of the following lines:

a.

b.

c.

2. Determine the distance between the following parallel lines:

a.

b.

3. Determine the distance from to each of the following lines:

a.

b.

c.

PART B
4. a. The formula for the distance from a point to a line is 

Show that this formula can be modified so the 

distance from the origin, to the line is given by

the formula 

b. Determine the distance between and
by first finding the distance from the origin to 

and then finding the distance from the origin to 

c. Find the distance between the two lines directly by first determining a
point on one of the lines and then using the distance formula. How does
this answer compare with the answer you found in part b.?

5. Calculate the distance between the following lines:

a.

b.

c.

d. 5x � 12y � 120 � 05x � 12y � 120,

2x � 3y � 3 � 02x � 3y � 1 � 0,

x

4
�

y � 1

�3

x � 1

4
�

y

�3
,

t�Rr
!
� 11, 0 2 � t13, 4 2 ,s�R;r

!
� 1�2, 1 2 � s13, 4 2 ;

L2.
L1L2 : 3x � 4y � 12 � 0

L1 : 3x � 4y � 12 � 0

d �
0C 0

�A2 � B2
.

Ax � By � C � 0O10, 0 2 ,d �
0Ax0 � By0 � C 0

�A2 � B2
.

p�Rr
!
� 11, 3 2 � p17, �24 2 ,t�Rr
!
� 11, 0 2 � t15, 12 2 , s�Rr
!
� 1�1, 2 2 � s13, 4 2 , R1�2, 3 27x � 24y � 336 � 07x � 24y � 168 � 0,

2x � y � 6 � 02x � y � 1 � 0,

9x � 40y � 0

5x � 12y � 24 � 0

3x � 4y � 5 � 0

P1�4, 5 2

C

K
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6. Calculate the distance between point P and the given line.

a.

b.

c.

7. Calculate the distance between the following parallel lines.

a. ; 

b.

8. a. Determine the coordinates of the point on the line 
that produces the shortest

distance between the line and a point with coordinates 

b. What is the distance between the given point and the line?

PART C

9. Two planes with equations and intersect
along line L. Determine the distance from to L, and determine
the coordinates of the point on L that gives this minimal distance.

10. The point is reflected in the line with equation
to give the point Determine the 

coordinates of 

11. A rectangular box with an open top, measuring 2 by 2 by 3, is constructed. 
Its vertices are labelled as shown.

a. Determine the distance from A to the line segment HB.

b. What other vertices on the box will give the same distance to HB as the
distance you found in part a.?

c. Determine the area of the AHB.^

2

2
3

D C

G

F

H

E

A B

A¿.
A¿.s�R,r

!
� 10, 0, 1 2 � s14, 2, 1 2 ,A12, 4, �5 2

P1�1, 2, �1 2x � y � z � �2x � y � 2z � 2

12, 1, 3 2 .s11, 3, �1 2 , s�R,r
!
� 11, �1, 2 2 �

n�Rr
!
� 11, 0, 1 2 � n11, 1, 3 2 ,m�R;r

!
� 13, 1, �2 2 � m11, 1, 3 2 , t�Rr

!
� 1�1, 1, 2 2 � t12, 1, 2 2 ,s�Rr

!
� 11, 1, 0 2 � s12, 1, 2 2 ,

p�Rr
!
� p112, �3, 4 2 ,P12, 3, 1 2 ; t�Rr
!
� 12, 1, 0 2 � t1�4, 5, 20 2 ,P10, �1, 0 2 ; s�Rr
!
� 11, 0, 0 2 � s12, �1, 2 2 ,P11, 2, �1 2 ;

A

T
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Section 9.6—The Distance from a Point to 
a Plane

In the previous section, we developed a formula for finding the distance from 
a point to the line In this section, we will 
use the same kind of approach to develop a formula for the distance from a 
point to the plane with equation 

Determining a Formula for the Distance between a Point 
and a Plane in 
We start by considering a general plane in that has 
as its equation. The point is a point whose coordinates are known.
A line from P0 is drawn perpendicular to and meets
this plane at R. The point is a point on the plane, with coordinates 
different from R, and Q is chosen so that is the normal to the 
plane. The objective is to find a formula for —the perpendicular distance from 
to the plane. To develop this formula, we are going to use the fact that is the 
scalar projection of on the normal 

In 

, where is the angle between the vectors 

and 

Since 

Therefore, where d is the distance from the point to the plane.d � @PR
! @ � n

! # P0P1

!0n! 0 ,

@P0P1

! @ cos u �
n
! # P0P1

!0n! 0
n
! # P0P1

!
� 0n! 0 @P0P1

! @ cos u,

P0P1

!
n
!

u@PR
! @ � @P0P1

! @ cos u

cos u �
@PR
! @@P0P1

! @^P0RP1,

y

z

x
= (A, B, C)n

n

Q

R

p: Ax + By + Cz + D = 0 

P0(x0, y0, z0)

P1(x 1, y1, z1)

 u

n
!
.P0P1

! @ PR
! @ P0@PR

! @P0Q
!
� n � 1A, B, C 2P11x1, y1, z1 2 Ax � By � Cz � D � 0

P01x0, y0, z0 2 Ax � By � Cz � D � 0R3
R3

Ax � By � � Cz � D � 0 in R3.P01x0, y0, z0 2 Ax � By � C � 0 in R2.P01x0, y0 2
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Since and

or

Since is a point on 
and 

Rearranging the formula,

Therefore,

Since the distance d is always positive, the formula is written as 

d �
0Ax0 � By0 � Cz0 � D 0

�A2 � B2 � C2

d �
�1Ax0 � By0 � Cz0 � D 2

�A2 � B2 � C2

d �
�Ax0 � By0 � Cz0 � D

�A2 � B2 � C2

d �
�Ax0 � By0 � Cz0 � Ax1 � By1 � Cz1

�A2 � B2 � C2

Ax1 � By1 � Cz1 � �D.Cz1 � D � 0Ax1 � By1 �
Ax � By � Cz � D � 0,P11x1, y1, z1 2

d �
Ax1 � Ax0 � By1 � By0 � Cz1 � Cz0

�A2 � B2 � C2

d � @PR
! @ � 1A, B, C 2 � 1x1 � x0, y1 � y0, z1 � z0 2

�A2 � B2 � C2

0n! 0 � �A2 � B2 � C2

P0P1

!
� 1x1 � x0, y1 � y0, z1 � z0 2n

!
� 1A, B, C 2 ,

Distance from a Point ( ) to the Plane with Equation 

where d is the required distance between the

point and the plane.

In R3, d �
0Ax0 � By0 � Cz0 � D 0

�A2 � B2 � C2
,

Ax � By � Cz � D � 0
x0, y0, z0P0

EXAMPLE 1 Calculating the distance from a point to a plane

Determine the distance from to the plane with equation 

Solution
To determine the required distance, we substitute directly into the formula.

Therefore,

The distance between and the given plane is 3.75.S1�1, 2, �4 2d � 081�1 2 � 412 2 � 81�4 2 � 3 0
�82 � 1�4 2 2 � 82

�
0�45 0

12 �
45
12 � 3.75

8z � 3 � 0.8x � 4y �
S1�1, 2, �4 2
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It is also possible to use the distance formula to find the distance between two
parallel planes, as we show in the following example.

EXAMPLE 2 Selecting a strategy to determine the distance between 
two parallel planes

a. Determine the distance between the two planes and

b. Determine the equation of the plane that is equidistant from and 

Solution
a. The two given planes are parallel because they each have the same normal,

To find the distance between and it is necessary to 
have a point on one of the planes and the equation of the second plane. If we
consider we can determine the coordinates of its z-intercept by letting

Substituting, , or This means
that point lies on To find the required distance, apply the
formula using and 

Therefore, the distance between and is 4.

When calculating the distance between these two planes, we used the coordinates
of the z-intercept as our point on one of the planes. This point was chosen
because it is easy to determine and leads to a simple calculation for the distance.

b. The plane that is equidistant from and is parallel to both planes and 
lies midway between them. Since the required plane is parallel to the two 
given planes, it must have the form with D to be
determined. If we follow the same procedure for that we used in part a.,
we can find the coordinates of the point associated with its z-intercept. If
we substitute into or 
This means the point is on p2.Y10, 0, �8 2 z � �8.210 2 � 10 2 � 2z � 16 � 0,p2,x � y � 0

p2

p: 2x � y � 2z � D � 0,

p2p1

p2p1

d �
0210 2 � 10 2 � 21�2 2 � 16 0

�22 � 1�1 22 � 22
�
0�4 � 16 0

3
�

12

3
� 4

p2: 2x � y � 2z � 16 � 0.X10, 0, �2 2 p1.X10, 0, �2 2 z � �2.210 2 � 10 2 � 2z � 4 � 0x � y � 0.
p1,

p2,p1n
!
� 12, �1, 2 2 .

p2.p1

p2: 2x � y � 2z � 16 � 0.
p1: 2x � y � 2z � 4 � 0
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The situation can be visualized in the following way:

Point T is on the required plane and is the midpoint of
the line segment joining to meaning that point T has
coordinates To find D, we substitute the coordinates of point T into 
which gives or 

Thus, the required plane has the equation We should
note, in this case, that the coordinates of its z-intercept are 

We have shown how to use the formula to find the distance from a point to a
plane. This formula can also be used to find the distance between two skew lines.

EXAMPLE 3 Selecting a strategy to determine the distance between skew lines

Determine the distance between and

Solution
Method 1:
These two lines are skew lines because they are not parallel and do not intersect
(you should verify this for yourself). To find the distance between the given lines,
two parallel planes are constructed. The first plane is constructed so that lies on
it, along with a second line that has direction the direction vector
for 

In the same way, a second plane is constructed containing along with a second
line that has direction the direction of L1.b

!
� 11, �1, 1 2 , L2,

L2.
a
!
� 11, 1, 2 2 , L1

t�R.L2: r
!
� 10, 1, 0 2 � t11, 1, 2 2 , s�R,L1: r

!
� 1�2, 1, 0 2 � s11, �1, 1 2 ,

10, 0, �5 2 .2x � y � 2z � 10 � 0.

D � 10.210 2 � 10 2 � 21�5 2 � D � 0,
p,10, 0, �5 2 . Y10, 0, �8 2 ,X10, 0, �2 2p: 2x � y � 2z � D � 0

z-axis

X(0, 0, –2)

Y(0, 0, –8)

T

p: 2x – y + 2z + D = 0 
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The two constructed planes are parallel because they have two identical direction
vectors. By constructing these planes, the problem of finding the distance between
the two skew lines has been reduced to finding the distance between the planes 
and Finding the distance between the two planes means finding the Cartesian
equation of one of the planes and using the distance formula with a point from the
other plane. (This method of constructing planes will not work if the two given lines
are parallel because the calculation of the normal for the planes would be (0, 0, 0).)

We first determine the equation of Since this plane has direction vectors 
and we can choose 

Thus,

We must now find D using the equation Since (0, 1, 0) is
a point on this plane, or This gives

as the equation for 

Using and the point from the other plane the
distance between the skew lines can be calculated.

The distance between the two skew lines is approximately 1.60.

The first method gives one approach for finding the distance between two skew
lines. In the second method, we will show how to determine the point on each of
these two skew lines that produces this minimal distance.

Method 2:
In Method 1, we constructed two parallel planes and found the distance between
them. Since the distance between the two planes is constant, our calculation also
gave the distance between the two skew lines. There are points on each of these
lines that will produce this minimal distance. Possible points, U and V, are shown

d �
031�2 2 � 1 � 210 2 � 1 0

�32 � 12 � 1�2 22 �
6

�14
�

3

7
�14 � 1.60

p11�2, 1, 0 23x � y � 2z � 1 � 0

p2.3x � y � 2z � 1 � 0
D � �1.310 2 � 1 � 210 2 � D � 0,

3x � y � 2z � D � 0.

n
!
� 1111 2 � 21�1 2 , 211 2 � 111 2 , 11�1 2 � 111 2 2 � 13, 1, �2 2n

!
� m2
!
� b
!
� 11, 1, 2 2 � 11, �1, 1 2 .b

!
� 11, �1, 1 2 ,m2

!
� 11, 1, 2 2 p2.

p2.
p1

L1: r = (–2, 1, 0) + s(1, –1, 1), s P R 

L2: r = (0, 1, 0) + t(1, 1, 2), t P R 

line parallel to L1 with direction b = (1, –1, 1)

line parallel to L2 with direction a = (1, 1, 2)p1

p2
V

U

d
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on the diagram for Method 1. To determine the coordinates of these points, we
must use the fact that the vector found by joining the two points is perpendicular 
to the direction vector of each line.

We start by writing each line in parametric form.

For 

For 

The point with coordinates represents a general point on 
and represents a general point on We next calculate 

represents a general vector with its tail on and its head on 

To find the points on each of the two lines that produce the minimal 
distance, we must use equations and since must be
perpendicular to each of the two planes.

Therefore,

or (Equation 1)
and

or (Equation 2)
This gives the following system of equations:

If we substitute into equation , or 

We now substitute and into the equations for each line to find 
the required points.

For 

Therefore, the required point on is 

For 

Therefore, the required point on is Q�1
7, 67, �2

7R .L2

z � 2Q�1
7 R � �

2
7.y � 1 � Q�1

7 R �
6
7,x � �

1
7,L2,

Q�10
7 , 37, 47R .L1

z �
4
7.y � 1 �

4
7 �

3
7,x � �2 �

4
7 � �

10
7 ,L1,

t � �
1
7s �

4
7

s �
4
7.3 Q�1

7R � s � �12t � �
1
7

t � �
1

7

1�2�3 ��7t � 1
3t � s � �12

2t � 3s � �21

3t � s � �1
11t � s � 2 2 � 11t � s 2 � 212t � s 2 � 0
11, 1, 2 2 # 1t � s � 2, t � s, 2t � s 2 � 0

2t � 3s � �2
11t � s � 2 2 � 11t � s 2 � 112t � s 2 � 0
11, �1, 1 2 1t � s � 2, t � s, 2t � s 2 � 0

UV
!

m2
! # UV

!
� 0,m1

! # UV
!
� 0

L2.L1UV
!

UV
!
� 1t � 1�2 � s 2 , 11 � t 2 � 11 � s 2 , 2t � s 2 � 1t � s � 2, t � s, 2t � s 2UV

!
.L2.V1t, 1 � t, 2t 2L1,

U1�2 � s, 1 � s, s 2m2
!
� 11, 1, 2 2 .z � 2t,y � 1 � t,x � t,L2,

m1
!
� 11, �1, 1 2 .z � s,y � 1 � s,x � �2 � s,L1,
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The required distance between the two lines is the distance between these 

two points. This distance is

Thus, the distance between the two skew lines is or approximately 1.60.

The two points that produce this distance are on and on 

INVESTIGATION A. In this section, we showed that the formula for the distance d from a point
to the plane with equation is 

.

By modifying this formula, show that a formula for finding the distance from 

to the plane is .

B. Determine the distance from to the plane with equation

C. Determine the distance between the planes with equations
and 

D. Determine the coordinates of a point that is equidistant from and 

E. Determine an equation for a plane that is equidistant from and 

F. Determine two values of D if the plane with equation 
is 4 units away from the plane with equation 

G. Determine the distance between the two planes
and p4: 20x � 4y � 5z � 147 � 0.p3: 20x � 4y � 5z � 105 � 0

20x � 4y � 5z � 0.
20x � 4y � 5z � D � 0

p2.p1

p2.p1

p2: 20x � 4y � 5z � 105 � 0.p1: 20x � 4y � 5z � 21 � 0

20x � 4y � 5z � 21 � 0.
O10, 0, 0 2 d �

0D 0
VA2 � B2 � C2

Ax � By � Cz � D � 0O10, 0, 0 2
d �

0Ax0 � By0 � Cz0 � D 0
�A2 � B2 � C2

Ax � By � Cz � D � 0P01x0, y0, z0 2
L2.Q�1

7, 67, �2
7RL1Q�10

7 , 37, 47R
3
7 �14,

�
3

7
�14

� � 9 � 14

49

� � 126

49

� � 81

49
�

9

49
�

36

49

� � a�9

7
b 2

� a�3

7
b 2

� a 6

7
b 2

�Q�10
7 �

1
7R2 � Q37 �

6
7R2 � Q47 �

2
7R2
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H. Determine the distance between the following planes:

a. and 

b. and 

c. and 

I. If two planes have equations and
explain why the formula for the distance d 

between these planes is d �
0D1 � D2 0

�A2 � B2 � C2
.

Ax � By � Cz � D2 � 0,
Ax � By � Cz � D1 � 0

12x � 3y � 4z � 26 � 012x � 3y � 4z � 26 � 0

6x � 3y � 2z � 35 � 06x � 3y � 2z � 14 � 0

2x � 2y � z � 12 � 02x � 2y � z � 6 � 0

IN SUMMARY

Key Idea

• The distance from a point to the plane with equation 

is where d is the required

distance.

Need to Know

• The distance between skew lines can be calculated using two different
methods.

Method 1: To determine the distance between the given skew lines, two
parallel planes are constructed that are the same distance apart as the skew
lines. Determine the distance between the two planes.

Method 2: To determine the coordinates of the points that produce the
minimal distance, use the fact that the general vector found by joining the
two points is perpendicular to the direction vector of each line.

d �
0Ax0 � By0 � Cz0 � D 0

�A2 � B2 � C2
,Ax � By � Cz � D � 0

P01x0, y0, z0 2

Exercise 9.6

PART A
1. A student is calculating the distance d between point and the

plane with equation . The student obtains the following
answer:

a. Has the student done the calculation correctly? Explain.

b. What is the significance of the answer 0? Explain.

d �
021�3 2 � 2 � 211 2 � 2 0

�22 � 12 � 22
�

0
3 � 0

2x � y � 2z � 2 � 0
A1�3, 2, 1 2C
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PART B
2. Determine the following distances:

a. the distance from to the plane with equation

b. the distance from to the plane with equation 

c. the distance from to the plane with equation 

d. the distance from to the plane with equation 

e. the distance from to the plane with equation

3. For the planes and 
determine

a. the distance between and 

b. an equation for a plane midway between and 

c. the coordinates of a point that is equidistant from and 

4. Determine the following distances:

a. the distance from to the plane with equation 

b. the distance from to the plane with equation 

c. the distance from to the plane with equation 

5. Points and lie on the same plane.
Determine the distance from to the plane containing these three
points.

6. The distance from to the plane with equation 
is 3. Determine all possible value(s) of A for which this is true.

7. Determine the distance between the lines 
and 

PART C
8. a. Calculate the distance between the lines 

and 

b. Determine the coordinates of points on these lines that produce the 
minimal distance between and L2.L1

t�R.L2: r
!
� 11, �1, �2 2 � t11, 0, �1 2 ,s�R,

L1: r
!
� 11, �2, 5 2 � s10, 1, �1 2 ,

t�R.r
!
� 10, 0, 1 2 � t11, 1, 0 2 , s�R,r

!
� 10, 1, �1 2 � s13, 0, 1 2 ,

Ax � 2y � 6z � 0R13, �3, 1 2
P11, �1, 1 2C113, 4, �1 2B1�3, �1, 2 2 ,A11, 2, 3 2 , z � 1 � 0R11, 0, 1 2 x � 3 � 0Q1�1, 1, 4 2 y � 3 � 0P11, 1, �3 2

p2p1

p2p1

p2p1

39 � 0,p2: 3x � 4y � 12z �
p1: 3x � 4y � 12z � 26 � 0

18x � 9y � 18z � 11 � 0
E1�1, 0, 1 2 5x � 12y � 0D11, 0, 0 2 3x � 4y � 1 � 0C15, 1, 4 28 � 02x � y � 2z �
B10, �1, 0 220x � 4y � 5z � 7 � 0
A13, 1, 0 2K

A

T
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A pipeline engineer needs to find the line that will allow a new pipeline to
intersect and join an existing pipeline at a right angle. The existing line has a
pathway determined by the equation The
new pipeline will also need to be exactly 2 units away from the point (4, 0, 2).

a. Determine the vector and parametric equations of the line that passes
through (4, 0, 2) and is perpendicular to 

b. Determine the vector and parametric equations of the line that is
parallel to and 2 units away from (4, 0, 2). There will be exactly 
two lines that fulfill this condition.

c. Plot each line on the coordinate axes.

L3

L1,

L2.
L3,

d�R.L2: r � 11, 1, 1 2 � d10, 2, 3 2 ,

CAREER LINK WRAP-UP Investigate and Apply

CHAPTER 9: RELATIONSHIPS BETWEEN POINTS, LINES, AND PLANES

x

z

y(4, 0, 2)

(1, 1, 1)

(1, 3, 4)

System of Equations
Geometric 
Interpretation

Possible Points of 
Intersection

Two equations and two unknowns two lines in R2 zero, one, or an infinite number

Two equations and three unknowns two planes in R3 zero or an infinite number

Three equations and three unknowns three planes in R3 zero, one, or an infinite number

To make a connection between the algebraic equations and the geometric position
and orientation of lines or planes in space, draw graphs or diagrams and compare the
direction vectors of the lines and the normals of the planes. This will help you decide
whether the system is consistent or inconsistent and which case you are dealing with.

Distances between points, lines and planes can be determined using the formulas
developed in this chapter.

Distance between a point and a line in R2 d �
0Ax0 � By0 � C 0

�A2 � B2

Distance between a point and a line in R3 d �
0m!� QP

! 00m! 0
Distance between a point and a plane in R3 d �

0Ax0 � By0 � Cz0 � D 0
�A2 � B2 � C2

C H A P T E R  9 551

Key Concepts Review

In this chapter, you learned how to solve systems of linear equations using 
elementary operations. The number of equations and the number of variables in
the system are directly related to the geometric interpretation that each system
represents.
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Review Exercise

1. The lines and all pass through 
a common point. Determine the value of k.

2. Solve the following system of equations:

3. Solve each system of equations.

a. b.

4. a. Show that the points and all lie
on the same plane.

b. Determine the distance from the origin to the plane you found in part a.

5. Determine the following distances:

a. the distance from to the plane with equation

b. the distance from to the plane with equation

6. Determine the intersection of the plane with 

7. Solve the following systems of equations:

a.

b.

c.

 12x � 9y � 6z � 13

 8x � 6y � 4z � 42

 4x � 3y � 2z � 21

 5x � y � z � 13

 4x � 6y � 8z � 42

 2x � 3y � 4z � 31

 9x � 12y � 15z � 93

 6x � 9y � 10z � 92

 3x � 4y � 5z � 91

t12, �1, 2 2 , t�R.r
!
� 13, 1, 1 2 �

3x � 4y � 5z � 0

8x � 8y � 4z � 7 � 0
B13, 1, �2 23x � 4y � 12z � 8 � 0
A1�1, 1, 2 2

1�3, 5, 6 211, 2, 6 2 , 17, �5, 1 2 , 11, 1, 4 2 ,x � y � z � 10032x � 2y � z � 113

x � y � z � 9822x � 2y � 3z � 12

x � y � z � 3001x � y � 2z � 31

 x � 2y � �193

 3x � 2y � �62

 x � y � 131

3x � ky � 382x � y � 31, x � 8y � �34,
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8. Solve each system of equations.

a.

b.

c.

9. Solve each of the following systems:

a. b.

10. Determine the intersection of each set of planes, and show your answer 
geometrically.

a.

b.

c.

11. The line intersects the xz-plane 
at point P and the xy-plane at point Q. Calculate the length of the line
segment PQ.

12. a. Given the line and the plane
verify that the line lies on the plane.

b. Determine the point of intersection between the line 
and the line given in part a.

c. Show that the point of intersection of the lines is a point on the plane 
given in part a.

d. Determine the Cartesian equation of the plane that contains the line
and is perpendicular to the plane 

given in part a.

13. a. Determine the distance from point to the line with 
equation 

b. What are the coordinates of the point on the line that produces 
this shortest distance?

r
!
� 13, 0, �1 2 � t11, 1, 2 2 , t�R.

A1�2, 1, 1 2
r
!
� 17, 5, �1 2 � t14, 3, 2 2 , t�R

t�R,r
!
� 17, 5, �1 2 � t14, 3, 2 2 ,

x � 2y � z � 4 � 0,
r
!
� 13, 1, �5 2 � s12, 1, 0 2 , s�R,

r
!
� 12, �1, �2 2 � s11, 1, �2 2 , s�R,

9x � 2y � z � 02x � y � z � 0, x � 2y � 3z � 0,

x � 3y � 5z � 42x � y � 2z � 2, 3x � y � z � 1,

3x � y � 22x � y � z � 6, x � y � z � �9,

2x � 7y � 2z � 436x � 3y � 8z � 63

4x � 2y � 5z � 526x � 2y � z � 22

2x � 5y � 3z � 113x � 5y � 2z � 41

�x � 3y � 3z � �73

2x � 6y � 6z � 142

x � 3y � 3z � 71

x � 2y � 3z � 43

2x � 4y � 6z � 42

4x � 8y � 12z � 41

6x � 8y � 2z � 83

5x � 2y � 3z � 22

3x � 4y � z � 41

NEL
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14. You are given the lines , and

a. Determine the coordinates of their point of intersection.

b. Determine a vector equation for the line that is perpendicular to both of the
given lines and passes through their point of intersection.

15. a. Determine the equation of the plane that contains 
and point 

b. Determine the distance from point to the plane you found in
part a.

16. Consider the following system of equations:

a. Determine the value(s) of k for which the solution to this system is a line.

b. Determine the vector equation of the line.

17. Determine the solution to each system of equations.

a. b.

18. Solve the following system of equations for a, b, and c:

Hint: Let and 

19. Determine the point of intersection of the line and
the plane with equation 

20. Point is reflected in the plane with equation 
Determine the coordinates of the image point.

x � y � z � 1 � 0.A11, 0, 4 2 x � 2y � 3z � 10 � 0.

x � 1
�4 �

y � 2
3 �

z � 1
�2

Rz �
c
b.x �

a
b, y � b,Q

3a

b
� 4b �

4c

b
� 33

�3a

b
� 4b �

4c

b
� 32

9a

b
� 8b �

3c

b
� 41

6x � 14y � 4z � 044x � y � z � 84

3x � 7y � 2z � 033x � 5y � 4z � 53

2x � 5y � z � �122x � 3y � z � 62

x � 2y � z � 11x � 2y � z � 11

7x � 7y � z � k3

2x � 5y � z � �12

x � y � z � 11

S11, 1, �1 2 K13, �2, 4 2 .s11, 2, �1 2 , s�R,L : r
!
� 11, 2, �3 2 �

r
!
� 1�2, �3, 0 2 � s11, 2, 3 2 , s�R.

r
!
� 11, �1, 1 2 � t13, 2, 1 2 , t�R
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21. The three planes with equations 
and do not simultaneously

intersect.

a. Considering the planes in pairs, determine the three lines of intersection.

b. Show that these three lines are parallel.

22. Solve for a, b, and c in the following system of equations:

23. Determine the equation of a parabola that has its axis parallel to the y-axis and
passes through the points and (2, 1). (Note that the general

form of the parabola that is parallel to the y-axis is )

24. A perpendicular line is drawn from point to the plane
and meets the plane at point M. Determine the 

coordinates of M.

25. Determine the values of A, B, and C if the following is true:

(Hint: Simplify the right side by combining fractions and comparing numerators.)

26. A line L is drawn through point D, perpendicular to the line segment EF, and
meets EF at point J.

a. Determine an equation for the line containing the line segment EF.

b. Determine the coordinates of point J on EF.

c. Determine the area of DEF.

27. Determine the equation of the plane that passes through and is 
perpendicular to the line of intersection of the planes and
4x � 3y � 7 � 0.

3x � 2z � 1 � 0
15, �5, 5 2

D (3, 0, 7)

F(–1, –4, –6)

E(4, 0, –3)

L

J

^

11x2 � 14x � 913x � 1 2 1x2 � 1 2 �
A

3x � 1
�

Bx � C

x2 � 1

4x � 5y � z � 9 � 0
X13, 2, �5 2y � ax2 � bx � c.

1�1, 2 2 , 11, �1 2 ,
9

a2 �
5

b2 �
4

c2 � 673

3

a2 �
6

b2 �
1

c2 � �32

2

a2 �
5

b2 �
3

c2 � 401

x � 2y � 3z � 4 � 04x � 12y � 4z � 24 � 0,
3x � y � 7z � 3 � 0,
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1. a. Determine the point of intersection for the lines having equations
and 

b. Verify that the intersection point of these two lines is on the plane

2. a. Determine the distance from point to 

b. Determine the distance between the planes 
and 

3. a. Determine the equation of the line of intersection L between the planes
and 

b. Determine the point of intersection between L and the xz-plane.

4. a. Solve the following system of equations:

b. Explain what your solution means geometrically.

5. a. Solve the following system of equations:

b. Explain what your solution means geometrically.

6. The three planes and 
intersect in a line.

a. Determine the values of m and n for which this is true.

b. What is the equation of the line?

7. Determine the distance between the skew lines with equations
and

L2: r
!
� 1�5, 5, �8 2 � t11, 2, 5 2 , t�R.

L1: r
!
� 1�1, �3, 0 2 � s11, 1, 1 2 , s�R,

2x � y � mz � nx � 2y � 2z � 1,x � y � z � 0,

x � 5y � 4z � �33

2x � 2y � z � 02

x � y � z � �11

1

2
x �

2

5
y �

1

4
z � �

1

2
3

2x � 3y � 2z � �212

x � y � z � 101

p2: �x � y � z � 1.p1: 2x � 3y � z � 3

p2: 2x � y � 2z � 24 � 0.
p1: 2x � y � 2z � 16 � 0

p: 8x � 8y � 4z � 7 � 0.A13, 2, 3 2x � y � z � 1 � 0.

r
!
� 15, �1, 4 2 � t12, 0, 9 2 , t�R.r

!
� 14, 2, 6 2 � s11, 3, 11 2 , s�R,
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Chapter 9 Test
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Cumulative Review of Vectors

1. For the vectors and determine the following:

a. the angle between the two vectors

b. the scalar and vector projections of on 

c. the scalar and vector projections of on 

2. a. Determine the line of intersection between 
and 

b. Determine the angle between the two planes.

3. If and are unit vectors, and the angle between them is determine the 
value of each of the following:

a. b. c.

4. Expand and simplify each of the following, where and represent the
standard basis vectors in 

a.

b.

5. Determine the angle that the vector makes with the positive
x-axis, y-axis, and z-axis.

6. If and determine each 
of the following:

a. c. the area of the parallelogram determined by and 

b. d.

7. Determine the coordinates of the unit vector that is perpendicular to
and 

8. a. Determine vector and parametric equations for the line that contains
and 

b. Verify that is on the line that contains A and B.

9. Show that the lines and 

are parallel and distinct.

10. Determine vector and parametric equations for the line that passes through 
(0, 0, 4) and is parallel to the line with parametric equations 

and 

11. Determine the value of c such that the plane with equation
is parallel to the line with equation 

x � 1
2 �

y � 2
3 � z � 1.

2x � 3y � cz � 8 � 0

t�R.z � �3 � t,y � 2 � t,
x � 1,

L2 : x � 3 �
y � 5

�5 �
z � 10

�2

t�R,L1: r
!
� 12, 0, 9 2 � t1�1, 5, 2 2 ,C14, �13, �3 2B11, 2, 3 2 .A12, �3, 1 2

b
!
� 12, �2, 3 2 .a

!
� 11, �1, 1 2

c
! # 1b!� a

!22a
!
� 3b

! b
!

a
!

a
!
� b
!

c
!
� 13, �4, �1 2 ,b

!
� 1�1, 1, 2 2 ,a

!
� 11, �2, 3 2 ,

a
!
� 14, �2, �3 2�213i

!
� 4j
!
� 5k
!2 # 12i

!
� 3k
!2 � 2i

! # 13j
!
� 2k
!221i!� 2j

!
� 3k
!2  �412i

!
� 4j
!
� 5k
!2 � 1i!� j

!2R3:
k
!

i
!
, j
!
,

0 12x
!
� y
!2 # 1x!� 3y

!2 002x
! # 3y
! 00x! # y! 0

60°,y
!

x
!

p2 : x � y � z � 5 � 0.
p1 : 4x � 2y � 6z � 14 � 0

a
!

b
! b

!
a
!

b
!
� 13, �4, 12 2 ,a

!
� 12, �1, �2 2

NEL
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12. Determine the intersection of the line with the plane

13. Sketch the following planes, and give two direction vectors for each.

a. b. c.

14. If is reflected in the plane with equation 
determine the coordinates of its image point, (Note that the plane 

is the right bisector of the line joining 
with its image.)

15. Determine the equation of the line that passes through the point 
and intersects the line at a right angle.

16. a. Determine the equation of the plane that passes through the points
and 

b. Determine the distance from to this plane.

17. Determine a Cartesian equation for each of the following planes:

a. the plane through the point with 

b. the plane through the point and perpendicular to the line joining
the points (2, 1, 8) and 

c. the plane through the point and perpendicular to the z-axis

d. the plane through the points and and parallel to the 
y-axis

18. An airplane heads due north with a velocity of 400 km h and encounters 
a wind of 100 km h from the northeast. Determine the resultant velocity 
of the airplane.

19. a. Determine a vector equation for the plane with Cartesian equation
and verify that your vector equation is correct.

b. Using coordinate axes you construct yourself, sketch this plane.

20. a. A line with equation intersects the
plane at an angle of degrees. Determine this angle to
the nearest degree.

b. Show that the planes and 
are perpendicular.

c. Show that the planes and
are parallel but not coincident.

21. Two forces, 25 N and 40 N, have an angle of between them. Determine
the resultant and equilibrant of these two vectors.

60°

p4 : 2x � 3y � 2z � 3 � 0
p3 : 2x � 3y � 2z � 1 � 0

p2 : 4x � 3y � 17z � 0p1: 2x � 3y � z � 1 � 0

ux � 2y � z � 2
s�R,r

!
� 11, 0, �2 2 � s12, �1, 2 2 ,

3x � 2y � z � 6 � 0,

> >
11, 3, �1 213, 1, �2 213, �1, 3 211, 2, �4 2K14, 1, 2 2 n
!
� 13, �5, 4 2A1�1, 2, 5 2

O10, 0, 0 2C11, 4, 0 2 .B1�2, 0, 0 2 ,A11, 2, 3 2 ,
s�R,r

!
� 1�2, 3, 4 2 � s11, 1, 2 2 , A11, 0, 2 2

P11, �2, 4 22x � 3y � 4z � 66 � 0
P¿.

2x � 3y � 4z � 66 � 0,P11, �2, 4 2 3x � 2y � z � 02x � 3y � 0x � 2y � 2z � 6 � 0

5x � y � 2z � 2 � 0.

x � 2
3 � y � 5 �

z � 3
5

P(1, –2, 4)

P9

Q

2x – 3y – 4z + 66 = 0 

60°

40 N

25 N
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22. You are given the vectors and as shown at the left.

a. Sketch b. Sketch 

23. If determine the following:

a. the coordinates of a unit vector in the same direction as 

b. the coordinates of a unit vector in the opposite direction to 

24. A parallelogram OBCD has one vertex at and two of its remaining
three vertices at and 

a. Determine a vector that is equivalent to each of the two diagonals.

b. Determine the angle between these diagonals.

c. Determine the angle between and 

25. Solve the following systems of equations:
a. c.

b. d.

26. State whether each of the following pairs of planes intersect. If the planes 
do intersect, determine the equation of their line of intersection.

a.

b.

c.

27. Determine the angle between the line with symmetric equations 
and the plane 

28. a. If and are unit vectors, and the angle between them is calculate

b. Calculate the dot product of and if and
the angle between and is 60°.y

!
x
! 0y! 0 � 4,0x! 0 � 3,2x

!
� 3y
!

4x
!
� y
!

16a
!
� b
!2 # 1a!� 2b

!2 . 60°,b
!

a
!

2x � 2z � 5.z � 4
x � �y,

2x � y � z � 4 � 0

x � y � z � 2 � 0

2x � 8y � 14z � 60

x � 4y � 7z � 28

x � 2y � 2z � 2 � 0

x � y � z � 1 � 0

�4x � 4y � 12z � �43�x � y � 3z � �123

2x � 2y � 6z � 22x � 2y � z � 22

x � y � 3z � 11�2x � 3y � z � �111

2x � y � z � 53x � y � 4z � 53

4x � 2y � 2z � �22�x � y � 2z � 12

2x � y � z � �11x � y � z � 21

OD
!
.OB

!

D19, 2 2 .B1�1, 7 2 O10, 0 2 a
!

a
!

a
!
� 16, 2, �3 2 , 2a

!
�

1

2
 b
!
.a

!
� b
!
.

b
!
,a

!

a b
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29. A line that passes through the origin is perpendicular to a plane and
intersects the plane at Determine an equation for this line and 
the cartesian equation of the plane.

30. The point is reflected in the plane and has as its
image. Determine the coordinates of the point 

31. A river is 2 km wide and flows at 4 km h. A motorboat that has a speed of 
10 km h in still water heads out from one bank, which is perpendicular to the
current. A marina lies directly across the river, on the opposite bank.

a. How far downstream from the marina will the motorboat touch 
the other bank?

b. How long will it take for the motorboat to reach the other bank?

32. a. Determine the equation of the line passing through and

b. Does the line you found lie on the plane with equation
Justify your answer.

33. A sailboat is acted upon by a water current and the wind. The velocity of the
wind is 16 km h from the west, and the velocity of the current is 12 km h
from the south. Find the resultant of these two velocities.

34. A crate has a mass of 400 kg and is sitting on an inclined plane that makes an
angle of with the level ground. Determine the components of the weight
of the mass, perpendicular and parallel to the plane. (Assume that a 1 kg
mass exerts a force of 9.8 N.)

35. State whether each of the following is true or false. Justify your answer.

a. Any two non-parallel lines in must always intersect at a point.

b. Any two non-parallel planes in must always intersect on a line.

c. The line with equation will always intersect the plane with
equation regardless of the value of k.

d. The lines and are parallel.

36. Consider the lines and 

a. Explain why these lines can never be parallel, regardless of the value of k.

b. Determine the value of k that makes these two lines intersect at a single
point, and find the actual point of intersection.

L2 : x � y � k �
z � 14

k .L1: x � 2, 
y � 2

3 � z

x � 1
�4 �

y � 1
�2 �

z � 1
�2

x
2 � y � 1 �

z � 1
2

x � 2y � 2z � k,
x � y � z

R3

R2

30°

>>
x � 2y � 4z � 16 � 0?

B16, 3, 4 2 . A12, �1, 3 2

> > P¿.
P¿p: y � z � 0P1�1, 0, 1 2

1�1, 3, 1 2 . p
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Calculus Appendix

Implicit Differentiation
In Chapters 1 to 5, most functions were written in the form in which

y was defined explicitly as a function of x, such as and 

In these equations, y is isolated on one side and is expressed explicitly as a
function of x.

Functions can also be defined implicitly by relations, such as the circle
In this case, the dependent variable, y, is not isolated or explicitly

defined in terms of the independent variable, x. Since there are x-values that 
correspond to two y-values, y is not a function of x on the entire circle. Solving  
for y gives where represents the upper 
semicircle and represents the lower semicircle. The given 
relation defines two different functions of x.

Consider the problem of determining the slope of the tangent to the circle
at the point Since this point lies on the lower semicircle,

we could differentiate the function and substitute An
alternative, which avoids having to solve for y explicitly in terms of x, is to use
the method of implicit differentiation. Example 1 illustrates this method.

EXAMPLE 1 Selecting a strategy to differentiate an implicit relation 

a. If determine .

b. Determine the slope of the tangent to the circle at the point13, �4 2 . x2 � y2 � 25

dy
dxx2 � y2 � 25,

x � 3.y � ��25 � x2

13, �4 2 .x2 � y2 � 25

y � ��25 � x2y � �25 � x2x2 � y2 � 25

y

x
0

6

2 4 6

2

4

–2

–6

–4

–2–4–6

y

x
0

6

2 4 6

2

4

–2

–6

–4

–2–4–6

y

x
0

6

2 4 6

2

4

–2

–6

–4

–2–4–6

y � ��25 � x2

y � �25 � x2y � ;�25 � x2,

x2 � y2 � 25.

y �
7

x2 � 1.y � x3 � 4x

y � f 1x 2 ,



Solution
a. Differentiate both sides of the equation with respect to x.

To determine use the chain rule, since y is a function of x.

So, (Substitute)

b. The derivative in part a. depends on both x and y. With the derivative in this
form, we need to substitute values for both variables.
At the point and 

The slope of the tangent line to at is 

y

x
0

6

2 4 6

2

4

–2

–6

– 4

–2–4–6

(3, – 4)

x2 1 y2 5 25

�
3
4.

dy
dx � �Q 3

�4R 13, �4 2x2 � y2 � 25

y � �4.x � 313, �4 2 ,
 
dy

dx
� �

x
y

aSolve for 
dy

dx
b 2x � 2y

dy

dx
� 0

 
d

dx
1x2 2 �

d1y2 2
dy

�
dy

dx
�

d

dx
125 2

 � 2y 
dy

dx

 
d

dx
1y2 2 �

d1y2 2
dy

�
dy

dx

d
dx1y2 2 ,

 
d

dx
1x2 2 �

d

dx
1y2 2 �

d

dx
125 2

 
d

dx
1x2 � y2 2 �

d

dx
125 2
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In Example 1, the derivative could be determined either by using implicit 
differentiation or by solving for y in terms of x and using one of the methods
introduced earlier in the text. There are many situations in which solving for y in
terms of x is very difficult and, in some cases, impossible. In such cases, implicit
differentiation is the only algebraic method available to us.

EXAMPLE 2 Using implicit differentiation to determine the derivative

Determine for 

Solution
Differentiate both sides of the equation with respect to x as follows:

Use the product rule to differentiate the first term and the chain rule to differentiate
the second term.

(Rearrange and factor)

 
dy

dx
� �

2y

2x � 3y2

aSolve for 
dy

dx
b 12x � 3y2 2dy

dx
� �2y

 2y � 2x
dy

dx
� 3y2

 
dy

dx
� 0

 c a d

dx
12x 2b y � 2x

dy

dx
d �

d1y3 2
dy

�
dy

dx
�

d

dx
14 2

d

dx
12xy 2 �

d

dx
1y3 2 �

d

dx
14 2

2xy � y3 � 4.
dy
dx

NEL

Procedure for Implicit Differentiation

If an equation defines y implicitly as a differentiable function of x,

determine as follows:

1: Differentiate both sides of the equation with respect to x. Remember to use
the chain rule when differentiating terms containing y.

2: Solve for 
dy
dx.

dy
dx

Note that implicit differentiation leads to a derivative expression that usually
includes terms with both x and y. The derivative is defined at a specific point on
the original function if, after substituting the x and y coordinates of the point, the
value of the denominator is nonzero.
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PART A
1. State the chain rule. Outline a procedure for

implicit differentiation.

2. Determine for each of the following in 

terms of x and y, using implicit differentiation:

a. d. 

b. e. 

c. f. 

3. For each relation, determine the equation 
of the tangent at the given point.

a. 

b. 

c. 

d. 

PART B
4. At what point is the tangent to the curve

parallel to the line 

5. The equation 
represents an ellipse.

a. Determine at 

b. Determine two points on the ellipse at
which the tangent is horizontal.

6. Determine the slope of the tangent to the
ellipse at the point 

7. Determine the equation of the normal to the
curve at the point (2, 3).

8. Determine the equation of the normal to

at the point 

9. Determine 

a. 

b. 

10. The equation implicitly
defines y as a function of x.

a. Use implicit differentiation to determine .

b. Write y as an explicit function of x, and 

compute directly.

c. Show that your results for parts a. and b. are
equivalent.

11. Graph each relation using graphing technology.
For each graph, determine the number of
tangents that exist when 

a. 

b. 

c. 

d. (This curve is
known as the strophoid.)

PART C

12. Show that for the relation 

13. Determine the equations of the lines that are
tangent to the ellipse and 
also pass through the point (4, 6).

14. The angle between two intersecting curves is
defined as the angle between their tangents at
the point of intersection. If this angle is ,
the two curves are said to be orthogonal at this
point.
Prove that the curves defined by 
and intersect orthogonally for all
values of the constants k and p. Illustrate your
proof with a sketch.

15. Let l be any tangent to the curve
where k is a constant. Show

that the sum of the intercepts of l is k.

16. Two circles of radius are tangent to the
graph at the point (1, 2). Determine
the equations of these two circles.

y2 � 4x
3�2

�x � �y � �k,

xy � p
x2 � y2 � k

90°

x2 � 4y2 � 16

x, y � 0.Vx
y � Vy

x � 10,

dy
dx �

y
x

x3 � 4x2 � 1x � 4 2y2 � 0

y � x7 � x

y � ��5 � x

y � �3 � x

x � 1.

dy
dx

dy
dx

4x2y � 3y � x3

�x � y � 2x � 1

1x � y 23 � 12x

dy
dx.

11,  �1 2 .y2 �
x3

2 � x

x3 � y3 � 3xy � 17

A1�2,  �1 2 .5x2 � y2 � 21

11,  �1 2 .dy
dx

5x2 � 6xy � 5y2 � 16

x � 2y � 0?x � y2 � 1

1�11,  �4 2x2

81
�

5y2

162
� 1,

15�3,  �12 2x2

25
�

y2

36
� �1,

1�8,  3 2x2 � 4y2 � 100,

12,  �3 2x2 � y2 � 13,

x2 � y2 � 5y � 103xy2 � y3 � 8

x2

16
�

3y2

13
� 115y2 � 2x3

9x2 � 16y2 � �144x2 � y2 � 36

dy
dx
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Related Rates

Oil that is spilled from a tanker spreads in a circle. The area of the circle increases
at a constant rate of 6 km2/h. How fast is the radius of the spill increasing when
the area is km2? Knowing the rate of increase of the radius is important for
planning the containment operation.

In this section, you will encounter some interesting problems that will help you
understand the applications of derivatives and how they can be used to describe
and predict the phenomena of change. In many practical applications, several
quantities vary in relation to one another. The rates at which they vary are also
related to one another. With calculus, we can describe and calculate such rates.

EXAMPLE 1 Solving a related rate problem involving a circular model

When a raindrop falls into a still puddle, it creates a circular ripple that spreads
out from the point where the raindrop hit. The radius of the circle grows at a rate
of 3 cm/s.

a. Determine the rate of increase of the circumference of the circle with respect 
to time.

b. Determine the rate of increase of the area of the circle when its area is cm2.

Solution
The radius, r, and the circumference of a circle, C, are related by the formula

The radius, r, and the area of a circle, A, are related by the formula 

We are given at any time t.

a. To determine at any time, it is necessary to differentiate the equation 

with respect to t, using the chain rule.

At time t, since 

Therefore, the circumference is increasing at a constant rate of cm/s.6p
 � 6p

 
dC

dt
� 2p13 2

dr
dt � 3,

dC

dt
� 2p 

dr

dt

dC

dt
�

dC

dr
 
dr

dt

C � 2pr

dC
dt

dr
dt � 3

A � pr2.

C � 2pr.

81p

9p
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b. To determine differentiate with respect to t, using the chain rule.

We know that so we need to determine r.

Since and 

and 

The area of the circle is increasing at a rate of cm2/s at the given instant.

Many related-rate problems involve right triangles and the Pythagorean theorem. In
these problems, the lengths of the sides of the triangle vary with time. The lengths of
the sides and the related rates can be represented quite simply on the Cartesian plane.

EXAMPLE 2 Solving a related rate problem involving a right triangle model

Natalie and Shannon start from point A and drive along perpendicular roads AB
and AC, respectively, as shown. Natalie drives at a speed of 45 km/h, and Shannon
travels at a speed of 40 km/h. If Shannon begins 1 h before Natalie, at what rate
are their cars separating 3 h after Shannon leaves?

Solution
Let x represent the distance that Natalie’s car has travelled along AB, and let y
represent the distance that Shannon’s car has travelled along AC.

Therefore, and where t is the time in hours. (Note that both of these

rates of change are positive since both distances, x and y, are increasing with time.)

Let r represent the distance between the two cars at time t.

Therefore,

Differentiate both sides of the equation with respect to time.

or x
dx

dt
� y

dy

dt
� r 

dr

dt
2x

dx

dt
� 2y

dy

dt
� 2r 

dr

dt

d

dt
1x2 2 �

d

dt
1y2 2 �

d

dt
1r2 2

x2 � y2 � r2.

dy
dt � 40,dx

dt � 45

54p

� 54p

dA
dt � 2p19 2 13 2r 7 0, r � 9,

 r2 � 81
 pr2 � 81p

A � pr2,A � 81p

dr
dt � 3,

dA

dt
� 2pr 

dr

dt

dA

dt
�

dA

dr
 
dr

dt

A � pr2dA
dt ,
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Natalie has travelled for 2 h, or km.
Shannon has travelled for 3 h, or km.
The distance between the cars is

Thus, and 

So, (Substitute)

Therefore, the distance between Natalie’s car and Shannon’s car is increasing at a
rate of 59 km/h, 3 h after Shannon leaves.

EXAMPLE 3 Solving a related rate problem involving a conical model

Water is pouring into an inverted right circular cone at a rate of m3/min. The
height and the diameter of the base of the cone are both 10 m. How fast is the
water level rising when the depth of the water is 8 m?

Solution
Let V represent the volume, r represent the radius, and h represent the height of
the water in the cone at time t. The volume of the water in the cone, at any time,

is Since we are given and we want to determine when 

we solve for r in terms of h from the ratio determined from the similar triangles

or Therefore, we can simplify the volume formula so it involves

only V and h.

Substituting into we get 

Differentiating with respect to time,

At a specific time, when and 

 p �
1

4
p18 22dh

dt

dV
dt � p,h � 8

dV
dt �

1
4ph2

 
dh
dt .

V �
1

12
 ph3

V �
1

3
 p a 1

4
h2 bh

V �
1
3pr2h,

r �
1
2h.r

h �
5
10

h � 8,dh
dt

dV
dtV �

1
3pr2h.

p

59 �
dr

dt
.

aSolve for 
dr
dt
b4050 � 4800 � 150 

dr

dt

90 � 45 � 120 � 40 � 150 
dr

dt

r � 150
dy

dt
� 40,y � 120,

dx

dt
� 45,x � 90,

r � 150
902 � 1202 � r2

3 � 40 � 120
2 � 45 � 90
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Therefore, at the moment when the depth of the water is 8 m, the level is rising 

at m/min.

EXAMPLE 4 Solving a related rate problem involving similar triangle models

A student who is 1.6 m tall walks directly away from a lamppost at a rate of 1.2 m/s.
A light is situated 8 m above the ground on the lamppost. Show that the student’s
shadow is lengthening at a rate of 0.3 m/s when she is 20 m from the base of the
lamppost.

Solution
Let x be the length of the student's shadow, and let y be her distance from the
lamppost, in metres, as shown. Let t denote the time, in seconds.

We are given that m/s, and we want to determine when m.

To determine a relationship between x and y, use similar triangles.

Differentiating both sides with respect to t,

When and 

Therefore, the student's shadow is lengthening at 0.3 m/s. (Note that her shadow is 
lengthening at a constant rate, independent of her distance from the lamppost.)

 
dx

dt
� 0.3

 1.611.2 2 � 6.4 
dx

dt

dy

dt
� 1.2,y � 20

1.6 
dy
dt � 6.4 

dx
dt .

 1.6y � 6.4x
 1.6x � 1.6y � 8x

 
x � y

8
�

x

1.6

y � 20dx
dt

dy
dt � 1.2

8 m

1.6 m 

y x

1
16

 
1

16
�

dh

dt
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PART A
1. Express the following statements in symbols:

a. The area, A, of a circle is increasing at a
rate of 4 m2/s.

b. The surface area, S, of a sphere is decreasing
at a rate of 3 m2/min.

c. After travelling for 15 min, the speed of a
car is 70 km/h.

d. The x- and y-coordinates of a point are
changing at equal rates.

e. The head of a short-distance radar dish is
revolving at three revolutions per minute.

PART B

2. The function represents the 

temperature, in degrees Celsius, perceived by
a person standing x metres from a fire.

a. If the person moves away from the fire at 
2 m/s, how fast is the perceived temperature
changing when the person is 5 m away?

b. Using a graphing calculator, determine the
distance from the fire when the perceived
temperature is changing the fastest.

c. What other calculus techniques could be
used to check the result?

3. The side of a square is increasing at a rate of 
5 cm/s. At what rate is the area changing 
when the side is 10 cm long? At what rate is 
the perimeter changing when the side 
is 10 cm long?

4. Each edge of a cube is expanding at a rate 
of 4 cm/s.

a. How fast is the volume changing when each
edge is 5 cm?

b. At what rate is the surface area changing
when each edge is 7 cm?

5. The width of a rectangle increases at 2 cm/s,
while the length decreases at 3 cm/s. How 
fast is the area of the rectangle changing 
when the width equals 20 cm and the length
equals 50 cm?

6. The area of a circle is decreasing at the rate 
of 5 m2/s when its radius is 3 m.

a. At what rate is the radius decreasing 
at that moment?

b. At what rate is the diameter decreasing 
at that moment?

7. Oil that is spilled from a ruptured tanker
spreads in a circle. The area of the circle
increases at a constant rate of 6 km2/h. How
fast is the radius of the spill increasing when
the area is km2?

8. The top of a 5 m wheeled ladder rests against
a vertical wall. If the bottom of the ladder 
rolls away from the base of the wall at a rate 

of m/s, how fast is the top of the ladder 

sliding down the wall when it is 3 m above the
base of the wall?

9. How fast must someone let out line if a kite 
is 30 m high, 40 m away horizontally, and
continuing to move away horizontally at a
rate of 10 m/min?

10. If the rocket shown below is rising vertically
at 268 m/s when it is 1220 m up, how fast is
the camera-to-rocket distance changing 
at that instant?

launching pad

915 m

camera to rocket dista
nce

1
3

9pT1x 2 �
200

1 � x2
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11. Two cyclists depart at the same time from a
starting point along routes that make an angle of 

radians with each other. The first cyclist is
travelling at 15 km/h, while the second cyclist
is moving at 20 km/h. How fast are the two
cyclists moving apart after 2 h?

12. A spherical balloon is being filled with helium
at a rate of 8 cm3/s. At what rate is its radius
increasing at the following moments.

a. when the radius is 12 cm

b. when the volume is 1435 cm3 (Your answer
should be correct to the nearest hundredth.)

c. when the balloon has been filling for 33.5 s

13. A cylindrical tank, with height 15 m and 
diameter 2 m, is being filled with gasoline at 
a rate of 500 L/min. At what rate is the fluid
level in the tank rising? 
About how long will it take to fill the tank?

14. If determine if r and h are  

both variables that depend on t. In your journal,
write three problems that involve the rate of
change of the volume of a cylinder such that

a. r is a variable and h is a constant

b. r is a constant and h is a variable

c. r and h are both variables

15. The trunk of a tree is approximately cylindrical
in shape and has a diameter of 1 m when the
height of the tree is 15 m. If the radius is
increasing at 0.003 m per year and the height
is increasing at 0.4 m per year, determine the
rate of increase of the volume of the trunk at
this moment.

16. A conical paper cup, with radius 5 cm and
height 15 cm, is leaking water at a rate of 
2 cm3/min. At what rate is the water level
decreasing when the water is 3 cm deep?

17. The cross-section of a water trough is an 
equilateral triangle with a horizontal top edge.
If the trough is 5 m long and 25 cm deep, and
water is flowing in at a rate of 0.25 m3/min,

how fast is the water level rising when the
water is 10 cm deep at the deepest point?

18. The shadow cast by a man standing 1 m from
a lamppost is 1.2 m long. If the man is 1.8 m
tall and walks away from the lamppost at a
speed of 120 m/min, at what rate is the 
shadow lengthening after 5 s?

PART C

19. A railroad bridge is 20 m above, and at right
angles to, a river. A person in a train travelling
at 60 km/h passes over the centre of the bridge
at the same instant that a person in a motorboat
travelling at 20 km/h passes under the centre
of the bridge. How fast are the two people
separating 10 s later?

20. Liquid is being poured into the top of a funnel
at a steady rate of 200 cm3/s. The funnel is in
the shape of an inverted right circular cone,
with a radius equal to its height. It has a small
hole in the bottom, where the liquid is flowing
out at a rate of 20 cm3/s.

a. How fast is the height of the liquid changing
when the liquid in the funnel is 15 cm deep?

b. At the instant when the height of the liquid
is 25 cm, the funnel becomes clogged at the
bottom and no more liquid flows out. How
fast does the height of the liquid change just
after this occurs?

21. A ladder of length l, standing on level ground,
is leaning against a vertical wall. The base of
the ladder begins to slide away from the wall.
Introduce a coordinate system so that the wall
lies along the positive y-axis, the ground is on
the positive x-axis, and the base of the wall is
the origin.

a. What is the equation of the path followed by
the midpoint of the ladder?

b. What is the equation of the path followed by
any point on the ladder? (Hint: Let k be the
distance from the top of the ladder to the
point on the ladder.)

dV
dtV � pr2h,

11 L � 1000 cm3 2

p
3
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The Natural Logarithm and its Derivative

The logarithmic function is the inverse of the exponential function. For the
particular exponential function the inverse is or a
logarithmic function where This logarithmic function is referred to as
the “natural” logarithmic function and is usually written as 

The functions and are inverses of each other. This means that the
graphs of the functions are reflections of each other in the line as shown.

What is the derivative of the natural logarithmic function? 

For the definition of the derivative yields 

We can determine the derivative of the natural logarithmic function using the
derivative of the exponential function that we developed earlier.

Given we can rewrite this as . Differentiating both sides of the
equation with respect to x, and using implicit differentiation on the left side, yields

 �
1
x

 
dy

dx
�

1

ey

 ey dy

dx
� 1

ey � xy � ln x,

dy
dx � lim

hS0
 
ln1x � h 2 � ln1x 2

h .y � ln x,

y � x,
y � ln xy � ex

y � ln x.
e � 2.718.

y � logex,x � eyy � ex,

NEL

y

x
0

6

2 4 6

2

4

–2

–6

–4

–2–4–6

y = ex

y = x

y = ln x

The Derivative of the Natural Logarithmic Function

The derivative of the natural logarithmic function is x 7 0.
dy
dx �

1
x,y � ln x

This derivative makes sense when we consider the graph of The function
is defined only for and the slopes are all positive. We see that, as 

As x increases, the slope of the tangent decreases.

We can apply this new derivative, along with the product, quotient, and chain
rules to determine derivatives of fairly complicated functions.

EXAMPLE 1 Selecting a strategy to determine the derivative of a function 
involving a natural logarithm

Determine for the following functions:

a. b. c. y � ln1x2 � ex 2y �
ln x

x3y � ln15x 2
dy
dx

dy
dxS 0.

xSq,x 7 0,
y � ln x.



Solution
a.

Using the chain rule,

Using properties of logarithms,

b.

Using the quotient and power rules,

(Simplify)

(Divide by )

c.

Using the chain rule,

�
2x � ex1x2 � ex 2

d

dx
1x2 � ex 2dy

dx
�

11x2 � ex 2
y � ln1x2 � ex 2

 �
1 � 3 ln1x 2

x4

x2 �
x2 � 3x2ln1x 2

x6

 �

1
x

x3 � ln1x 2 � 3x2

x6

 
dy

dx
�

d

dx
1ln1x 22 ax3 � ln1x 2 d

dx
1x3 2b1x3 22

y �
ln x

x3

�
1
x

dy

dx
� 0 �

1
x

y � ln15x 2 � ln15 2 � ln1x 2
1
x

dy

dx
�

1

5x
15 2 �

y � ln15x 2

The Derivative of a Composite Natural Logarithmic Function

If , then by the chain rule. f ¿ 1x 2 �
1

g1x 2g¿ 1x 2 ,f 1x 2 � ln1g1x 2 2
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EXAMPLE 2 Selecting a strategy to solve a tangent problem

Determine the equation of the line that is tangent to at the point 
where 

Solution
so when and the point of contact of the tangent is (1, 0).

The slope of the tangent is given by 

(Quotient rule)

When 

The equation of the tangent is or 

EXAMPLE 3 Determining where the minimum value of a function occurs

a. For the function use your graphing calculator to
determine the x-value that minimizes the value of the function.

b. Use calculus methods to determine the exact x-value where the minimum 
is attained.

Solution
a. The graph of is shown.

Use the minimum value operation of your calculator to determine the minimum
value of The minimum value occurs at 

b.

To minimize set the derivative equal to zero.

 x2 � 4x

 x � 2�x

 
1

2�x
�

1
x

 
1

2�x
�

1
x

� 0

 f ¿ 1x 2 �
1

2�x
�

1
x

f 1x 2 ,f 1x 2 � �x � ln x

x � 4.f 1x 2 .
f 1x 2 � �x � ln x

x 7 0,f 1x 2 � �x � ln x,

2x � 3y � 2 � 0.y � 0 �
2
3 1x � 1 2 ,

dy
dx �

2
3.x � 1,

 �
6 � 3 ln x2

9x2

 
dy

dx
�

3x a 1

x2 b2x � 3 ln x2

9x2

dy
dx.

x � 1,y � 0ln 1 � 0,

x � 1.
y �

ln x2

3x



or 

But is not in the domain of the function, so 

Therefore, the minimum value of occurs at 

We now look back at the derivative of the natural logarithmic function using 
the definition. 

For the function 

and, specifically,

since 

However, we know that 

We conclude that 

Since the natural logarithmic function is a continuous and one-to-one function
(meaning that, for each function value, there is exactly one value of the 
independent variable that produces this function value), we can rewrite this 
as 

Since 

Therefore,

We now have a way to approximate the value of e using the above limit.

From the table, it appears that is a good approximation 
as h approaches zero.

e � 2.718

lim
hS0
11 � h 2 1h � e.

ln 3 lim
hS0
11 � h 2 1h 4 � ln e.ln e � 1,

ln 3 lim
hS0
11 � h 2 1h 4 � 1.

lim 
hS0

ln11 � h 2 1h � 1.

f ¿ 11 2 � 1.f ¿ 1x 2 �
1
x,

1

h
ln11 � h 2 � ln11 � h 2 1h� lim

hS0
 ln11 � h 2 1h,

 � lim
hS0

 
ln11 � h 2

h

 f ¿ 11 2 � lim
hS0

 
ln11 � h 2 � ln11 2

h

f ¿ 1x 2 � lim
hS0

 
ln1x � h 2 � ln1x 2

h

f 1x 2 � ln1x 2 ,
x � 4.f 1x 2 x � 4.x � 0

x � 0x � 4

 x1x � 4 2 � 0
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h 0.1 0.01 0.001 0.000111 � h 2 1h 2.593 742 46 2.704 813 829 2.716 923 932 2.718 145 927



PART A
1. Distinguish between natural logarithms and

common logarithms.

2. At the end of this section, we found that we
could approximate the value of e (Euler’s 

constant) using By 

substituting we can express e as

Justify this definition by

evaluating the limit for increasing values of n.

3. Determine the derivative for each of the 
following:

a. d. 

b. e. 

c. f. 
4. Differentiate each of the following:

a. d. 

b. e. 

c. f. 

5. a. If evaluate 

b. If evaluate 

c. Check your calculations for parts a. and b.
using either a calculator or a computer.

6. For each of the following functions, solve the
equation 

a. 

b. 

c. 

7. a. Determine the equation of the tangent to the

curve defined by at the point

where 

b. Use technology to graph the function in 
part a. and then draw the tangent at the
point where .

c. Compare the equation you obtained in part a.
with the equation you obtained in part b.

PART B
8. Determine the equation of the tangent to the

curve defined by that is parallel
to the straight line with equation

9. a. If determine all the points
at which the graph of has a horizontal
tangent line.

b. Use graphing technology to check your
work in part a.

c. Comment on the efficiency of the two
solutions.

10. Determine the equation of the tangent to the
curve defined by at the point
where 

11. The velocity, in kilometres per hour, of a car
as it begins to slow down is given by the
equation where 
t is in seconds.

a. What is the velocity of the car as the driver
begins to brake?

b. What is the acceleration of the car?

c. What is the acceleration at 

d. How long does the car take to stop?

PART C

12. Use the definition of the derivative to evaluate 

13. Consider 

a. Determine 

b. State the domains of and f ¿ 1x 2 .f 1x 2f ¿ 1x 2 .f 1x 2 � ln1ln x 2 .lim
hS0

 
ln12 � h 2 � ln12 2

h .

t � 2?

v1t 2 � 90 � 30 ln13t � 1 2 ,
x � 0.

y � ln11 � e�x 2

f 1x 2f 1x 2 � 1x ln x 22,

3x � 6y � 1 � 0.

y � ln x � 1

x � 1

x � 1.

f 1x 2 �
ln 

3
 �x

x

f 1x 2 � 1x2 � 1 2�1ln1x2 � 1 2f 1x 2 � 1ln x � 2x 2 13f 1x 2 � ln1x2 � 1 2f ¿ 1x 2 � 0:

f ¿ 15 2 .f 1t 2 � lnQ t � 1
3t � 5R, g¿ 11 2 .g1x 2 � e2x�1ln12x � 1 2 ,h1u 2 � e�u

 ln�uv � et ln t

s �
et

ln t
y � eln x

g1z 2 � ln1e�z � ze�z 2f 1x 2 � x ln x

w � ln�z2 � 3zs � 5 ln t3

s � ln1t3 � 2t2 � 5 2y � ln1x2 � 1 2 y � ln�x � 1y � ln15x � 8 2
e � lim

nSq
Q1 �

1
nRn.

h �
1
n,

e � lim
hS0
11 � h 2 1h.

Exercise
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The Derivative of the Logarithmic Function 

If , a , then dy
dx �

1
x ln a.� 1y � logax, a 7 0

y � logax
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The Derivatives of General Logarithmic Functions

In the previous section, we learned how to determine the derivative of the natural
logarithmic function (base e). But what is the derivative of The base
of this function is 2, not e.

To differentiate the general logarithmic function , a , we can
use the properties of logarithms so that we can use the base e.

Let 

Then 

Take the logarithm of both sides using the base e.

Differentiating both sides with respect to x, we obtain

 �
1

x ln a

 �
1

ln a
�

1
x

1ln a is a constant. 2 �
1

ln a
�

d1ln x 2
dx

 
dy

dx
�

d Qln x
ln aR
dx

 y �
ln x

ln a

 y ln a � ln x

 ln ay � ln x

ay � x.

y � loga x.

� 1y � loga x, a 7 0

y � log2x?
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EXAMPLE 1 Solving a tangent problem involving a logarithmic function

Determine the equation of the tangent to at 

Solution
The slope of the tangent is given by the derivative , where .

At 

The equation of the tangent is

We can determine the derivatives of other logarithmic functions using the rule

, along with other derivative rules.

EXAMPLE 2 Selecting a strategy to differentiate a composite logarithmic function

Determine the derivative of 

Solution
We can rewrite the logarithmic function as follows:

(Property of logarithms)

(Chain rule)

(Simplify)

 �
1012x � 3 2  ln 4

 � 5 a 112x � 3 2  ln 4
b 12 2

 � 5
d 3 log412x � 3 2 4

d 3 12x � 3 2 4  
d12x � 3 2

dx

 � 5
d

dx
3 log412x � 3 2 4

 
dy

dx
�

d

dx
35 log412x � 3 2 4y � 5 log412x � 3 2 y � log412x � 3 25

y � log412x � 3 25.

d
dx1logax 2 �

1
x ln a

 y �
1

8 ln 2
 x � 3 �

1

 ln 2

 y � 3 �
1

8 ln 2
1x � 8 2

x � 8,  dy
dx �

1
8 ln 2.

 
dy

dx
�

1

x ln 2

y � log2x
dy
dx

18, 3 2 .y � log2x



Exercise

The Derivative of a Composite Function Involving 

If , a , then 
dy
dx �

f ¿ 1x 2
f 1x 2  ln a.� 1y � loga  f 1x 2 ,  a 7 0

y � loga x

PART A

1. Determine for each function.

a. d.

b. e.

c. f.

2. Determine the derivative of each function.

a.

b.

c.

d.

e.

f.

PART B

3. a. If evaluate 

b. If determine 

4. Differentiate.

a.

b.
c.
d.
e.

f.

5. Determine the equation of the tangent 
to the curve at Graph 
the function and the tangent.

6. Explain why the derivative of 

is for any constant k.

7. Determine the equation of the tangent to the 
curve at 

8. A particle’s distance, in metres, from a 
fixed point at time, t, in seconds is given by

Is the distance
increasing or decreasing at How do
you know?

PART C
9. a. Determine the equation of the tangent 

to at the point (9, 2).

b. Graph the function and include any
asymptotes.

c. Will this tangent line intersect any
asymptotes? Explain.

10. Determine the domain, critical numbers, and
intervals of increase and decrease of 

11. Do the graphs of either of these functions
have points of inflection? Justify your
answers with supporting calculations.

a.

b.

12. Determine whether the slope of the graph of
at the point is greater than the

slope of the graph of at the point
. Include graphs with your solution.11, 0 2 y � log3x

10, 1 2y � 3x

y � 3 � 2 log x

y � x ln x

f 1x 2 � ln1x2 � 4 2 .

y � log3x

t � 15?
s1t 2 � t log6 1t � 1 2 , t � 0.

x � 5.y � 102x�9 log101x2 � 3x 2
 
dy
dx �

1
x ln ak 7 0,

y � loga kx,

 x � 10.y � x log x

y �
log513x2 2
�x � 1

y � 2x log4 x
y � 3x log3x
y � 2 log315x 2 � log314x 2y � log2�x2 � 3x

y � log10 a 1 � x

1 � x
b

h¿ 18 2 .h1t 2 � log31log21t 22 ,  f ¿ 13 2 . f 1t 2 � log2Q t � 1
2t � 7R,

y � log71x2 � x � 1 2y � log812x � 6 2y � log1015 � 2x 2y � �3 log312x � 3 2y � log812x 2y � log31x � 2 2
y � 3 log6xy � 2 log4x

y � �1log x 2y � log3x

y � �3 log7xy � log5x

dy
dx
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Logarithmic Differentiation

The derivatives of most functions involving exponential and logarithmic expressions
can be determined by using the methods that we have developed. A function such as

poses new problems, however. The power rule cannot be used because the
exponent is not a constant. The method of determining the derivative of an
exponential function also cannot be used because the base is not a constant. 
What can be done?

It is frequently possible, with functions presenting special difficulties, to simplify
the function by using the properties of logarithms. In such cases we say that we
are using logarithmic differentiation.

y � xx

EXAMPLE 1 Determining the derivative of a function using logarithmic 
differentiation

Determine for the function 

Solution
Take the natural logarithms of each side, and rewrite.

Differentiate both sides with respect to x, using implicit differentiation on the left
side and the product rule on the right side.

This method of logarithmic differentiation also works well to help simplify 
a function with many factors and powers before the differentiation takes place. 

We can use logarithmic differentiation to prove the power rule,
for all real values of n. (In a previous chapter, we proved this rule for positive 
integer values of n and we have been cheating a bit in using it for other 
values of n.)

Given the function for any real value of n where , how do we 

determine 
dy
dx?

x 7 0y � xn,

d
dx 1xn 2 � nxn�1,

 � xx11 � ln x 2 
dy

dx
� y11 � ln x 2

 
1
y

 
dy

dx
� x

1
x

�  ln x

ln y � x ln x

ln y �  ln xx

y � xx, x 7 0.
dy

dx
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To solve this, we take the natural logarithm of both sides of the expression and 
get 

Differentiating both sides with respect to x, using implicit differentiation, and
remembering that n is a constant, we get

Therefore, for any real value of n.

EXAMPLE 2 Selecting a logarithmic differentiation strategy to determine 
a derivative

For determine 

Solution
Take the natural logarithm of both sides of the equation.

Differentiate both sides of the equation with respect to x, using implicit 
differentiation on the left side and the product and chain rules on the right side.

You will recognize logarithmic differentiation as the method used in the previous
section, and its use makes memorization of many formulas unnecessary. It also
allows complicated functions to be handled much more easily.

 � 1x2 � 3 2 x c ln 1x2 � 3 2 � a 2x2

x2 � 3
b d

 
dy

dx
� y c ln1x2 � 3 2 � x a 2x

x2 � 3
b d

 
1
y

 
dy

dx
� 11 2  ln1x2 � 3 2 � x a 1

x2 � 3
 12x 2b

ln y � x ln 1x2 � 3 2 ln y �  ln 1x2 � 3 2 x y � 1x2 � 3 2 x
dy
dx.y � 1x2 � 3 2 x,

 d
dx 1xn 2 � nxn�1

 � nxn�1

 � nxn1
x

 
dy

dx
� ny 

1
x

 
1
y

 
dy

dx
� n 

1
x

ln y �  ln xn � n ln x.
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EXAMPLE 3 Using logarithmic differentiation

Given determine at 

Solution
While it is possible to determine using a combination of the product, quotient,
and chain rules, this process is awkward and time-consuming. Instead, before
differentiating, we take the natural logarithm of both sides of the equation.

The right side of this equation looks much simpler. We can now differentiate both
sides with respect to x, using implicit differentiation on the left side.

While this derivative is a very complicated function, the process of determining 
the derivative is straightforward, using only the derivative of the natural logarithmic
function and the chain rule.

We do not need to simplify this in order to determine the value of the derivative 
at 

For 

 � 1

 � 2 c�2 �
1

2
� 2 d

x � �1, 
dy

dx
�
11 � 1 2�112 � 2 � 1 2 c �4

1 � 1
�

1

21�1 � 2 2 �
�4 � 2

2 � 2 � 1
dx � �1.

 �
1x4 � 1 2�x � 212x2 � 2x � 1 2 c 4x3

x4 � 1
�

1

21x � 2 2 �
4x � 2

2x2 � 2x � 1
d

 
dy

dx
� y c 4x3

x4 � 1
�

1

21x � 2 2 �
4x � 2

2x2 � 2x � 1
d

 
1
y

 
dy

dx
�

1

x4 � 1
 14x3 2 �

1

2
 

1

x � 2
�

1

2x2 � 2x � 1
 14x � 2 2

ln y �  ln 1x4 � 1 2 �
1

2
 ln 1x � 2 2 �  ln 12x2 � 2x � 1 2ln y �  ln 1x4 � 1 2 �  ln �x � 2 �  ln 12x2 � 2x � 1 2  ln y �  ln c 1x4 � 1 2�x � 212x2 � 2x � 1 2 d

Since  y �
1x4 � 1 2�x � 212x2 � 2x � 1 2 ,

dy
dx

x � �1.
dy
dxy �

1x4 � 1 2�x � 212x2 � 2x � 1 2 ,
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PART A
1. Differentiate each of the following:

a. c. 

b. d. 

2. Use the method of logarithmic
differentiation to determine the derivative 
for each of the following functions:

a. c. 

b. d. 

3. a. If evaluate 

b. If determine when 

c. If determine 

4. Determine the equation of the tangent 
to the curve defined by at the point
where 

PART B

5. If determine the

slope of the tangent to the curve at the point
where 

6. Determine the points on the curve defined by

where the slope of the tangent
is zero.

7. If tangents to the curve defined by 
are parallel to the line defined

by determine the points
where the tangents touch the curve.

8. The tangent to the curve defined by 
at the point A(4, 16) is extended to cut the
x-axis at B and the y-axis at C. Determine the
area of where O is the origin.

PART C

9. Determine the slope of the line that is tangent  

to the curve defined by at the 

point 

10. Determine if . 

11. Differentiate , .

12. Determine the equation of the line that is 
tangent to the curve at the point (1, 1).

13. The position of a particle that moves on a

straight line is given by for 

a. Determine the velocity and acceleration
functions.

b. At what time, t, is the velocity zero? What
is the acceleration at this time?

14. Make a conjecture about which number 
is larger: or Verify your work with a
calculator.

pe.ep

t 7 0.s1t 2 � t
1
t

y � xx

x 7 0y � xcos x

f 1x 2 � Q x sin x

x2 � 1R2f ¿ 1x 2Q0, 18R. y �
ex �x2 � 11x2 � 2 2 3

^OBC,

y � x�x

y � 6x � 3 � 0,
y � x2 � 4 ln x

y � x
1
x,  x 7 0,

x � 0.

y �
11x � 1 2 1x � 2 2 1x � 3 2 ,

x � 2.
y � x 1x22

f ¿ 17 2 .f 1x 2 �
1x � 3 2 2 �3 x � 11x � 4 2 5 ,

t � 2.ds
dts � et � te,

f ¿ 1e 2 .y � f 1x 2 � xx,

s � a 1
t
b t

y �
1x � 1 2 1x � 3 221x � 2 23

y � x�xy � xln x

f 1x 2 � xe � exf 1x 2 � 5x3�2

s � tpy � x�10 � 3

Exercise
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Vector Appendix

Gaussian Elimination
In Chapter 9, we developed a method for solving systems of linear equations that
uses elementary operations to eliminate unknowns. We will now introduce a
method for solving equations that is known as Gaussian elimination. This method
uses matrices and elementary operations to deal with larger systems of equations
more easily.

Consider the following system of three equations in three unknowns:

To use Gaussian elimination to solve a system of equations, first write the system
in matrix form—an abbreviated form that omits the variables and uses only the
coefficients of each equation. Each row in the matrix represents an equation from
the original system. For example, the second equation in the original system is
represented by the second row in the matrix. The coefficients of the unknowns are
entered in columns on the left side of the matrix, with a vertical line separating the
coefficients from the numbers on the right side. When a system of equations is
written in this form, the associated matrix is called its augmented matrix. The
matrix below is the augmented matrix representing the original system of equations.
Note that the 0 in row 2 of the augmented matrix represents the coefficient of z in
the second equation, if the equation had been written as 
We have also included a second matrix, called the coefficient matrix. We make
sure that in the coefficient matrix, each column corresponds to a single variable. For
instance, in this case the first column corresponds to the coefficients for x. This
matrix represents the coefficients of the unknowns in each of the equations.

Coefficient Matrix Augmented Matrix

The benefit of using matrices (the plural of matrix) is that it allows us to introduce
a method for solving systems of equations that is systematic, methodical, and useful
for dealing with larger systems of equations.

For solving systems of equations using matrices, we introduce operations that are
similar to the previously introduced elementary operations. When dealing with
matrices, however, we call them elementary row operations. Notice the term row
operations—they are only applied to the rows. Just as with elementary operations,
elementary row operations are always used to reduce matrices into simpler form 

£1 2 2

1 1 0

2 3 �1

  †   91
1

§£1 2 2

1 1 0

2 3 �1

§

1x � 1y � 0z � 1.

 2x � 3y � z � 13

 x � y � 12

 x � 2y � 2z � 91



EXAMPLE 1 Using elementary row operations to solve a system of equations

Solve the following system of equations using elementary row operations:

Solution
1: Start by writing the system of equations in its augmented matrix form.

2: Multiply row 1 by and add the result to row 2. This leaves the first row
unchanged, and the second row is replaced with the result.

(row 1) row 2

When solving a system of equations using elementary row operations, normally we
try to make the first entry in the second row 0, because our ultimate objective is to
have an augmented matrix in row-echelon form. In this form, the second row of
the coefficient matrix can only have nonzero entries in the y- and z-columns, and
the third row can only have a nonzero entry in the z-column (so that the coefficient
matrix looks like an upper triangle of nonzero entries). Notice that we indicate the
operations we use to reduce the matrix.

3: Multiply row 1 by , and add the result to row 3.

(row 1) row 3

We have now produced a new row 3, with 0 as the coefficient of x.

��2
£1 2 2

0 �1 �2

0 �1 �5

  †   9

�8

�17

§
�2

��1£1 2 2

0 �1 �2

2 3 �1

  †   9

�8

1

§
�1,

£1 2 2

1 1 0

2 3 �1

  †   91
1

§
 2x � 3y � z � 13

 x � y � 12

 x � 2y � 2z � 91

NEL

Elementary Row Operations for Matrices (Systems of Equations)

1. Multiply a row (equation) by a nonzero constant.
2. Interchange any pair of rows (equations).
3. Add a multiple of one row (equation) to a second row (equation) to replace 

the second row (equation).
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by eliminating unknowns. In Example 1, notice that the previously introduced
elementary operations have been modified for use with matrices.



4: Multiply row 2 by and add the result to row 3.

(row 2) row 3

This final operation is equivalent to subtracting row 2 from row 3, with the final
result being a new row 3.

The new matrix corresponds to the following equivalent system of equations:

This system can now be solved using back substitution. From equation ,
Substituting into equation , or If we substitute 
and into equation , we obtain or 

We conclude that and is the solution to the system of
equations. So the original system represents three planes intersecting at the point

Check:
Substituting into equation ,
Substituting into equation ,
Substituting into equation ,

When solving a system of equations, either with or without matrices, it is always
a good idea to verify the final result.

Important Points about Elementary Row Operations

1. Elementary row operations are used to produce equivalent matrices, but they
can be applied in different orders, provided that they are applied properly.
There are many ways to get to the final answer.

2. Steps can be combined, and every step does not have to be written out in
words. In the following examples, we will demonstrate ways of abbreviating
steps and reducing the amount of written work.

3. When using elementary row operations, steps should be documented to show
how a new matrix was determined. This allows for easy checking in case 
a mistake is made.

When using elementary row operations to solve systems of equations, the
objective is to have the final matrix written in what is described as row-echelon
form. In Example 1, we accomplished this but did not define row-echelon form. 
If a matrix is written in row-echelon form, it must have the following properties:

2x � 3y � z � 21�1 2 � 312 2 � 3 � 1.3

x � y � �1 � 2 � 1.2

x � 2y � 2z � �1 � 212 2 � 213 2 � 9.1

1�1, 2, 3 2 . z � 3y � 2,x � �1,

x � �1.x � 212 2 � 213 2 � 9,1z � 3
y � 2y � 2.�y � 213 2 � �8,4

z � 3.5

 �3z � �95

 �y � 2z � �84

 x � 2y � 2z � 91

��1
£1 2 2

0 �1 �2

0 0 �3

  †   9

�8

�9

§
�1,
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EXAMPLE 2 Reasoning about the row-echelon form of a matrix

Determine whether the following matrices are in row-echelon form. If they are 
not in this form, use an elementary row operation to put them in this form.

a.  c.

b.  d. 

Solution
a. This augmented matrix is not in row-echelon form. It can be changed to the

correct form by multiplying row 1 by and adding the product to row 2. 
The resulting matrix will be in row-echelon form.

(row 1) row 2

b. This matrix is in row-echelon form. The first nonzero number in row 3 is 1,
which occurs to the right of the first nonzero number, in row 2. Similarly
the in row 2 occurs to the right of the first 1 in row 1.

c. This matrix is not in row-echelon form. To put it in row-echelon form,
interchange the second and third rows.

Interchanging rows 2 and 3

d. This matrix is in row-echelon form. The first nonzero number in row 3 is 8,
which is to the right of in row 2, and occurs to the right of 1 
in row 1.

In the next example, by using elementary row operations, we will solve a system
in which the three planes intersect along a line.

�2�2

£2 1 3

0 0 2

0 0 0

  †   �2

0

0

§
�1

�1,

��1£0 2 3

0 0 1

0 0 0

  †   00
3

§
�1

£1 0 0

0 �2 4

0 0 0

  †   00
8

§£1 1 2

0 0 �1

0 0 0

  †   12
1

§
£2 1 3

0 0 0

0 0 2

  †   �2

0

0

§£0 2 3

0 2 4

0 0 0

  †   00
3

§
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Properties of a Matrix in Row-Echelon Form
1. All rows that consist entirely of zeros must be written at the bottom of the matrix.
2. In any two successive rows that do not consist entirely of zeros, the first

nonzero number in the lower row must occur farther to the right than the first
nonzero number in the row directly above.



EXAMPLE 3 Using elementary row operations to solve a system of equations

Solve the following system of equations using matrices:

Solution
To solve this system, first write it in augmented matrix form, but interchange the
order of the equations so that 1 will be the coefficient of x in the first equation
(row 2 becomes row 1, row 3 becomes row 2, and row 1 becomes row 3). There 
is more than one way to write the augmented matrix, which is a reminder that
there is more than one way to solve this system using matrices.

(row 2) row 3

This system is now in row-echelon form, which means that we can solve it using
the method of back substitution. Row 2 corresponds to or Since
row 3 consists only of zeros, this corresponds to which
implies a parametric solution. If and these values can be substituted
into the first equation to obtain x in terms of the parameter.

Since the first equation is substituting gives So,
and the solution to the system is and 

This means that the three planes intersect along a line with parametric 
equations and or, written as a vector equation,

.

Check:
Substituting into equation ,
Substituting into equation ,
Substituting into equation , 2x � y � 2z � 21�s 2 � 2 � 21s 2 � 2.1

x � z � �s � s � 0.3

x � y � z � �s � 2 � s � 2.2

s�RrS � 10, 2, 0 2 � s1�1, 0, 1 2 , z � s,y � 2,x � �s,

z � s.y � 2,x � �s,x � �s
x � 2 � s � 2.x � y � z � 2,

y � 2,z � s
0x � 0y � 0z � 0,

y � 2.�y � �2,

��1£1 1 1

0 �1 0

0 0 0

  †   2

�2

0

§
£1 1 1

0 �1 0

0 �1 0

  †   2

�2

�2

§
£1 1 1

1 0 1

2 1 2

  †   20
2

§

 x � z � 03

 x � y � z � 22

 2x � y � 2z � 21
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This matrix results from
interchanging the rows in the

original equations.

(row 1) row 2
(row 1) row 3��2

��1



Exercise
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PART A
1. Write an augmented matrix for each system 

of equations.

a.

b.

c.

2. Determine two different row-echelon forms 
for the following augmented matrix:

3. Reduce the following augmented matrix to
row-echelon form. Make sure that there are no
fractions in the final matrix.

4. a. Write the following augmented matrix in
row-echelon form. Make sure that every
number in this matrix is an integer.

b. Solve the system of equations corresponding
to the matrix you derived in part a.

5. Write the system of equations that corresponds
to each augmented matrix.

a. 

b. 

c. 

6. The following matrices represent the final 
row-echelon form matrix in the solution to a
system of equations. Write the solution to each
system, if it exists.

a. 

b. 

c. 

d. 

e. 

f. £�1 0 0

0 1 2

0 0 �1

  †   �4

4

2

§
£1 �1 3

0 0 0

0 0 0

  †   20
0

§
£4 �1 �1

0 �1 0

0 0 �1

  †   04
5

§
£�1 3 1

0 1 �2

0 0 0

  †   2

1

�13

§
£2 �1 1

0 2 3

0 0 6

  †   11

0

�36

§
c�2 1

0 �5
  `   6

15
d

£0 0 �1

1 0 0

0 1 1

  †   0

�2

0

§
£�2 0 �1

1 �2 0

0 1 2

  †   0

4

�3

§
£1 �2

2 �3

2 �1

  †   �1

1

0

§

≥�1 0 1

0 �1 2

1

2
�

3

4
�2

 
 ∞  20

1

3

¥

£2 1 6

0 �2 1

3 1 0

  †   00
1

§

c2 3

3 �1
  `   0

1
d

�x � y � 133

x � y � 4z � �12

2x � y � z � �21

�3x � y � 103

2y � z � 162

2x � z � 11

3y � 2z � �33

�x � 3y � 2z � �12

x � 2y � z � �11
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7. A student performs elementary row operations
on an augmented matrix and comes up with
the following matrix:

a. Explain why this matrix is in row-echelon
form.

b. Explain why there is no solution to the 
corresponding system of equations.

c. Give an example of an augmented matrix
consisting of all nonzero numbers that
might have produced this matrix.

PART B
8. Determine whether the following matrices are

in row-echelon form. If they are not, use
elementary row operations to put them 
in row-echelon form.

a. 

b. 

c. 

d. 

9. a. Write the solution to the system of equations
corresponding to each of the augmented
matrices in question 8. if a solution exists.

b. Give a geometric interpretation 
of your result.

10. Solve each system of equations using matrices,
and interpret your result geometrically.

a.

b.

c.

d.

e.

f.

11. In the following system of equations, a, b,
and c are written as linear combinations 
of x, y, and z:

Express each of x, y, and z as a linear
combination of a, b, and c.

c � 3x � 3y � z

b � x � y � 2z

a � x � 2y � z

 x � z � 20003

 2y � z � 35002

 x � y � �5001

 �2x � y � z � 33

 4x � 2y � 2z � 22

 2x � y � z � 11

 x � 3y � 4z � �43

 �x � 3y � 8z � �42

 x � 3y � 4z � 41

 2x � y � 3z � �23

 5x � y � 3z � �52

 x � y � 3z � �11

 �3x � 2y � 4z � 03

 2x � 3y � z � 02

 x � y � z � 01

 2x � y � z � �123

 x � 2y � z � 152

 �x � y � z � 91

£1 �4 1

0 1 2

0 0 0

  †   0

�3

0

§
£�1 2 1

0 0 0

0 0 1

  †   0

0

�6

§
£1 0 2

3 1 �4

0 0 3

  †   �3

2

6

§
£�1 0 1

0 1 0

0 1 2

  †   30
1

§

£�1 1 1

0 0 0

0 0 0

  †   3

�3

0

§



Gauss-Jordan Method for Solving Systems of Equations
In the previous section, we introduced Gaussian elimination as a method for solving systems of equations.
This method uses elementary row operations on an augmented matrix so it can be written in row-echelon
form. We will now introduce the concept of Gauss-Jordan elimination as a method for solving systems 
of equations. This new method uses elementary operations in the same way as before, but the augmented
matrix is written in what is called reduced row-echelon form. The writing of a matrix in reduced 
row-echelon form allows us to avoid using the method of back substitution and, instead, to determine the 
solution(s) to a system of equations directly from the matrix. We begin by first defining what is meant by
a reduced row-echelon matrix.
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Reduced Row-Echelon Form of a Matrix

A matrix is in reduced row-echelon form if
1. it is in row-echelon form
2. the first nonzero number in every row is a 1 (this is known as a leading 1 

for that row)
3. any column containing a leading 1 has all of its other column entries equal

to zero
For example, a system of three equations and three unknowns might appear as
follows in reduced row-echelon form:

£ 1 0 0

0 1 0

0 0 1

  †   **
*

§

12. Determine the equation of the parabola that
passes through the points 
and and has an axis of symmetry
parallel to the y-axis. (A parabola whose axis 
of symmetry is parallel to the y-axis has an

equation of the form )

PART C
13. Solve for p, q, and r in the following system

of equations:

14. A system of equations has the following
augmented matrix:

Determine the values of the parameter a
if the corresponding system of 
equations has
a. no solutions
b. an infinite number of solutions
c. exactly one solution

£a 1 1

1 a 1

1 1 a

  †   aa
a

§

 �pq � �q � 2rq � 43

 2pq � �q � 2rq � 72

 pq � 2�q � 3rq � 81

y � ax2 � bx � c.

C1�3, �5 2 , B12, 20 2 ,A1�1, �7 2 ,
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EXAMPLE 1 Reasoning about reduced row-echelon form

Explain why each of the following augmented matrices is in reduced 
row-echelon form:

a. b. c. 

Solution
We start by noting that each of these augmented matrices is in row-echelon form,
so the first condition is met. The leading nonzero entry in each row is a 1, and
each of the other column entries for a leading 1 is also 0. This means that each 
of these three matrices is in reduced row-echelon form.

EXAMPLE 2 Connecting the solution to a system of equations to a matrix in
reduced row-echelon form

The following two augmented matrices are in row-echelon form. Determine the
solution to the corresponding system of equations by writing each of these
matrices in reduced row-echelon form.

a. b. 

Solution
a. This matrix is not in reduced row-echelon form because, in the second column,

there is a above the 1. This can be eliminated by multiplying row 2 by
2 and adding it to row 1, which gives the following:

2 (row 2) row 1

The solution to the system of equations is and 
which implies that the original system of equations represents three planes
intersecting at the point 

b. This matrix is in row-echelon form, but it is not in reduced row-echelon form
because, in the third column, there should be a 0 instead of the in row 2,
and instead of the 4 in row 1. This matrix can be put in the required form by
using elementary row operations.

�2

111, 4, �7 2 . z � �7,y � 4,x � 11,

�1 0 0£0 1 0

0 0 1

  †   11

4

�7

§
�2�2

£1 0 4

0 1 �2

0 0 1

  †   21
5

§£1 �2 0

0 1 0

0 0 1

  †   3

4

�7

§

≥ 0 1 0

0 0 1

0 0 0

0 0 0

  ∞   �1

�2

0

0

¥c1 0 �2

0 1 �4
  `   3

0
d£1 0 0

0 1 0

0 0 1

  †   �2

4

0

§



(row 3) row 1

2 (row 3) row 2

The solution to this system is and which means that the
original system of equations represents three planes intersecting at the point

In the following example, we use the interchanging of rows along with the other
elementary operations.

EXAMPLE 3 Solving a system of equations by putting the augmented matrix 
in reduced row-echelon form

Write the following matrix in reduced row-echelon form. Then determine the
solution to the corresponding system of equations.

Solution
We start by writing the given matrix in row-echelon form. This involves 
interchanging the three rows.

In this matrix, the difficulty is now with the third column: There should be  

a 1 where the is located and a 0 where the 2 is located. Elementary operations
must be used to put the matrix in reduced row-echelon form.

2 (row 3) row 1

All that is needed now is to have a leading 1 in each row.

(row 3)
The solution is and meaning that we have three planes 
intersecting at the point 18, �1, �4 2 .z � �4,y � �1,x � 8,

�1

£1 0 0

0 1 0

0 0 1

  †   8

�1

�4

§

�£1 0 0

0 1 0

0 0 �1

  †   8

�1

4

§
�1

2

0

�1

 .

£1 0 2

0 1 0

0 0 �1

  †   0

�1

4

§

£0 0 �1

1 0 2

0 1 0

  †   4

0

�1

§

1�18, 11, 5 2 . z � 5,y � 11,x � �18,

�

��4£1 0 0

0 1 0

0 0 1

  †   �18

11

5

§
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In the next example, we will first put the matrix into row-echelon form and then
write it in reduced row-echelon form.

EXAMPLE 4 Using Gauss-Jordan elimination to solve a system of equations

Solve the following system of equations using Gauss-Jordan elimination:

Solution
The given system of equations is first written in augmented matrix form.

Step 1: Write the given augmented matrix in row-echelon form.

(row 2)

(row 2) row 3

The original matrix is now in row-echelon form.

Step 2: Write the matrix in reduced row-echelon form.
First change the leading 3 in row 3 to a 1.

(row 3)

Use elementary row operations to obtain 0 in the third column for all entries but
the third row.

£1 �1 0

0 1 0

0 0 1

  †   �3

2

�3

§

1

3

£1 �1 2

0 1 �2

0 0 1

  †   �9

8

�3

§

 ��3
£1 �1 2

0 1 �2

0 0 3

  †   �9

8

�9

§
�

1

2
£1 �1 2

0 1 �2

0 3 �3

  †   �9

8

15

§
£1 �1 2

0 �2 4

0 3 �3

  †   �9

�16

15

§

£ 1 �1 2

�1 �1 2

1 2 �1

  †   �9

�7

6

§
 x � 2y � z � 63

 �x � y � 2z � �72

 x � y � 2z � �91
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row 1 row 2

(row 1) row 3 ��1

 �

(row 3) row 1
2 (row 3) row 2�

��2



Finally, convert the entry in the second column of the first row to a 0.

row 2 row 3

The solution to this system of equations is and The three
given planes intersect at a point with coordinates 

Check:
As with previous calculations, this result should be checked by substitution 
in each of the three original equations.

The previous example leads to the following generalization for finding the
intersection of three planes at a point using the Gauss-Jordan method of
elimination:

Solving equations using the Gauss-Jordan method takes about the same amount
of effort as Gaussian elimination when solving small systems of equations. The
main advantage of the Gauss-Jordan method is its usefulness in higher-level
applications and the understanding it provides regarding the general theory of
matrices. To solve smaller systems of equations, such as our examples, either
method (Gaussian elimination or Gauss-Jordan elimination) can be used.

1�1, 2, �3 2 . z � �3.y � 2,x � �1,

�£1 0 0

0 1 0

0 0 1

  †   �1

2

�3

§
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Finding the Point of Intersection for Three Planes with the Gauss-Jordan
Method

When three planes intersect at a point, the resulting coefficient matrix can

always be put in the form which is known as the identity matrix.£1 0 0

0 1 0

0 0 1

§ ,

PART A
1. Using elementary operations, write each of the

following matrices in reduced row-echelon form:

a. c.

b. d.

2. After you have written each of the matrices 
in question 1 in reduced row-echelon form,
determine the solution to the related system of
equations.

§0 0 �1

1 0 2

0 1 0

  †   4

0

�1

£§1 0 2

0 1 2

0 0 �1

  †   32
0

£
§1 1 4

0 �1 2

0 0 1

  †   2

�1

0

£d�1 3

0 �1
  `   1

2
c

Exercises
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PART B
3. Solve each system of equations using the

Gauss-Jordan method of elimination.

a.

b.

c.

d.

e.

f.

4. Using either Gaussian elimination or the
Gauss-Jordan method of elimination, solve 
the following systems of equations:

a.

b.

5. a. Determine the value of k for which the 
following system will have an infinite
number of solutions:

b. For what value(s) of k will this system have
no solutions?

c. Explain why it is not possible for this
system to have a unique solution.

PART C
6. The following system of equations is called 

a homogeneous system. This term is used to
describe a system of equations in which the 
number to the right of the equal sign in every
equation equals 0.

a. Explain why every homogeneous system of
equations has at least one solution.

b. Write the related augmented matrix in
reduced row-echelon form, and explain the
meaning of this result.

7. Solve the following system of equations using
the Gauss-Jordan method of elimination:
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 5x � y � 3z � 03

 x � y � z � 02

 2x � y � z � 01

3x � y � 3z � k3

x � y � z � 22

x � y � z � �11

2x � y � z � �203

�2x � y � 6z � 902

x � y � z � �301

�x � y � z � 93

x � y � 2z � 92

2x � y � z � �61

4x � 3y � 6z � 23

x � y � z � 02

2x � 3y � 6z � 31

2x � 3y � z � �73

x � 6y � z � �62

1

2
x � 9y � z � 11

�x � y � z � �13

2x � 2y � z � �12

x � y � 3z � 31

y � z � 63

�x � z � �52

2x � 2y � 5z � �141

�x � y � z � 93

x � 3y � 2z � �262

3x � 2y � z � 61

2x � 2y � z � �113

x � 2y � z � 82

x � y � z � 01
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PART 1 USING THE TI-83 PLUS AND TI-84
GRAPHING CALCULATORS

1 Preparing the Calculator
Before you graph a function, be sure to clear any information left on the
calculator from the last time it was used. You should always do the following:

1. Clear all data in the lists. 

Press .

2. Turn off all stat plots. 

Press .

3. Clear all equations in the equation editor. 

Press , and then press for each equation.

4. Set the window so that the axes range from 210 to 10.

Press . Press to verify.

2 Entering and Graphing a Function

1. Enter the equation of the function in the equation editor. 

To graph y 5 2x 1 8, press 

. The graph will be displayed as shown.

2. Enter all linear equations in the form y 5 mx 1 b. 

If m or b are fractions, enter them between brackets. For example, write 

2x 1 3y 5 7 in the form , and enter it as shown.

3. Press to view the graph.

4. Press to find the coordinates of any point on the graph.

Use the left and right arrow keys to cursor along the graph. 

Press to trace using integer

values. If you are working with several graphs at the same time, use the up

and down arrow keys to scroll between graphs.

TRACEENTER8ZOOM

TRACE

GRAPH

y � �
2
3 x �

7
3

GRAPH

81X, T, U, n2Y=

WINDOW6ZOOM

CLEARY=

ENTER4Y=2ND

ENTER412ND
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3 Evaluating a Function
1. Enter the function in the equation editor.

To enter y 5 2x2 1 x 2 3, press 

.

2. Use the value operation to evaluate the function.

To find the value of the function at x 5 21, press 

, enter at the cursor, and then press .

3. Use function notation and the Y-VARS operation to evaluate the function.

This is another way to evaluate the function. To find the value of the

function at x 5 37.5, press . Then cursor right to

Y-VARS, and press . Press to select Y1. Finally, press

, and then .

4 Changing Window Settings
The window settings can be changed to show a graph for a given domain and
range.

1. Enter the function in the equation editor.

2. Use the WINDOW function to set the domain and range.

To display the function over the domain and range

press , then 

, then , then , then 

, then , and finally .

3. Press to show the function with this domain and range.GRAPH

ENTER1ENTER1ENTER4

1ENTER0ENTER1ENTER

5ENTER2(2)WINDOW5 y 00 � y � 146, 5x 0�2 � x � 56
y � x2 � 3x � 4

ENTER)5.73(

1ENTER

VARSCLEAR

ENTER1(2)ENTER

TRACE2ND

32X, T, U, n1X2

X, T, U, n2Y=
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5 Using the Split Screen
1. The split screen can be used to see a graph and the equation editor at

the same time.

Press and curser to Horiz. Press to select this, and

then press to return to the home screen. Enter

in Y1 of the equation editor, and then press .

2. The split screen can also be used to see a graph and a table at the
same time.

Press and cursor to G–T (Graph-Table). Press to

select this, and then press . It is possible to view the table with

different increments. For example, to see the table start at and

increase in increments of 0.5, press and adjust the

settings as shown. Then press .

6 Using the TABLE Feature
A function can be displayed in a table of values.

1. Enter the function in the equation editor.

To enter y 5 20.1x3 1 2x 1 3, press 

.

2. Set the start point and step size for the table.

Press . The cursor is beside “TblStart5.” To start

at x 5 25, press . The cursor is now beside

DTbl5. To increase the x-value in steps of 1, press .

3. To view the table, press .

Use the up and down arrow keys to move up and down the table. Notice that
you can look at higher or lower x-values than those in the original range.

GRAPH2ND

ENTER1

ENTER5(2)

WINDOW2ND

31X, T, U, n213^X, T, U, n

1.(2)Y=

GRAPH

WINDOW2ND

x � 0

GRAPH

ENTERMODE

GRAPHy � x2

MODE2ND

ENTERMODE
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7 Making a Table of Differences
To make a table with the first and second differences for a function, use the
STAT lists.

1. Press , and enter the x-values in L1.

For the function f(x) 5 3x 2 2 4x 1 1, use x-values from 22 to 4.

2. Enter the function. 

Scroll right and up to select L2. Enter the function f (x), using L1 as the

variable x. Press 

.

3. Press to display the values of the function in L2.

4. Find the first differences.

Scroll right and up to select L3. Then press .

Scroll right to OPS, and press to choose DList(. 

Enter L2 by pressing .

Press to see the first differences displayed in L3.

5. Find the second differences.

Scroll right and up to select L4. Repeat step 4, using L3 instead of L2.

Press to see the second differences displayed in L4.

8 Finding the Zeros of a Function
To find the zeros of a function, use the zero operation. 

1. Enter y 5 2(x 1 3)(x 2 5) in the equation editor.

Press .

2. Access the zero operation. 

Press .2TRACE2ND

6ZOOMGRAPH

ENTER

ENTER

)22ND

7

STAT2ND

ENTER

1ALPHA1112ND42

X212ND31ALPHA

1STAT
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3. Use the left and right arrow keys to cursor along the curve to any
point that is left of the zero. 

Press to set the left bound.

4. Cursor along the curve to any point that is right of the zero. 

Press to set the right bound. 

5. Press again to display the coordinates of the zero 
(the x-intercept).

6. Repeat to find the second zero.

9 Finding the Maximum or Minimum Values 
of a Function

The least or greatest value can be found using the minimum operation or the
maximum operation. 

1. Enter y 5 22x2 2 12x 1 30. 
Graph it, and adjust the window as shown. This graph opens downward, so
it has a maximum. 

2. Use the maximum operation. 

Press . For parabolas that open upward,

press to use the minimum operation.

3. Use the left and right arrow keys to cursor along the curve to any
point that is left of the maximum value. 

Press to set the left bound.ENTER

3TRACE2ND

4TRACE2ND

ENTER

ENTER

ENTER
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4. Cursor along the curve to any point that is right of the maximum value. 

Press to set the right bound.

5. Press again to display the coordinates of the optimal
value. 

10 Graphing the Inverse of a Function
Parametric equations allow you to graph any function and its inverse. 
For example, the function with domain can be graphed
using parametric mode. For a parametric equation, both x and y must be
expressed in terms of a parameter, t. Replace x with t. Then and

The inverse of this function can now be graphed.

1. Clear the calculator, and press . 
Change the setting to the parametric mode by scrolling down to the fourth
line and to the right to Par, as shown on the screen. Press .

2. Enter the inverse function by changing the parametric equations 
, to 

Press . At X1T=, enter 

. At Y1T=, enter .

3. Press .

The original domain, , is also the domain of t. Use window settings
such as those shown below to display the graph.

4. Press to display the inverse function.GRAPH

x � 0

WINDOW

X, T, U, nENTER

X2X, T, U, n22Y=

y � t.x � 2 � t2,y � 2 � t 
2x � t

ENTER

MODE

y � 2 � t 
2.

x � t

x � 0,y � 2 � x2,

ENTER

ENTER
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11 Creating a Scatter Plot and Determining a Line
or Curve of Best Fit Using Regression

This table gives the height of a baseball above ground, from the time it was hit
to the time it touched the ground.

Time (s) 0 1 2 3 4 5 6

Height (m) 2 27 42 48 43 29 5

To create a scatter plot of the data, follow the steps below.

1. Enter the data into lists.

To start, press . Move the cursor over to the first

position in L1, and enter the values for time. Press  after each
value. Repeat this for height in L2.

2. Create a scatter plot. 

Press and . Turn on Plot 1 by
making sure that the cursor is over On, the Type is set to the graph type you
prefer, and L1 and L2 appear after Xlist and Ylist.

3. Display the graph. 

Press to activate ZoomStat.

4. Apply the appropriate regression analysis.

To determine the equation of the line or curve of best fit, press 
and scroll over to CALC. Press

• to enable LinReg(ax�b)

• to enable QuadReg

• to enable CubicReg

• to enable QuartReg

• to enable ExpReg

• to enable SinReg

Then press 

. Scroll over to Y-VARS. Press twice. This action stores
the equation of the line or curve of best fit in Y1 of the equation editor.

1VARS

,22ND,12ND

CALPHA

0

7

6

5

4

STAT

9ZOOM

ENTER1Y=2ND

ENTER

ENTERSTAT
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5. Display and analyze the results. 

Press . In this example, the letters a, b, and c are the
coefficients of the general quadratic equation y 5 ax 2 1 bx 1 c for the
curve of best fit. is the percent of data variation represented by the
model. The equation is about y 5 24.90x2 1 29.93x 1 1.98.
Note: For linear regression, if r is not displayed, turn on the diagnostics

function. Press and scroll down to DiagnosticOn. Press

twice. Repeat steps 4 to 6.

6. Plot the curve. 

Press 

12 Finding the Points of Intersection 
of Two Functions 

1. Enter both functions in the equation editor.
For example, enter y 5 5x 1 4 and y 5 22x 1 18.

2. Graph both functions. 

Press . Adjust the window settings until one or more points of
intersection are displayed.

3. Use the intersect operation.

Press .

4. Determine a point of intersection. 
You will be asked to verify the two curves and enter a guess (optional) for
the point of intersection. Press after each screen appears.

The point of intersection is exactly (2, 14). 

5. Determine any additional points of intersection. 

Press , and move the cursor close to the other point you wish to

identify. Repeat step 4.

13 Evaluating Trigonometric Ratios 
and Finding Angles

Working with Degrees

1. Put the calculator in degree mode.

Press . Scroll down and across to Degree. Press .ENTERMODE

TRACE

ENTER

5TRACE2ND

GRAPH

GRAPH

ENTER

02ND

R2

ENTER
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2. Use the , , or key to calculate a

trigonometric ratio.

To find the value of sin 54°, press 

.

3. Use SIN21, COS21, or TAN21 to calculate an angle.

To find the angle whose cosine is 0.6, press 

.

Working with Radians

1. Put the calculator in radian mode.

Press . Scroll down and across to Radian. Press .

2. Use the , , or key to calculate a

trigonometric ratio.

To find the value of , press 

.

3. Use SIN21, COS21, or TAN21 to calculate an angle.

To find the angle whose cosine is 0.6, press 

.ENTER)6.

COS2ND

ENTER)4

4^2NDSINsin p4

TANCOSSIN

ENTERMODE

ENTER)6.

COS2ND

ENTER

)45SIN

TANCOSSIN
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14 Graphing a Trigonometric Function
Working with Degrees

You can graph a trigonometric function in degree measure using the TI-83 Plus
or TI-84 calculator. 

1. Put the calculator in degree mode.

Press . Scroll down and across to Degree. Press .

2. Enter the function in the equation editor.

For example, to graph the function , for , press

.

3. Adjust the window to correspond to the given domain.

Press . Set Xmin , Xmax , and Xscl . These 

settings display the graph from 0° to 360°, using an interval of 90° on the 
x-axis. Then set Ymin and Ymax , since the sine function
being graphed lies between these values. If the domain is not known, this
step can be omitted.

4. Graph the function using ZoomFit.

Press . The graph is displayed over the domain, and the
calculator determines the best values to use for Ymax and Ymin in the
display window.

Note: You can use ZoomTrig (press ) to graph the
function in step 4. ZoomTrig will always display the graph in a window
where Xmin , Xmax , Ymin , and Ymax .

Working with Radians

You can also graph a trigonometric function in radians using the TI-83 Plus or 
TI-84 calculator. 

1. Put the calculator in radian mode.

Press . Scroll down and across to Radian. Press .

2. Enter the function in the equation editor.

For example, to graph the function , for press

.)X, T, U, nSINY=

0 � x � 2p,y � sin x

ENTERMODE

� 4� �4� 360
� �360


7ZOOM

0ZOOM

� 1� �1

� 90� 360� 0WINDOW

)X, T, U, nSINY=

0° � x � 360°y � sin x

ENTERMODE
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3. Adjust the window to correspond to the given domain.

Press . Set Xmin 0, Xmax 2 , and Xscl . These

settings display the graph from to , using an interval of on the 

x-axis. Then set Ymin 1 and Ymax 1, since the sine function
being graphed lies between these values. If the domain is not known, this
step can be omitted.

4. Graph the function using ZoomFit.

Press . The graph is displayed over the domain, and the
calculator determines the best values to use for Ymax and Ymin in the
display window.

Note: You can use ZoomTrig (press ) to graph the 

function in step 4. ZoomTrig will always display the graph in a window
where Xmin , Xmax , Ymin 4, and Ymax 4.

15 Evaluating Powers and Roots
1. Evaluate the power (5.3)2.

Press .

2. Evaluate the power 7.55.

Press . 

3. Evaluate the power .

Press .

4. Evaluate the square root of 46.1.

Press 

.

5. Evaluate .

Press .

16 Graphing a Piecewise Function
Follow these steps to graph the piecewise function defined by

1. Enter the first equation.
In the equation editor for Y1, enter the first equation in brackets. Then
enter its corresponding interval in brackets. The inequality signs can be

accessed in the Test menu by pressing .MATH2ND

f 1x 2 � e�x � 1, if x 6 1

   x2 � 5, if x � 1

ENTER6525MATH4

�4 256

ENTER

)1.64X22ND

ENTER)3422(^8

8�2
3

ENTER5^5.7

ENTERX23.5

���2P��2P�

7ZOOM

0ZOOM

�� �

p
22p0

P
2�P��WINDOW
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2. Enter the second equation.

Press , and repeat step 1 for the second equation and its interval.

Scroll to the left of Y1, and press until the dotted graphing
mode appears.

3. Display the graph. 

Press to display the graph.
Each equation produces a different graph on each interval. This function is
discontinuous at .

17 Performing Operations Specific to Calculus
Drawing Tangent Lines

1. Enter a function to be graphed.
Enter in Y1 of the equation editor. Adjust the window,

and display the graph. 

2. Draw a tangent line at the desired point.
Use the Tangent command in the Draw menu to draw a tangent line at a
point and estimate its slope. Press . Choose

5:Tangent( . Scroll to 60, or enter 60, for the x-coordinate. Press 

. The tangent line is drawn, and its equation is displayed. Press 

to clear the drawn tangent lines. The
function will be regraphed without the tangent lines.

Graphing the First and Second Derivatives of a Function

1. Enter a function to be graphed.
Enter a function, such as , in Y1 of the equation editor. Press

. 

2. Graph the first derivative.
To graph the derivative, use the nDeriv operation. Press .

To enter the expression Y1, press . Scroll over to Y-VARS. Press

twice. Press 

to enter the expression, variable name, and general value

of x. Press . The original function is graphed first, and 

the derivative is graphed next. nDeriv( approximates the derivative.

3. Graph the second derivative.

GRAPH

)X, T, U, n

,X, T, U, n,)X, T, U, n(1

VARS

8MATH

ENTER
y � x2

12ND

ENTER

2ND

V1t 2 �
1
9 1120 � t 22

x � 1

GRAPH

ENTER

1
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To graph the second derivative, enter nDeriv(Y2(X), X, X) in Y3. (See
step 2.) Remember to select Y2 from the Function menu. You can deselect
a function to be graphed. Position the cursor over the equal sign of the 

desired function in the equation editor. Press . Only the

functions whose equal signs are shaded will be graphed when 

is pressed.

PART 2 USING THE GEOMETER’S
SKETCHPAD

18 Graphing a Function
1. Turn on the grid.

From the Graph menu, choose Show Grid.

2. Enter the function. 
From the Graph menu, choose Plot New Function. The function
calculator should appear. 

3. Graph the function y � x2 � 3x � 2.

GRAPH

ENTER
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Use either the calculator keypad or the keyboard to enter x ^ 2 - 3 * x � 2.

Then press on the calculator keypad. The graph of 

y � x2 � 3x � 2 should appear on the grid.

4. Adjust the origin and/or scale.
To adjust the origin, left-click on the point at the origin to select it. Then
left-click and drag the origin as desired. 
To adjust the scale, left-click in blank space to deselect, and then left-click
on the point at (1, 0) to select it. Left-click and drag this point to change
the scale.

OK
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19 Graphing a Trigonometric Function
1. Turn on the grid.

From the Graph menu, choose Show Grid.

2. Graph the function y � 2 sin (30x) � 3.
From the Graph menu, choose Plot New Function. The function
calculator should appear. 
Use either the calculator keypad or the keyboard to enter 
2 * sin (30 * x) � 3. To enter sin, use the pull-down Functions

menu on the calculator keypad. Click on the calculator keypad.

Click No in the pop-up panel to keep degrees as the angle unit. The graph 
of y � 2 sin (30x) � 3 should appear on the grid.

3. Adjust the origin and/or scale.
Left-click on and drag either the origin or the point (1, 0).

OK
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20 Graphing the Derivative of a Function
1. Graph the function y � x2 � 3x � 2.

Follow the instructions as outlined in Technical Appendix 18, Graphing
Functions, to graph the given function.

2. Select the equation of the function whose derivative is to be
determined.
With the equation of the function selected, choose Derivative from the
Graph menu. The equation of will be displayed.

3. Graph the derivative function.
With the equation of the derivative function selected, chose Plot Function
from the Graph menu. The graph of will be displayed.f ¿ 1x 2

f ¿ 1x 2
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PART 3 USING FATHOM
21 Creating a Scatter Plot and Determining the

Equation of a Line or Curve of Good Fit

1. Create a case table.
Drag a case table from the object shelf, and drop it in the document. 

2. Enter the Variables and Data.
Click <new>, type a name for the new variable or attribute, and press

. (If necessary, repeat this step to add more attributes; Pressing

instead of moves you to the next column.) 

When you name your first attribute, Fathom creates an empty collection to
hold your data (a little, empty box). This is where your data are actually
stored. Deleting the collection deletes your data. When you add cases by
typing values, the collection icon fills with gold balls. To enter the data, click
in the blank cell under the attribute name and begin typing values. (Press

to move from cell to cell.)

3. Graph the data. 
Drag a new graph from the object shelf at the top of the Fathom window,
and drop it in a blank space in your document. Drag an attribute from the
case table, and drop it on the prompt below and/or to the left of the
appropriate axis in the graph.

TAB

ENTERTAB

ENTER
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4. Create a function. 
Right-click the graph, and select Plot Function. Enter your function using
a parameter that can be adjusted to fit the curve to the scatter plot (a was
used below).

5. Create a slider for the parameter(s) in your equation. 
Drag a new slider from the object shelf at the top of the Fathom window,
and drop it in a blank space below your graph. Over V1, type in the letter
of the parameter used in your function in step 4. Click on the number, and
then adjust the value of the slider until you are satisfied with the fit.

The equation of a curve of good fit is y � �4.8(x � 0.2)(x � 6.2).
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A
absolute extrema: the largest or smallest value of a
function over its entire domain.

acceleration: the rate of change of velocity with

respect to time or the second derivative of 

displacement with respect to time .

algebraic vectors: vectors that are considered with
respect to coordinate axes.

asymptote: a line having the property that the
distance from a point P on a curve to the line
approaches zero as the distance from P to the origin
increases indefinitely. The line and the curve get
closer and closer but never touch. See horizontal,
vertical, and slant asymptote.

augmented matrix: a matrix made up of the
coefficient matrix and one additional column
containing the constant terms of the equations to be
solved.

average rate of change: given by the difference 

quotient . The average rate of 

change of the function over the interval to
.

B
bearing: a way of specifying the direction from one
object to another, often stated in terms of compass
directions.

C
calculus: a branch of mathematics, discovered
independently by Sir Isaac Newton and Gottfried
Wilhelm von Leibniz, that deals with the
instantaneous rate of change of a function
(differential calculus) and the area under a function
(integral calculus).

Cartesian coordinate system: a reference system in
two-space, consisting of two axes at right angles, or
three-space (three axes) in which any point in the
plane is located by its displacements from these fixed
lines (axes). The origin is the common point from
which each displacement is measured. In two-space,
a set of two numbers or coordinates is required to
uniquely define a position; in three-space, three
coordinates are required.

Cartesian equation of a plane: Cartesian (or
scalar) equation of a plane in is of the form

with a normal 
The normal n is a nonzero vector

perpendicular to all of vectors in the plane.

chain rule: if and are continuous 
and differentiable functions, then the composite
function has a derivative given by

. In Leibniz notation, if 
where , then y is a composite function and

chord: in a circle, the portion of the secant inside
the circle.

coefficient matrix: a matrix whose elements are the
coefficients of the unknown terms in the equations to
be solved by matrix methods.

coincident: Two or more congruent geometric
figures (vectors, lines, or planes) which can be
translated to lie on top of each other.

collinear vectors: vectors that are parallel and that
lie on the same straight line.

composition of forces: the process of finding the
resultant of all the forces acting on an object.

composite function: given two functions, and
, the composite function . is

called the inner function and is the outer function.f 1x 2 g1x 2f � g � f 3g1x 2 4g1x 2 f 1x 2

dy
dx �

dy
du 

du
dx.

u � g1x 2 y � f 1u 2h¿ 1x 2 � f ¿ 3g1x 2 4g¿ 1x 2h1x 2 � f 3g1x 2 4 g1x 2f 1x 2
� 1A, B, C 2 . n

!
D � 0Ax � By � Cz �

R3

x � a � h
x � af 1x 2¢y

¢x �
f 1a � h 2 � f 1a 2

h

Qd 2s
dt2 RQdv

dtR
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composition: the process of combining functions.

concave up/down: is concave up at if and
only if is increasing at . is concave down
at if and only if is decreasing at . If 
exists at and is positive, then is concave up 
at . If exists and is negative, then is
concave down at . If does not exist or is zero,
then the test fails.

conjugate radical: for an expression of the form
, the conjugate radical is .

constant function rule: if , where k is a
constant, then . In Leibniz notation,

.

constant multiple rule: if where k is a
constant, then . In Leibniz notation:

consistent system of equations: a system of
equations that has either one solution or an infinite
number of solutions.

continuity: the condition of being uninterrupted,
without break or irregularity.

continuous function: a function is continuous at
a particular point , if is defined and if

. If this property is true for all points in
the domain of the function, then the function is said
to be continuous over the domain.

coplanar: the description given to two or more
geometric objects that lie in the same plane.

critical points (of a function): a critical point on
occurs at if and only if either or the

derivative doesn’t exist.

critical numbers: numbers in the domain of a function
that cause its derivative to be zero or undefined.

cross product: the cross product of two vectors 
and in (three-space) is the vector that is
perpendicular to these factors and has a magnitude 
of such that the vectors and 
form a right-handed system.

cusp: a type of double point. A cusp is a point on a
continuous curve where the tangent line reverses sign.

D
decreasing function: a function is decreasing 
at a point if and only if there exists some interval I
containing , such that for all x in I to the
left of and for all x in I to the right of .

delta: the fourth letter of the Greek alphabet: lower
case ; upper case .

dependent variable: in a relation, the variable
whose value depends upon the value of the
independent variable. On a coordinate grid, the
values of the independent variable are usually 
plotted on the horizontal axis, and the values of 
the dependent variable on the vertical axis.

derivative: the instantaneous rate of change of a
function with respect to the variable. The derivative at a
particular point is equal to the slope of the tangent line
drawn to the curve at that point. The derivative of 

at the point provided
the limit exists.

derivative function: for a function , the derivative

function is for all x for

which the limit exists.

difference of two vectors:

In the diagram above, the difference between vectors
and is found by adding the opposite vector to 

using the triangle law of addition.

Another way to think about is to arrange
vectors tail to tail. In this case, is the vector
that must be added to to get . This is illustrated in
the following diagram. Using the vectors above, the
difference vector is the same as the one produced by
adding the opposite.

a – b

b

a

a
!

b
! a

!
� b
!a

!
� b
!

a
!

b
!

b
!

a
!

a + (–b) = a – b

–b

a

b

a

f ¿ 1x 2 � lim
hS0

 
f 1x � h 2 � f 1x 2

h

f 1x 2
f ¿ 1a 2 � lim 

xSa

f 1x 2 � f 1a 2
x � ax � a:

f 1x 2

3¢ 43d 4
x0f 1x0 2 7 f 1x 2x0

f 1x0 2 6 f 1x 2x0

x0

f 1x 2

a
!
� b
!

a
!
, b
!
,�a

!
� �b
!
� sin u

R3b
! a

!

f ¿ 1x0 2 � 0x0f 1x 2

lim
xSa

 f 1x 2 � f 1a 2 f 1a 2x � a
f 1x 2

df
dx � k 

dg
dx.

f ¿ 1x 2 � kg¿ 1x 2f 1x 2 � kg1x 2d
dx 1k 2 � 0

f ¿ 1x 2 � 0
f 1x 2 � k

�a � �b�a � �b

f ¿¿ 1x 2x0

f 1x 2f ¿¿ 1x 2x0

f 1x 2x0

f ¿¿ 1x 2x0f ¿ 1x 2x0

f 1x 2x0f ¿ 1x 2 x0f 1x 2
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difference quotient: the slope of the secant drawn to
a curve between the points on the curve 

and .

difference rule: if functions and are
differentiable and , then 

. In Leibniz notation:

.

differentiability: a real function is said to be
differentiable at a point if its derivative exists at 
that point.

differential calculus: that portion of calculus
dealing with derivatives.

direction angles: the angles that a vector makes
with each of the coordinate axes.

direction cosines: the cosines of the direction angles.

direction numbers: the components of a direction
vector; for the vector , the direction numbers
are a and b.

direction vector: a vector that determines the
direction of a particular line.

discontinuity: an interrupted or broken connection. 
A value for x, on an grid, for which a value for 
y is not defined. A formal mathematical definition: a
function is discontinuous at a particular point

is not defined and/or if 

displacement: a translation from one position to
another, without consideration of any intervening
positions. The minimal distance between two 
points.

dot product: for two vectors, the dot product is the
product of the magnitudes of the vectors and the
cosine of the angle between the two vectors.

E

e: the base of the natural logarithm, whose symbol “e”

honours Euler. It can be defined as the 

and is equal to 2.718 281 828 6… (a non-repeating,
infinite decimal).

elementary operations: operations that produce
equivalent systems:

1. multiplication of an equation by a nonzero constant

2. interchanging any pair of equations

3. adding a nonzero multiple of one equation to a
second equation to replace the second equation

equivalent systems: two systems of equations are
equivalent if every solution of one system is also a
solution to the second system.

exponent laws:

equilibrant: equal in magnitude but acting in the
opposite direction to the resultant force, resulting 
in a state of equilibrium.

extended power rule: a symmetric expression 
that extends the power rule for the product of 
two functions to three functions and beyond. 
For example, if , then 

Note the symmetry.

extreme values (of a function): the maximum and
minimum values of a function over a particular
interval of values (domain).

F
first derivative test: if changes sign from negative
to positive at then has a local minimum at
this point; if changes sign from positive to negative
at then has a local maximum at this point.

force: something that either pushes or pulls an object.

f 1x 2x � c,
f ¿ 1x 2 f 1x 2x � c,

f ¿ 1x 2

g1x 2h¿1x 2k1x 2�g1x 2h1x 2k¿1x 2f ¿1x 2 � g¿1x 2h1x 2k1x 2�f 1x 2 � g1x 2h1x 2k1x 2

lim 
xSq
Q1 �

1
xRx

lim 
xSa

f 1x 2 � f 1a 2 .x � a if f 1a 2f 1x 2 x � y

1a, b 2

df
dx �

dp
dx �

dq
dx

f ¿ 1x 2 � p¿ 1x 2 � q¿ 1x 2f 1x 2 � p1x 2 � q1x 2 q1x 2p1x 2
¢y
¢x �

f 1a � h 2 � f 1a 2
h1a � h, f 1a � h 22 : 1a, f 1a 22f 1x 2

Action Result

am � an am�n

am

an am�n1am 2n am�n1ab 2m ambma a
b
bm

, b � 0
am

bm

Action Result

a0 1

a�n 1

ana a
b
b�n bn

an

a
p
q or �apq

 1�a 2pq
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G
geometric vectors: vectors that are considered
without reference to coordinate axes.

H
horizontal asymptote: the line is a
horizontal asymptote of if and only if 
approaches as .

I
identity matrix: the matrix that consists entirely of a
diagonal of 1’s with all other numbers in the matrix 0.

implicit differentiation: a method for differentiating
an implicit function, utilizing the chain rule and

ultimately solving for the derivative desired .

implicit function: a function in which the
dependent variable is not directly stated as a function
of the independent variable.

inconsistent system of equations: a system of
equations that has no solutions.

increasing function: a function is increasing 
at a point if and only if there exists some interval 
I containing , such that for all x in I to
the left of , and for all x in I to the
right of .

independent variable: in a relation, the variable
whose value determines the value of the dependent
variable. See dependent variable.

indeterminate form: a quotient where 

and both approach as x approaches a
is an indeterminate form: .

inflection point: an inflection point occurs on 
at if and only if has a tangent line at and
there exists an interval I containing such that 
is concave up on one side of and concave down on
the other side.

instantaneous rate of change: the rate of change of
at a particular point is given by

provided the limit

exists.

L
Leibniz notation: for example, is Leibniz
notation for the derivative of y with respect to x. The
notation we use in everyday calculus is attributable
primarily to Leibniz.

limit (of a function): the notation 
implies that, as x approaches closer and closer to the
value a, the value of the function approaches a
limiting value of L.

linear combination: the sum of nonzero multiples
of two or more vectors or equations.

local maximum: a function has a local
maximum at if and only if there exists some interval
I containing such that for all x in I.

local minimum: a function has a local minimum
at if and only if there exists some interval I
containing such that for all x in I.

logarithm (natural): logarithms of numbers using a
base of e. Usually written as ln x.

logarithmic differentiation: a process using
logarithms to differentiate algebraically complicated
functions or functions for which the ordinary rules of
differentiation do not apply.

logarithmic function: the inverse of the exponential
function. If represents the exponential
function, then is the logarithmic function.
Usually written as .

logistic model: a mathematical model that describes
a population that grows exponentially at the
beginning and then levels off to a limiting value.
There are several different forms of equations
representing this model.

M
magnitude: the absolute value of a quantity.

maximum: the largest value of a function on a 
given interval of values.

minimum: the smallest value of a function on a
given interval of values.

y � logb x
y � logb y

y � bx

f 1x0 2 � f 1x 2x0

x0

f 1x 2f 1x0 2 � f 1x 2x0

x0

f 1x 2

lim 
xSa

f 1x 2 � L

dy
dx

lim 
xS0

¢y
¢x � lim 

xS0

f 1a � h 2 � f 1a 2
h   

x � ay � f 1x 2
x0

f 1x 2x0

x0f 1x 2x0

f 1x 20
0 or qq

0 or ;qg1x 2 f 1x 2lim 
xSa

f 1x 2
g1x 2

x0

f 1x0 2 6 f 1x 2x0

f 1x0 2 7 f 1x 2x0

x0

f 1x 2

Qdy
dxR

xS  ;qy0

f 1x 2f 1x 2 y � y0
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N
natural logarithm function: the logarithm function
with base e, written 

normal axis: for a given line, the normal axis is the
only line that can be drawn from the origin
perpendicular to the given line.

normal line: the line drawn at a point on a graph of
, perpendicular to the tangent line drawn at that

point.

O
oblique asymptote: See slant asymptote.

opposite vectors: vectors that have the same
magnitude but point in opposite directions.

optimization: a procedure to determine the best
possible outcome of a situation. If the situation can
be modelled as a function, it may involve finding
either the maximum or minimum value of the
function over a set of values (domain).

optimize: to realize the best possible outcome for a
situation, subject to a set of restrictions.

P
parallelogram law for adding two vectors: To
determine the sum of the two vectors and ,
complete the parallelogram formed by these two
vectors when placed tail to tail. Their sum is the
vector the diagonal of the constructed
parallelogram,

parameter: a variable that permits the description of
a relation among other variables (two or more) to be
expressed in an indirect manner using that variable.

parametric equations of a line: derived from
vector equation; in

parametric equations for a plane: in 
is determined by a point on a plane 

and and are vectors
that lie on the same plane as the point.

point of inflection: See inflection point.

position vector: the position vector has its head
at the point and its tail at the origin .

power function: a function of the form ,
where n is a real number.

power of a function rule: if u is a function of x and
n is a positive integer, then in Leibniz notation 

. In function notation, if

then .

power rule: if , where n is a real number,
then .

product rule: if , then 
. See extended 

power rule.

projection: a mapping of a geometric figure formed
by dropping a perpendicular from each of the points
onto a line or plane.

Q

quotient rule: if , then 

.

R
rate of change: a measure of how rapidly the
dependent variable changes when there is a change in
the independent variable.

rational function: a function that can be expressed

as , where are polynomial

functions and .q1x 2  Z  0

p1x 2  and q1x 2f 1x 2 �  
p1x 2
q1x 2

h¿ 1x 2 �
g1x 2 f ¿ 1x 2 � f 1x 2g¿ 1x 23g1x 2 4 2 , g1x 2 � 0

h1x 2 �
f 1x 2
g1x 2

g1x 2 � f 1x 2g¿ 1x 2h¿ 1x 2 � f ¿ 1x 2 h1x 2 � f 1x 2g1x 2f ¿ 1x 2 � nxn�1
f 1x 2 � xn

f ¿ 1x 2 � n 3g1x 2 4n�1g1x 2f 1x 2 � 3g1x 2 4n,

� nun�1 du
dx

d
dx 1un 2

f 1x 2 � xn

O10, 0 2P1a, 0 2 OP
!

z � z0 � sa3 � tb3, s, t�R.
y � y0 � sa2 � tb2,
x � x0 � sa1 � tb1,

b
!
� 1b1, b2, b3 2a � 1a1, a2, a3 2r

!
0 � 1x0, y0, z0 2 R3,

R2, x � x0 � ta, y � y0 � tb, t�R.

1808 – u a

a + ba

b
A

C D

B

b

u

a

b
A

C

Bu

a
!
� b
!
� AB

!
� BD

!
� AD

!
.

AD
!
,

b
!

a
!

f 1x 2

y � loge x or y � ln x.
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rationalizing the denominator: the process of
multiplying the numerator and denominator of a
rational expression by the conjugate radical of the
denominator.

resolution: the opposite of composition; taking a
single force and decomposing it into two components,
often parallel to the vertical and horizontal axes.

resultant: the sum of two or more vectors;
represents the combined effect of the vectors.

right-handed system of coordinates: one method of
specifying the relative position of the coordinate axes
in three dimensions; illustrated in the figure below.

row-echelon form: any matrix that has the
following characteristics:

1. All zero rows are at the bottom of the matrix 

2. The leading entry of each nonzero row after the
first occurs to the right of the leading entry of the
previous row. 

3. The leading entry in any nonzero row is 1. 

4. All entries in the column above and below a
leading 1 are zero.

reduced row-echelon form: a matrix derived by the
method of Gauss-Jordan elimination that permits the
solution of a system of linear equations.

S
scalar: a quantity whose magnitude can be
completely specified by just one number.

scalar product: See dot product.

scalar projection: the scalar projection of vector 
onto is ON where .

second derivative: for a function the second
derivative of is the derivative of .

second derivative test: if is a function for
which , and the second derivative of 
exists on an interval containing c, then

• is a local minimum value if 

• is a local maximum value if 

• the test is indeterminate if and the first
derivative test must be used

secant: a line through two points on a curve.

slant asymptote: the line is a slant or
oblique asymptote of if and only if

.

slope of tangent: the slope of the tangent to the
function at the point on the curve is

given by .

speed: distance travelled per unit of time. The
absolute value of velocity.

spanning set: a set of two vectors forms a spanning
set for if every vector in can be written as a
linear combination of these two vectors; a spanning
set for contains three vectors.

standard basis vectors: unit vectors that lie along
the axes; and for and and for .

sum rule: if functions and are
differentiable and , then

. In Leibniz notation:

.
df
dx �

dp
dx �

dq
dx

f ¿ 1x 2 � p¿ 1x 2 � q¿ 1x 2f 1x 2 � p1x 2 � q1x 2 q1x 2p1x 2  R3 k
!

i
!
, j!, R2 j

!
i
! 

R3

R2R2

lim 
hS0

¢y
¢x � lim 

xS0

f 1a � h 2 � f 1a 2
h

1a, f 1a 2 2y � f 1x 2
lim 

xS; q
 f 1x 2 � ax � b

f 1x 2 y � ax � b

f ¿ 1x 2 � 0,

f ¿¿ 1x 2 6 0f 1c 2 f ¿¿ 1x 2 7 0f 1c 2
f 1x 2f ¿ ¿ 1c 2 � 0

f 1x 2 y �  f ¿ 1x 2y �  f 1x 2 f 1x 2 ,
B

A

O u = 908

a

b
N B

A

O

908< u ≤ 1808

uB

A

O

a

u

b N

0 ≤ u < 908

ON �  0a! 0cos ub
! a

!

positive y-axis

positive z-axis

positive x-axis
x

y

z
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symmetric equation: for a line in 

is the vector from the origin to a point on 
the line and is a direction vector of the line.

T
tangent: the straight line that most resembles the
graph near that point.

triangle law of addition: in the diagram, the sum of
the vectors and is found by translating
the tail of vector to the head of vector . This could
also have been done by translating so that its tail
was at the head of . In either case, the sum of the
vectors and is 

U
unit vector: a vector with magnitude 1.

V
vector: a quantity that requires both a magnitude
and a direction for a complete description.

vector equation of a line: equation of a line written
in terms of a position vector for a point on the line
and a vector specifying the direction of the vector; in

,

vector equation of a plane: in is
determined by a point on a plane and 
and are vectors that lie on the same
plane as the point .

velocity: the rate of change of displacement with

respect to time: .

vertical asymptote: the line is a vertical
asymptote of if and only if as 
from the left or from the right.

vector product: See cross product.

vector projection: the vector projection of on is
the product of the dot product for the two vectors and
a unit vector in the direction of .

Z
zero vector: the vector with a magnitude of 0 and
no defined direction.

b
!

b
!

a
!

xS x0f 1x 2 S;qf 1x 2 x � x0

Qds
dtR
: r
!
� r0
!
� sa
!
� tb
!
, s, t�R

b
!
� 1b1, b2, b3 2 a

!
� 1a1, a2, a3 2R3, r0
!
� 1x0, y0, z0 2r

!
� r0
!
� tm

!
, t�R.R2

C

a + b
b

BA a

b

a

AC
!
.b

!
a
! b

! a
! a

!
b
!b
!
, a!� b

!
,a

!

1x0, y0, z0 2 �, a � 0, b � 0, c � 0.�
y � y0

b
�

z � z0

c   
x � x0

a

R3,
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b. d.
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c. The volume of water in the hot tub is

always decreasing during that time
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12. a. b.
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Section 1.1, p. 9
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b. e.
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The radicals in the denominator of
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c.

d.

4. a.
b.

c.

d.

e.

f.

5. a.

b.

c.

6. a.
b.

c.

7. a.

b. 12
c.
d.
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f.

8. a. b. c.

9. a. b. c.

10. a. b. c.

11. a. 1 d.

b. e.

c. 9 f.

12.

Semi-circle 
centre , rad 5,

OA is a radius. The slope of OA is 

The slope of tangent is 

13. Take values of x close to the point,
then determine 

14.

Since the tangent is horizontal, the
slope is 0.

15.
16.
17. a.

b.
c.
d.
e.
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b. 0

c. about 
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P

P

y � 6x � 24
y � 2x � 8
y � 4x � 14
15, 6 213, �2 23x � y � 8 � 0

3x � y � 8 � 0

¢y
¢x.

�
3
4.

4
3.

y � 010, 0 2 Sy � �25 � x2

y

x

A

0

8

4 8

4

–4

�
1

6

�
3

4
�1

1

6

�
1

10
�

1

2
�2

5

6

1

4

1

2

125�12

y

x
0 2 4

12

8

–4

4

–4 –2

12
12 � 6h � h2

1

�9 � h � 3

3 � 3h � h2
6 � 3h

1

�5 � h � �5

h � 5

�h2 � 5h � 4 � 2

1

�16 � h � 4

1

4 � 2h

�3

414 � h 2
6 � 3h

�
1

1 � h

108 � 54h � 12h2 � h3
75 � 15h � h2

y

x

0 2 4 6

4

2

–4

–2

–2

x � 5

y

0 2 4 6

4

2

–4

–2

–2

x

3x � 5y � 15 � 0
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P Q
Slope of Line

PQ

(2, 8) (3, 27) 19

(2, 8) (2.5, 16.625) 15.25

(2, 8) (2.1, 9.261) 12.61

(2, 8) (2.01, 8.120 601) 12.0601

(2, 8) (1, 1) 7

(2, 8) (1.5, 3.375) 9.25

(2, 8) (1.9, 6.859) 11.41

(2, 8) (1.99, 7.880 599) 11.9401



d. about 

e. about 

f. no tangent at point P

19.

20. 1600 papers
21. (2, 4)

22.

23. and 

or 

The points of intersection are

and 

Tangent to 

The slope of the tangent at is 

and at is 

Tangents to 

The slope of the tangents at is 

and at is ; 
and 

Therefore, the tangents are 
perpendicular at the points of 
intersection.

24.
25. a.

b.
c.

Section 1.3, pp. 29–31

1. 0 s or 4 s
2. a. Slope of the secant between the

points and 

b. Slope of the tangent at the point

3. Slope of the tangent to the function

with equation at the point

4. a. A and B
b. greater; the secant line through

these two points is steeper than the
tangent line at B.

c.

5. Speed is represented only by a number,
not a direction.

6. Yes, velocity needs to be described by
a number and a direction. Only the
speed of the school bus was given, not
the direction, so it is not correct to use
the word “velocity.”

7. a. m s,
m s,

m s
b. 55 m s
c. m s

8. a. i. 72 km h
ii. 64.8 km h
iii. 64.08 km h

b. 64 km h
c. 64 km h

9. a. 15 terms
b. 16 terms h

10. a. mg h

b. Amount of medicine in 1 mL of
blood being dissipated throughout
the system

11. s m

12. km

13. 2 s; 0 m s
14. a. $4800

b. $80 per ball
c.

15. a. 6
b.

c.

16. $1 162 250 years since 1982

17. a. 75 m
b.
c. 60 m s
d. 14 s

18. The coordinates of the point are 

The slope of the tangent is 

The equation of the tangent is 

, or

The intercepts are

and The tangent line

and the axes form a right triangle with

legs of length and 2a. The area of the

triangle is 

19.

Rate of change of cost is

,

which is independent of F (fixed
costs)

20. m2 m
21. Cube of dimensions x by x by x has

volume Surface area is 
surface area.

22. a. of time
b. of time

Mid-Chapter Review, pp. 32–33

1. a. 3 c. 61

b. 37 d. 5

2. a.

b.

c.

d. �213 � 2�3 2�
51�7 � 4 2

9

6 � 4�3

3

6�3 � �6

3

�100p cm3>unit
80p cm2>unit

V¿ 1x 2 � 3x2 �
1
2

6x2.V � x3.

>200p

�

� lim
xSh

 
V1x � h 2 � V1x 2

h
 h

lim
xSR

 
C1x � h 2 � C1x 2

h

C1x � h 2 � F � V1x � h 2C1x 2 � F � V1x 212a 2 � 2.1
2 Q2aR

2
a

1�2a, 0 2 .Q0, 2aRy � �
1
a2  x �

2
a.

�
1
a2  1x � a 2y �

1
a �

�
1
a2.

Qa, 1aR.
>

1

10

�1

x 6 80

>>°C�
12

5

>1

50

>�
1

3

>>
> >>>
>�20
> >eighth second � 75

>third second � 25
>first second � 5

y

x

y = f (x)

B

A

C

D E

14, 2 2 y � �x

16, s16 22
19, s19 2212, s12 22

1�5, 73 210, �2 28a � 5
y � �11x � 24

mqMq � �1.mp MP � �1
1 � Mqa � �

1
2�1 � MP

a �
1
2

 � �2a

 � lim
hS0

 
�2ah � h2

h

 m � lim
hS0

 

c 12 � 1a � h 22 d � c 12 � a2 d
h

y �
1
2 � x2:

�1 � mq.a � �
1
21 � mp

a �
1
2

 � 2a

 � lim
hS0

 
2ah � h2

h

 m � lim
hS0

 
1a � h 22 � a2

h

y � x:

Q Q�1
2, 14R.PQ12, 14R

x � �
1

2
x �

1

2

x2 �
1

4

x2 �
1

2
� x2

y �
1
2 � x2y � x2

a2, �
28

3
b

a1, �
26

3
b ,a�1, 

26

3
b ,a�2, 

23

3
b ,

�
5

4

P

�
7

8

P

1
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30 m s>



e.

f.

3. a.

b.

c.

d.

e.

f.

4. a.

b.

c.

d.

5.

6. a.

b.

c.

d.

e. The answers are equal.

7. a. c.

b. d.

8. a. i. 36 km h
ii. 30.6 km h
iii. 30.06 km h

b. velocity of car appears to approach
30 km h

c.
d. 30 km h

9. a.
b.

10. a.
b.

11. a.
b.
c.
d.

12. a.
b.

Section 1.4, pp. 37–39

1. a. b.

2. Evaluate the function for values of the
independent variable that get
progressively closer to the given value
of the independent variable.

3. a. A right-sided limit is the value that a
function gets close to as the values
of the independent variable decrease
and get close to a given value.

b. A left-sided limit is the value that a
function gets close to as the values
of the independent variable increase
and get close to a given value.

c. A (two-sided) limit is the value that a
function gets close to as the values of
the independent variable get close to
a given value, regardless of whether
the values increase or decrease
toward the given value.

4. a. d.
b. 10 e. 4
c. 100 f. 8

5. 1
6. a. 0 c.

b. 2 d. 2
7. a. 2

b. 1
c. does not exist

8. a. 8
b. 2
c. 2

9. 5

10. a. 0 d.

b. 0 e.

c. 5
f. does not exist; substitution causes

division by zero, and there is no
way to remove the factor from the
denominator.

11. a. does not exist c. 2
b. 2 d. does not exist

12. Answers may vary. For example:
a.

b.

c.

4

6

2

–4

–2
–4 –2–6–8 4 6 820

y

x

4

6

2

–4

–2
–4 –2–6–8 4 6 820

y

x

4

6

2

–4

–2
–4 –2–6–8 4 6 820

y

x

1

5

�
1

2

y

x
0

4

2 4

6

2

–2–4

�1

�8�5

p
27

99

3x � 4y � 5 � 0
�3x � 4y � 25 � 0
�2x � y � 2 � 0
4x � y � 8 � 0
8x � y � 15 � 0
�9x � y � 19 � 0
�1000 L>min
�2000 L>min
�12
�4

>16h � 30 2  km>h> >>>
1

6
�9

�
1

4
�3

�4

h � 4

�4

�2

x � 5y � 9 � 0

4x � y � 2 � 0

x � y � 5 � 0

2

3
 x � y � 6 � 0

112�3 � �7 2
�

11�3 � �7 2
�

13

3�212�3 � 5 2
�

9

51�7 � 4 2
3

�316 � �2 2
2

5�2

�
3�212�3 � 5 2

13

10�3 � 15

2
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P Q
Slope of
Line PQ1�1, 1 2 1�2, 6 2 �51�1, 1 2 1�1.5, 3.25 2 �4.51�1, 1 2 1�1.1, 1.41 2 �4.11�1, 1 2 1�1.01, 1.0401 2 �4.011�1, 1 2 1�1.001, 1.004 001 2 �4.001

P Q
Slope of
Line PQ1�1, 1 2 10, �2 2 �31�1, 1 2 1�0.5, �0.75 2 �3.51�1, 1 2 1�0.9, 0.61 2 �3.91�1, 1 2 1�0.99, 0.960 1 2 �3.991�1, 1 2 1�0.999, 0.996 0012 �3.999



d.

13. ; 
14.
15. a.

b. 6; 4
c. 2000
d. about years

Section 1.5, pp. 45–47

1. and have the

same value, but does not.

Since there are no brackets around
the expression, the limit only applies
to 3, and there is no value for the last
term, x.

2. Factor the numerator and denominator.
Cancel any common factors. Substitute
the given value of x.

3. If the two one-sided limits have the same
value, then the value of the limit is equal
to the value of the one-sided limits. If the
one-sided limits do not have the same
value, then the limit does not exist.

4. a. 1 d.
b. 1 e. 2

c. f.

5. a.
b.

6. Since substituting does not make
the denominator 0, direct substitution 

works. 

7. a. 4 d.

b. 5 e.

c. 27 f.

8. a. d.

b. e.

c. f.

9. a. 0 d.

b. 0 e.

c. f.

10. a. does not exist

b. does not exist

c. exists

d. exists

11. a.

is constant; therefore, T and V form a
linear relationship.

b.

c.

d.

e.

12.

� 7
� 21

3

� 
lim
xS5
1x2 � 4 2

lim
xS5

 f 1x 2
lim
xS5

 
x2 � 4

f 1x 2

4

6

8

10

12

2

2 6 8 10 12

T

V

40

� �273.145

lim
vS0

 T �
0 � 22.4334

0.082 13

T �
V � 22.4334

0.082 13

V � 0.082 13T � 22.4334

¢V

y

x
0 2

2

–2

4

–4

–2–4

y

x
0 1 2 3

4

2

–2

–4

–1–2–3

y

x
0 1 2 3

4

2

–2

–4

–1–2–3

y

x
0

1

4 8

2

–1

–2

–4–8

1

32
�1

2x

1

2

1

12

1

6

1

12
�27

1

2

1

12

�
1

�7

1

4

�
1

4

� �1

1 � 1 � 5
6 � 1 �

�5
5

t � 1
�2
�2

�3
100

9

5p3

lim
xS2

 3 � x

lim 
xS2
1x � 3 2lim 

xS2
13 � x 2

8.49

y

x

6

2

4

8

10

–2
–4 –2 8 1242 6 100

c � 0b � 2,a � 3,
b � 1m � �3

4

6

2

–4

–2
–4 –2–6–8 4 6 820

y

x
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T� T V V�

�40 19.1482

�20 20.7908

0 22.4334

20 24.0760

40 25.7186

60 27.3612

80 29.0038
20

20

20

20

20

20 1.6426

1.6426

1.6426

1.6426

1.6426

1.6426



13. a. 27 b. c. 1
14. a. 0 b. 0

15. a. 0 b.

16.
17. does not exist

Section 1.6, pp. 51–53

1. Anywhere that you can see breaks or
jumps is a place where the function is
not continuous.

2. On a given domain, you can trace the
graph of the function without lifting
your pencil.

3. point discontinuity

jump discontinuity

infinite discontinuity

4. a.  
b.
c.
d. and 
e. and 
f.

5. a. continuous for all real numbers
b. continuous for all real numbers
c. continuous for all real numbers,

except 0 and 5
d. continuous for all real numbers

greater than or equal to 
e. continuous for all real numbers
f. continuous for all real numbers

6. is a linear function (a polynomial),
and so is continuous everywhere,
including 

7.

Yes, the function is continuous
everywhere.

8.

The function is discontinuous at 
9.

Discontinuities at 0, 100, 200, and 500

10. no
11. Discontinuous at 
12.
13. a.

b. i.
ii. 1
iii. does not exist

c. f is not continuous since 
does not exist.

14. a. 2
b. 4
c.

Thus, But,

Hence, f is not continuous at 
and also not continuous on

.

15. (1) 
(2) (if then

; if then )
16.

17. a.

does not exist.

b.

is discontinuous at .x � 1g1x 2

y

x

0–2 2 4

4

2

–4

–2

–4

lim
xS1

 g1x 2
lim
xS1�

g1x 2 � �1

lim
xS1�

g1x 2 � 1    ¶ lim
xS1

g1x 2
b � 6a � �1,

A 6 �2B 6 1,A 7 �2
B 7 1,4B � A � 6

A � B � 3

�3 6 x 6 8

x � 2

f 13 2 � 2.lim
xS3

 f 1x 2 � 4.

lim
xS3�

 

f 1x 2 � 4 � lim
xS3�

 

f 1x 2
lim
xS0

 f 1x 2
�1

x

0–2 2 4

4

2

–4

–2

–4

y

k � 16
x � 2

y

x
0

4

400 600

2

200

x � 0.

y

x
0 2 4

4

2

–4

–2

–4 –2

y

x
0

6

2 4 6

2

4

–2

–4

–6

–2–4–6

x � 2.

g1x 2
�2

x � 3
x � 2x � �3

x � �3x � 3
x � 0
x � 0
x � 3

y

x

4

2

6

8

10

0

–4

–2
–1 21 3 4

vertical
asymptote

y

x

4

2

6

8

10

0
–2

–2 42 6

y

x

4

2

6

8

10

0
–2

–2 42 6

hole

y

x
0 2

4

2

–2

–4 –2

�2

1

2

�1
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x 1.9 1.99 1.999 2.001 2.01 2.1

x � 2

x2 � x � 2
0.344 83 0.334 45 0.333 44 0.333 22 0.332 23 0.322 58

x 2.1 2.01 2.001 2.0001

f (x) 0.248 46 0.249 84 0.249 98 0.25

Review Exercise, pp. 56–59

1. a. b. 7
c.

2. a. c.

b. d.

3. a. b.
4. a. m s,

m s
b. m s
c. m s

5. a. 0.0601 g
b. 6.01 g min
c. 6 g min

6. a. 700 000 t
b. t per year
c. t per year
d. 7.5 years

7. a. 10
b. 7; 0
c. and 

8. a. Answers may vary. For example:

b. Answers may vary. For example:

y

x
0 2 4

4

2

–4

–2

–4 –2

y

x

0–1 1 2

2

1

–2

–1

–2

t � 4t � 3

15 � 104
18 � 104

> >
>�60
>�40

>2nd second � �15
>1st second � �5

22

�
5

4

1

2

�
1

27

�1

3

2x � y � 5 � 0
�3

9. a.

b. and 
c. They do not exist.

10. not continuous at 
11. a. and 

b. ,

does not exist.

12. a. does not exist.

b.

c. does not exist.

13. a.

b.

14.

; This agrees well with the values 

in the table.
15. a.

1
2�3

1

2

1

3

lim
xS�3

 h1x 2lim
xS0

 g1x 2 � 0

lim
xS0

 f 1x 2lim
xS�2

 f 1x 2� 2

3
lim
xS1

 f 1x 2 x � �2x � 1
x � �4

x � 1x � �1

y

x
0 2 4

4

2

–4

–2

–4 –2

16. a. 10 b. c.

17. a. 4 c. e.

b. 10a d. f.

18. a. The function is not defined for
so there is no left-side limit.

b. Even after dividing out common
factors from numerator and
denominator, there is a factor of

in the denominator; the graph
has a vertical asymptote at 

c.

d. The function has a vertical
asymptote at 

e.

lim
xS0�

 

0x 0
x

� lim
xS0�

 

0x 0
x

lim
xS0�

 

0x 0
x

� 1

lim
xS0�

  

0x 0
x

� �1

xS 0� 0x 0 � �x

x � 2.

lim
xS1�

 

f 1x 2 � �5 � lim
xS1�

 

f 1x 2 � 2
x � 2.

x � 2

x 6 3,

�
1

4

1

3

�
1

8

1

�5

�
1

16

1

4

x 0.9 0.99 0.999 1.001 1.01 1.1

x � 1

x2 � 1
0.526 32 0.502 51 0.500 25 0.499 75 0.497 51 0.476 19

x �0.1 �0.01 �0.001 0.001 0.01 0.1

�x � 3 � �3

x
0.291 12 0.288 92 0.2887 0.288 65 0.288 43 0.286 31

b.

c. 0.25

lim
xS2

 f 1x 2 � 0.25

lim
xS2

 f 1x 2 � 0.25

f.

Therefore, does not exist.lim
xS�1 

f 1x 2   lim
xS�1�

  
f 1x 2 � lim

xS�1�
  
f 1x 2lim

xS�1�
  
f 1x 2 � 5

lim
xS�1�

  
f 1x 2 � �1



19. a. 
b.
c.
d.

20. a. 700 000
b. 109 000 h

Chapter 1 Test, p. 60

1.

2.
3. a. does not exist.

b.
c.
d. and 

4. a. 1 km h
b. 2 km h

5.

6.

7. a. 12 d.

b. e.

c. 4 f.

8. a.

Chapter 2

Review of Prerequisite Skills,
pp. 62–63

1. a. d.

b. e.

c. f.

2. a. b. c.

3. a. c.

b. 2 d. 1
4. a.

b.

c.

5. a.
b.
c.
d.
e.
f.

6. a. x � 0, �2
15

2
 x;

�13x3 � 12x2y � 4xy2
29x2 � 2xy � 10y2
�13x � 42y
12x2 � 36x � 21
x3 � 5x2 � 10x � 8
2x2 � 5xy � 3y2

4x � 3y � 7 � 0

3x � 2y � 4 � 0

x � 6y � 21 � 0

�
3

5
�

3

2

a
1
34x4x

7
6

�
b

2a6
2p

48e18�8a6

1

a2b7
a8

b � �
18

5
a � 1,

1

12

1

6

7

5

�
3

4

�31

�16 � h � �16

h

>>
x � 2x � 1

1
1

lim
xS1

  f 1x 2�13

lim
xS1�

 

1

x�1
� �q � lim

xS1�
 

1

x�1
� �q

>y � �216x � 486
y � 18x � 9
y � �5x � 5
y � 7
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b.

c.

d.

e.

f.

7. a.
b.
c.
d.
e.
f.

8. a.
b.

c.

d.

9. a. c.

b. 10 d. about 7.68

10. a.

b.

c.

d.

11. a. expression can be used to
determine the slope of the secant line
between and 

b. For 10.03
c. value represents the slope of the

secant line through and

Section 2.1, pp. 73–75

1. a.
b.
c.
d.
e.
f.

2. The derivative of a function represents
the slope of the tangent line at a give
value of the independent variable or the
instantaneous rate of change of the
function at a given value of the
independent variable.

5x�R 0 x 7 265x�R65x�R 0 x � 165x�R65x�R 0 x � 265x�R 0 x � �26
12.01, 8.1003 2 12, 8 2h � 0.01:

12 � h, f 12 � h 2212, 8 23h � 10;

�
11 � 4�6

5

�
30 � 17�2

23

4�3 � �6

3

3�2

2

53

8
�17

� bn�1 2� abn�2
� an�3b2 � a3bn�3� an�2b

an � bn � 1a � b 2 1an�1
� a3b3 � a2b4 � ab5 � b6 21a � b 2 1a6 � a5b � a4b2
� ab3 � b4 2 a2b21a4 � a3b �1a � b 21a � b 2 1a2 � ab � b2 21r � 1 2 1r � 1 2 1r � 2 2 1r � 2 21x � y 2 1x2 � xy � y2 21x2 � 1 2 1x � 1 2 1x � 1 21a � 1 2 13a � 7 21x � 4 2 1x � 8 212k � 3 2 12k � 3 2x � �3, 2

4x � 71x � 3 2 1x � 2 2 ;
x � 0, 1

11x2 � 8x � 7

2x1x � 1 2 ;

x � �y, �y
21x � y 22;

h � �k
8

9
;

y � �2, 0, 5
y � 5

4y21y � 2 2 ; 3. Answers may vary. For example:

4. a.
b.

c.

d.

e.
f.

5. a. 2 c.

b. 9 d.
6. a. c.

b. d.
7. a.

b. c.

8.

9. a. y

x
0 2 4

2

4

–2

–4

–2–4

y

x
0

3

1 2 3

 4

1

2

–1

–2

–1–2 4

f ¿ 10 2 � �4; f ¿ 11 2 � 0; f ¿ 12 2 � 4

6x�
21x � 1 22�7

3

2�3x � 2
4x � 4

18x2 � 7�5
�5

1

2

�2h � h2 � 2ah
4 � 2a � 2h � a2 � 2ah � h2;

�7h�7a � 7h � 4;
2ah � h2 � h
a2 � 2ah � h2 � a � h � 6;
3a2h � 3ah2 � h3 � 4h
� 4h � 1;

� h3 � 4aa3 � 3a2h � 3ah2
2ah � h2 � 3h
a2 � 2ah � h2 � 3a � 3h � 1;

5h5a � 5h � 2;

x

y
4

2

0
–2

–4

1 2 3–1–2–3

x

y
4

2

0
–2

–4

1 2 3–1–2–3



19. a. 
b.
c.
d.

20. a. 700 000
b. 109 000 h

Chapter 1 Test, p. 60

1.

2.
3. a. does not exist.

b.
c.
d. and 

4. a. 1 km h
b. 2 km h

5.

6.

7. a. 12 d.

b. e.

c. 4 f.

8. a.

Chapter 2

Review of Prerequisite Skills,
pp. 62–63

1. a. d.

b. e.

c. f.

2. a. b. c.

3. a. c.

b. 2 d. 1
4. a.

b.

c.

5. a.
b.
c.
d.
e.
f.

6. a. x � 0, �2
15

2
 x;

�13x3 � 12x2y � 4xy2
29x2 � 2xy � 10y2
�13x � 42y
12x2 � 36x � 21
x3 � 5x2 � 10x � 8
2x2 � 5xy � 3y2

4x � 3y � 7 � 0

3x � 2y � 4 � 0

x � 6y � 21 � 0

�
3

5
�

3

2

a
1
34x4x

7
6

�
b

2a6
2p

48e18�8a6

1

a2b7
a8

b � �
18

5
a � 1,

1

12

1

6

7

5

�
3

4

�31

�16 � h � �16

h

>>
x � 2x � 1

1
1

lim
xS1

  f 1x 2�13

lim
xS1�

 

1

x�1
� �q � lim

xS1�
 

1

x�1
� �q

>y � �216x � 486
y � 18x � 9
y � �5x � 5
y � 7
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b.

c.

d.

e.

f.

7. a.
b.
c.
d.
e.
f.

8. a.
b.

c.

d.

9. a. c.

b. 10 d. about 7.68

10. a.

b.

c.

d.

11. a. expression can be used to
determine the slope of the secant line
between and 

b. For 10.03
c. value represents the slope of the

secant line through and

Section 2.1, pp. 73–75

1. a.
b.
c.
d.
e.
f.

2. The derivative of a function represents
the slope of the tangent line at a give
value of the independent variable or the
instantaneous rate of change of the
function at a given value of the
independent variable.

5x�R 0 x 7 265x�R65x�R 0 x � 165x�R65x�R 0 x � 265x�R 0 x � �26
12.01, 8.1003 2 12, 8 2h � 0.01:

12 � h, f 12 � h 2212, 8 23h � 10;

�
11 � 4�6

5

�
30 � 17�2

23

4�3 � �6

3

3�2

2

53

8
�17

� bn�1 2� abn�2
� an�3b2 � a3bn�3� an�2b

an � bn � 1a � b 2 1an�1
� a3b3 � a2b4 � ab5 � b6 21a � b 2 1a6 � a5b � a4b2
� ab3 � b4 2 a2b21a4 � a3b �1a � b 21a � b 2 1a2 � ab � b2 21r � 1 2 1r � 1 2 1r � 2 2 1r � 2 21x � y 2 1x2 � xy � y2 21x2 � 1 2 1x � 1 2 1x � 1 21a � 1 2 13a � 7 21x � 4 2 1x � 8 212k � 3 2 12k � 3 2x � �3, 2

4x � 71x � 3 2 1x � 2 2 ;
x � 0, 1

11x2 � 8x � 7

2x1x � 1 2 ;

x � �y, �y
21x � y 22;

h � �k
8

9
;

y � �2, 0, 5
y � 5

4y21y � 2 2 ; 3. Answers may vary. For example:

4. a.
b.

c.

d.

e.
f.

5. a. 2 c.

b. 9 d.
6. a. c.

b. d.
7. a.

b. c.

8.

9. a. y

x
0 2 4

2

4

–2

–4

–2–4

y

x
0

3

1 2 3

 4

1

2

–1

–2

–1–2 4

f ¿ 10 2 � �4; f ¿ 11 2 � 0; f ¿ 12 2 � 4

6x�
21x � 1 22�7

3

2�3x � 2
4x � 4

18x2 � 7�5
�5

1

2

�2h � h2 � 2ah
4 � 2a � 2h � a2 � 2ah � h2;

�7h�7a � 7h � 4;
2ah � h2 � h
a2 � 2ah � h2 � a � h � 6;
3a2h � 3ah2 � h3 � 4h
� 4h � 1;

� h3 � 4aa3 � 3a2h � 3ah2
2ah � h2 � 3h
a2 � 2ah � h2 � 3a � 3h � 1;

5h5a � 5h � 2;

x

y
4

2

0
–2

–4

1 2 3–1–2–3

x

y
4

2

0
–2

–4

1 2 3–1–2–3



b.

c.

d. graph of is cubic; graph of
seems to be a parabola

10. m s; m s;
m s

11.
12. a. 0 c. m

b. 1 d.
13. Since is nonnegative for all x, the

original function never has a negative
slope.

14. a.
b. measures the rate of change in

the height of the ball with respect to
time when 

15. a. e. b. f. c. d.

16.

Since the limits are equal for both
sides, the derivative exists and

17. 3

18. Answers may vary. For example:

19. (3, )
20. and 

Section 2.2, pp. 82–84

1. Answers may vary. For example:
constant function rule:

power rule:

constant multiple rule:

sum rule:

difference rule:

2. a. 4 d.

b. e.

c. f.
3. a. d.

b. e.

c. f.
4. a.

b.

c.

d.

e.

f.

5. a. b. c.

6. a. 47.75 b.

7. a. 12 c.

b. 5 d. 12
8. a. 9 c. 4

b. d.

9. a.
b.
c.
d.
e.
f.

10. A normal to the graph of a function 
at a point is a line that is perpendicular
to the tangent at the given point;

11. 8
12. no

13.

The slope of the tangent at is 4

and at 

Since the product of the slopes is ,

the tangents at and 

will be perpendicular.

14.

15. (2, 10) and 

16. slope is 6

or 
non-real

Tangents with slope 6 are at the points 

and 

17. a.
b.

18. 7
19. a. 49.9 km

b. 0.12 km m>
4x � y � 1 � 020x � y � 47 � 0;

16x � y � 29 � 0y � 3 � 0;

Q�2, 68
5 R.Q2, �68

5 R
x � ;2

x2 � �4x2 � 4
x4 � 16

dy

dx
� x4 � 10 � 6

y �
1

5
x5 � 10x,

1�2, �6 2

y

x
0

3

1 2 3

 4

5

6

1

2

–1

–2

–1–2 4

1�1, 0 2
x

y

2

3

4

1

0
–1

1 2 3–1–2–3

B Q�1
8, 1

64RA12, 4 2 �1

B Q�1
8, 1

64R is �1
4.

A12, 4 2y � x2, 
dy

dx
� 2x

x � 18y � 125 � 0

5x � 6y � 11 � 0
7x � 2y � 28 � 0
x � y � 3 � 0
9x � 2y � 9 � 0
18x � y � 25 � 0
6x � y � 4 � 0

�7
1

2

�
1

2

11

24

2t � 65 � t2�4t � 7

�x�2 �
1

2
x� 

3
2

1

2
1x� 

1
2 2 � 9x

1
2

�18x�3 �
3

2
 x� 

1
2

�18

x4
�

4

x3

�2x� 
3
2 � 6x�2

5x
2
3

2t3 �
3

2
4t3 � 6t2

40x76x2 � 10x � 4
x4 � x2 � x4x � 11
�3x�4�2x � 5

x3

4
3x2 � 2x

1

3�3 x2

� 3x2 � 2x � 3

d
dx 1x3 � x2 � 3x 2d

dx 1x2 � x 2 � 2x � 1

d
dx 14x3 2 � 12x2

d
dx 1x3 2 � 3x2

d
dx 15 2 � 0

6x � y � 9 � 02x � y � 1 � 0
�8

0

y

x

3 4 5

4

2

–2

6

1 2–1

f ¿ 10 2 � 0.

� 0

� lim
hS0�

 1h 2� lim
hS0�

 
h2

h

� lim
hS0�

 
10 � h 22 � 102 2

h

lim
hS0�

 
f 10 � h 2 � f 10 2

h

� 0

� lim
hS0�

 1�h 2� lim
hS0�

 
�h2

h

� lim
hS0�

 
�10 � h 22 � 1�02 2

h

lim
hS0�

 
f 10 � h 2 � f 10 2

h

t � 2.

h¿ 12 2� 1.6 m>s
3x2

2ax � b

x � 6y � 10 � 0
>s¿ 16 2 � �4

>s¿ 14 2 � 0>s¿ 10 2 � 8
f ¿ 1x 2 f 1x 2

y

x
0

6

2 4 6

 8

10

12

2

4

–2
–2–4–6

f ¿ 12 2 � 12f ¿ 11 2 � 3;f ¿ 10 2 � 0;
f ¿ 1�1 2 � 3;f ¿ 1�2 2 � 12;
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20. a. 34.3 m s
b. 39.2 m s
c. 54.2 m s

21. 0.29 min and 1.71 min
22. m s
23. and 

24.

25. a. i.

ii.

iii. and 

b. At these points, the slopes of the
tangents are zero, meaning that the
rate of change of the value of the
function with respect to the domain
is zero. These points are also local
maximum and minimum points.

26.
is on the curve; therefore,

At Slope is

But,

Therefore, slope is 

27. The x-intercept is as 

and the x-intercept approaches 1.

As the slope of the tangent at
(1, 1) increase without bound, and the
tangent approaches a vertical line
having equation 

28. a.

does not exist.

b.

and do not exist.

c.

, and do not exist.

Section 2.3, pp. 90–91

1. a.
b.
c.
d.
e.

f.

2. a.
b.

c.

d.

3. It is not appropriate or necessary to 
use the product rule when one of the
factors is a constant or when it would
be easier to first determine the product
of the factors and then use other rules
to determine the derivative. For 
example, it would not be best to use
the product rule for 
or 

4.

5. a. 9 d.
b. e. 22
c. f. 671

6.
7. a.

b.
8. a.

b.

9. L h
10. Determine the point of tangency,

and then find the negative reciprocal 
of the slope of the tangent. Use this
information to find the equation of the
normal.

�30;
>�4.84

� 3413 � x3 231�3x2 2 4� x213x2 � 4 22� x2 3213x2 � 4 2 16x 2 4 13 � x3 242x13x2 � 4 22 13 � x3 24� 1x � 1 23 1x � 4 2 321x � 3 2 4� 1x � 1 23 11 2 1x � 3 2231x � 1 22 1x � 4 2 1x � 3 221�1, 0 2114, �450 210x � y � 8 � 0
�9
�4

�36
� 3b¿ 1x 2 4 3c1x 2 4F ¿ 1x 2 � 3b1x 2 4 3c¿ 1x 2 4g1x 2 � 1x � 1 2 1x � 1 2 .f 1x 2 � 31x2 � 1 2

� 8x1x2 � 9 23 12x � 1 2361x2 � 9 24 12x � 1 22� 611 � x2 24 12x � 6 22�8x11 � x2 23 12x � 6 23� 6x13 � x3 2515x2 13x2 � 4 2 13 � x3 2415x � 1 23 � 1515x � 1 22 1x � 4 2
61x � 3 22

�8t3 � 2t
45x8 � 80x7 � 2x � 2
12x � 17
6x2 � 2x
2x � 4

y

1

2

3

–1

x

–2–3 1 2 3–1 0

f ¿ 11 2f ¿ 1�1 2f ¿ 10 2 ,
f ¿ 1x 2 � µ 1, if x 7 1

�1, if 0 6 x 6 1

1, if �1 6 x 6 0

�1, if x 6 �1

y

x

5

1

–1

2

3

4

6

7

0–2–3 –1 21 3

f ¿Q��2Rf ¿Q�2R
f ¿ 1x 2 � e 6x, if x 6 ��2 or x 7�2

�6x, if ��2 � x � �2

y

x

6

1

2

3

4

5

7

8

9

0–2 –1 21 3 4

f ¿ 13 2f ¿ 1x 2 � e2x, if x 6 3

1, if x � 3

x � 1 � 0.

nSq,

1
nS 0,

nSq,1 �
1
n,

�
�b
�a

� ��b
a
.

��b � �a � 1
�a � �b � 1

�
1

�a
� 1 �

�1 � �a

�a
.

x � a.

 
dy

dx
� �

1

2
Q2x�

1
2 � 1R y � 1 � 2�x � x

 �y � 1 � �x
b � 0.a � 0,

P1a, b 2�x � �y � 1

15, �47 2a 1

3
, 

103

27
b

a�
1

4
, � 

13

4
b

a 1

5
, 

1

5
b

y

x

2

1

3

0

–2

–1

–3

–1 21 3 4

B10, 0 2

y

x

2

1

3

0

–2

–1

–3

–2 –1–3 21 3

(0, 3)

1�1, �3 211, �3 2>�20

>>>
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11. a.

b.

12.
13.

a. or 
b.

c. , ,

14.

Slope of this line is 4.

Point is at 
Find intersection of line and curve:

Substitute,

or

Let 
RS 

Since satisfies the equation,
therefore it is a solution.
When 
Intersection point is Therefore,
the line is tangent to the curve.

Mid-Chapter Review, pp. 92–93

1. a.

b. , ,
, , ,

c.

d. is quadratic; is linear.
2. a. 6

b. 4x

c.

d.

3. a.
b.

4. a. d.

b. e.

c. f.

5.

6. a.
b.

c.

d.

e.

f.

7. a.

b.

c.
8. a.

b.
c.
d.

9.
10.
11.

12. a.

b. L min

c. L min

13. a.

b.
14. This statement is always true. A cubic

polynomial function will have the form

So, the derivative of this cubic is
and since

this derivative is a quadratic
polynomial function. For example, if

we get
and if

we get

15.

Simplifying,

Then,

16. a.
b. is the slope of the tangent line

to at and the rate of
change in the value of with
respect to at x � 3.x

f 1x 2x � 3f 1x 2f ¿ 13 2�188
y¿ 1a � 4b 2a�4b�1

y � x2a�3b� 1a�b2 � xa�4b�1

b�Ia,y �
x2a�3b

xa�b
,

f ¿ 1x 2 � 6x2 � 6x � 6.
f 1x 2 � 2x3 � 3x2 � 6x � 2,
f ¿ 1x 2 � 3x2 � 2x,
f ¿ 1x 2 � x3 � x2 � 1,

3a � 0,
f ¿ 1x 2 � 3ax2 � 2bx � c

a � 0.f 1x 2 � ax3 � bx2 � cx � d,

256 p cm3>cm

1900

3
p cm3>cm

>�
200

27

>�
200

27

500

9
 L

10x � 8
13, 8 276x � y � 28 � 0

�162x2 � 216x5 � 72x8
24x3 � 24x2 � 78x � 36
�36t2 � 50t � 39
48x3 � 81x2 � 40x � 45
y � �128x � 297

y � �
1

3
x

y � 7

4

x2
� 5

�
14

x3
�

3

2x
1
2

1

2x
1
2

�
1

3x
2
3

�
10

x3
�

9

x4

�6x2 � 8x � 5
8x � 7

y � x �
3

8

1

x2
�

6

x4

242t � 22
5

�x

5 �
6

x3
24x3

y

2

4

6

–2

–4

–6

x

2 4 6–2–4 0

y � �2x � 2

1

2�x � 2

�51x � 5 22
f ¿ 1x 2f 1x 2

y

2

4

6

–2

–4

–6

x

2 4 6–2 0

f ¿ 15 2 � 5
f ¿ 14 2 � 3f ¿ 13 2 � 1f ¿ 12 2 � �1

f ¿ 11 2 � �3f ¿ 10 2 � �5

y

2

4

6

–2

–4

–6

x

2 4 6–2 0

1�2, 3 2 .y � 41�2 2 � 11 � 3.x � �2,

x � �2
� 0
� 41�2 2 � 121�2 22 � 16

x � �2
4x3 � 12x2 � 16 � 0
4x3 � 11x2 � 16 � x2

4x � 11 �
16

x2
� 1

y � 4x � 11

1�2, 3 2 . y � 3
 x � �2

 �
32

x3
� 4

dy

dx
� �

32

x3

y �
16

x2
� 1

f ¿ 13 2 � 6f ¿ 10 2 � 0f ¿ 1�2 2 � �4

y

2

4

6

–2

–4

–6

x

–2–3 1 2 3–1 0

f ¿ 1x 2 � �2x, �1 6 x 6 1
x � �1x � 1

y

1

2

3

–1

x

–2–3 1 2 3–1 0

y � 3x2 � 6x � 5

n1n � 1 2
2

gn�11x 2gn¿ 1x 2� p � g11x 2g21x 2g31x 2 p� g11x 2g21x 2g3¿ 1x 2 p gn�11x 2gn1x 2� g11x 2g2¿ 1x 2g31x 2 p gn�11x 2gn1x 2gn�11x 2gn1x 2f ¿ 1x 2 � g1¿ 1x 2g21x 2g31x 2 p
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17. a. 100 bacteria
b. 1200 bacteria
c. 370 bacteria h

18. The values of the 
derivative are the rates of change of the
percent with respect to time at 5, 50,
and 100 min. The percent of carbon
dioxide that is released per unit of time
from the soft drink is decreasing. The
soft drink is getting flat.

Section 2.4, pp. 97–98

1. For x, a, b real numbers,

For example,

Also,

For example,

Also,

For example,

2.

3. In the previous problem, all of these
rational examples could be differentiated
via the power rule after a minor algebraic
simplification. A second approach would
be to rewrite a rational example

using the exponent rules as
and then apply

the product rule for differentiation
(together with the power of a 

function rule) to find A third (an
perhaps easiest) approach would be to
just apply the quotient rule to find

4. a.

b.

c.

d.

e.

f.

5. a. c.

b. d.

6.

7. and 

8. Since is positive or zero for

all for 

Therefore, tangents to the graph of

do not have a negative

slope.
9. a. (0, 0) and (8, 32)

b. no horizontal tangents
10. 75.4 bacteria per hour at and

63.1 bacteria per hour at 
11.
12. a. 20 m

b. m s

13. a.   i. 1 cm
ii. 1 s
iii. 0.25 cm s

b. No, the radius will never reach 
2 cm because is a horizontal
asymptote of the graph of the
function. Therefore, the radius
approaches but never equals 2 cm.

14.
15. 1.87 h
16. 2.83 s
17.

Section 2.5, pp. 105–106

1. a. 0 d.
b. 0 e.
c. f.

2. a. ,
,

not equal

b. ,

,

not equal

c. ,

,

not equal
3. If and are two differentiable

functions of x, and

is the composition of these two functions,
then 
This is known as the “chain rule” for
differentiation of composite functions.
For example, if and

then
and so

As another example, if and 

then 

and so .

4. a.
b.
c.
d.

e.

f.

5. a.

b.

c.

d.

e.

f.

6.

7. �
2

x2
a 1

x
� 3 bh 1�1 2 � �4; h¿ 1�1 2 � 35

�
8x � 41x2 � x � 1 251x2 � x � 1 2�4;

�
10x � 115x2 � x 2215x2 � x 2�1;

6x19 � x2 22319 � x2 2�1;

�2x1x2 � 4 221x2 � 4 2�1;

�11x � 1 221x � 1 2�1;

6

x4
�2x�3;

�10x1x2 � 16 26
x

�x2 � 3

�6x1p2 � x2 22412x2 � 3x � 5 23 14x � 3 26x1x2 � 4 22812x � 3 22h¿ 1x 2 �
2

3
1x2 � 1 2�1

3 12x 2h1x 2 � 1x2 � 1 2 23,g1x 2 � x2 � 1,

f 1x 2 � x
2
3

� 101x2 � 3x � 5 2912x � 3 2h¿ 1x 2 � f ¿ 1g1x 2 2 � g¿ 1x 2h1x 2 � 1x2 � 3x � 5 210,
g1x 2 � x2 � 3x � 5,

f 1x 2 � x10

h¿ 1x 2 � f ¿ 1g1x 2 2 � g¿ 1x 2 .� f 1g1x 2 2h1x 2 � 1 f � g 2 1x 2g1x 2f 1x 2
e x � �

1

2
 f, x 7 0 f ;5x 7 �26,

1g � f 2 � � 1

x
� 2

1 f � g 2 �
1

�x � 2

5x�R6;5x � 06,1g � f 2 � a 1

x2
b � 1

1 f � g 2 �
11x2 � 1 2

5x�R6;5x � 06,1g � f 2 � 0x 01 f � g 2 � x

x � 1�1
�x2 � 1
�15

ad � bc 7 0

b � 0a � 1,

y � 2

>
>10

9

5x � 12y � 4 � 0
t � 2
t � 1

f 1x 2 �
5x � 2
x � 2

x � �2.81x � 2 2 2 7 0x�R,

1x � 2 22a�1, 
3

5
ba9, 

27

5
b�9

�
7

3

7

25

200

841

13

4

x2 � 4x � 31x2 � 3 22
5x2 � 6x � 511 � x2 22

�2x1x2 � 3 22
2x4 � 3x212x2 � 1 22

131t � 5 22
11x � 1 22

h¿ 1x 2 .
h¿ 1x 2 .

h1x 2 � f 1x 2 1g1x 2 2�1,

h1x 2 �
f 1x 2
g1x 2

x5

x3
� x2

x � 0
xa

xb
� xa�b,

1x2 23 � x6

1xa 2b � xab

x9x�6 � x3

xaxb � xa�b

C¿ 1t 2 � �
100
t2 ;

>
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Function Rewrite

Differentiate 
and Simplify,
if Necessary

x � 0

f1x 2 �
x2 � 3x

x
, f1x 2 � x � 3 f ¿ 1x 2 � 1

x � 0

g1x 2 �
3x

5
3

x
,

g1x 2 � 3x
2
3 g¿ 1x 2 � 2x�1

3

x � 0

h1x 2 �
1

10x5
,

h1x 2 �
1

10
x�5 h¿ 1x 2 �

�1
2

x�6

x � 0

y �
8x3 � 6x

2x
,

y � 4x2 � 3
dy

dx
� 8x

t � 3

s �
t2 � 9
t � 3

,
s � t � 3

ds
dt

� 1



8. a.
b.

c.

d.
e.

f.

9. a. b.

10. or 

11.

12.
13. a. 52 b. 54 c. 878 d. 78
14.
15. 2222 L min
16. 2.75 m s
17. a.

b.

18.

At the point (1, 3), slope of the tangent 
will be 
Equation of the tangent at (1, 3) is 

or 
Since and 1 are both triple roots,
the line with equation is also a
tangent at 

19.

Review Exercise, pp. 110–113

1. To find the derivative the limit

must be

computed, provided it exists. If this
limit does not exist, then the derivative
of does not exist at this particular
value of As an alternative to this
limit, we could also find from the
definition by computing the equivalent

limit These

two limits are seen to be equivalent by
substituting 

2. a. c.

b.

3. a.

b.

c.

d.

e.

f.

4. a.

b.

c.

d.

e.

f. 1
5. a.

b.

c.

d.

e.

f.

6. a.
b.

7. a. b. c.

8.

9. ;

10. a. i. ,

ii. 

b. i.

ii. 

x � ; 
�3

3
x � ;1,x � 0,

x � ;2x � 0
x � �1x � 5,

x � 2 ; 2�2

�
2

3

�
8

5

25

289
�

184

9

2xf ¿ 1x 2 � 2f 1x 2f 1x2 2 � 2x

�
311 � x2 221x2 � 6x � 1 2

813 � x 24
� 16x � 27 2� 111x2

1x � 2 22  1x2 � 9 23 

318 110x � 1 2513x � 5 27
12x � 5 23 12x � 23 21x � 1 24

x2

�x2 � 1
� �x2 � 1

20x3 12x � 5 25 1x � 1 2
�

1

3�x 1�x � 2 2 53
3x � 1

2�x � 1

�
513x � 5 22

�x

2
 17x2 � 3 2

2 �
2

x3

7x � 2

�7x2 � 4x � 1

12x13 � x2 23
�

2x1x2 � 5 22
�

28

3x5

3

4x
1
4

2x � 5

1

2�x � 6

414 � x 224x � 5

z � x � h.

f ¿ 1x 2 � lim
zSx  

 
f 1z 2 � f 1x 2

z � x .

f ¿ 1x 2x.
f 1x 2

f ¿ 1x 2 � lim
hS0

  
f 1x � h 2 � f 1x 2

h

f ¿ 1x 2 ,
�

2x1x2 � 3x � 1 2 11 � x 2211 � x 24
1�2, 3 2 . y � 3

�2
x � 1x � �2

1x � 2 23 1x � 1 23 � 0
1x2 � x � 2 23 � 3 � 3
y � 3

12 � 1 2 � 0.311 � 1 � 2 22
dy

dx
� 31x2 � x � 2 22 12x � 1 2�344
� p1x 2q1x 2r¿ 1x 2� p1x 2q¿ 1x 2r 1x 2p¿ 1x 2q1x 2r 1x 2>>�6

60x � y � 119 � 0

1

4

x � 1x � 0

�
5�3 2 

24p

91

36

48x1x2 � 3 231x2 � 3 25
4x311 � 4x2 22 11 � 10x2 215x2 13x � 5 2 1x � 1 2
�2x2 � 6x � 21x2 � 1 22
12x3 � 3x � 3 26x1x2 � 3 22 1x3 � 3 21x � 4 22 1x � 3 25 19x � 15 2
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11. a.
b.

12.
13.
14. a.

b.

c. (0, 0),

d.
15. a.

b. 1
16. a. When 9; when 19

b. At the number of words
memorized is increasing by 
1.7 words min. At the
number of words memorized is
increasing by 2.325 words min.

17. a.

b. No; since the derivative is
always positive, meaning that the
rate of change in the cashier’s
productivity is always increasing.
However, these increases must be
small, since, according to the
model, the cashier’s productivity
can never exceed 20.

18. a.
b. 6 gloves week

19. a.

b. $546.67

20.

21. a.
b.
c. blood sugar level with no

insulin 
blood sugar level with 

30 mg of insulin
rate of change in blood

sugar level with no insulin
rate of change in blood

sugar level with 30 mg of insulin
d.

means that the
patient’s blood sugar level is
decreasing at 20 units mg of insulin

1 h after 50 mg of insulin is
injected.

means that the patient’s
blood sugar level is zero 1 h after
50 mg of insulin is injected. These
values are not logical because a
person’s blood sugar level can never
reach zero and continue to decrease.

22. a. is not differentiable at 
because it is not defined there 
vertical asymptote at 

b. is not differentiable at 
because it is not defined there (hole
at ).

c. The graph has a cusp at (2, 0) but is
differentiable at 

d. The graph has a corner at so
is not differentiable at 

23. a. is not defined at and
The graph has vertical

asymptotes at and 
Therefore, is not differentiable
at and 

b. is not defined at and
At the graph has

a vertical asymptote and at it
has a hole. Therefore, is not
differentiable at and 

c. is not defined for 
Therefore, is not differentiable
for 

24.

25. Answers may vary. For example:

Rule: If and 

then

26. a.
b.

27. a.

b.
28. a.

b.

c.

d.

e.

f.

g.

h.
29.
30. a.

b. ants h
c. 75 000 ants
d. 9.27 h

Chapter 2 Test, p. 114

1. You need to use the chain rule when
the derivative for a given function
cannot be found using the sum,
difference, product, or quotient rules or
when writing the function in a form
that would allow the use of these rules
is tedious. The chain rule is used when
a given function is a composition of
two or more functions.

2. is the blue graph (it’s cubic). is the
red graph (it is quadratic). The
derivative of a polynomial function has
degree one less than the derivative of
the function. Since the red graph is a
quadratic (degree 2) and the blue graph
is cubic (degree 3), the blue graph is 

and the red graph is f ¿.f

f ¿f

>�7000
�3t2 � 5

c � 0b � 32,a � �4,
�914x � x2 2�10  14 � 2x 28 a 2x � 5

6 � x2
b 3 a 1x � 2 2 1x � 3 216 � x2 22 b

�3x3 17x � 16 214x � 8 2 32
212x2 � 5 22 14x2 � 48x � 5 21x � 8 23
61�9x � 7 213x � 5 25
� 14 � 315x2 � 70x3 2215 � x 2 14 � 7x3 25152x2 � 16x � 9 28x2 14x2 � 2x � 3 24� 113x2 � 25x � 4 2612x � 5 22 13x2 � 4 2412x � 3 2� 

1
2 � 10

y � �u � 5u

211 � 512x � 3 2�2 2y � u � 5u�1

 �
�a1ax � b 22

 � lim
hS0

 c �a3a1x � h 2 � b 4 1ax � b 2 d
 � lim

hS0
 
1

h
c �ah3a1x � h 2 � b 4 1ax � b 2 d

 � lim
hS0

 
1

h
c ax � b � 3a1x � h 2 � b 43a1x � h 2 � b 4 1ax � h 2 d

 y¿ � lim
hS0

 
1

h
c 1

a1x � h 2 � b
�

1

ax � b
d

 y¿ �
�a1ax � b 22

y �
1

f 1x 2 ,f 1x 2 � ax � b

 � �
515x � 10 22

 y¿ �
15x � 10 2 10 2 � 11 2 15 215x � 10 22

 y �
1

5x � 10

 f 1x 2 � 5x � 10

 � �
212x � 3 22

 y¿ �
12x � 3 2 10 2 � 11 2 12 212x � 3 22

 y �
1

2x � 3

 f 1x 2 � 2x � 3

251t � 1 22
1 6 x 6 6.

f 1x 2 1 6 x 6 6.f 1x 2 x � �3.x � 3
f 1x 2 x � 3

x � �3,x � �3.
x � 3f 1x 2 x � 0.25.x � 0

f 1x 2 x � 0.25.x � 0
x � 0.25.

x � 0f 1x 2 x � 1.m1x 2 x � 1,
x � 1.

x � 1

x � 1g1x 2 x � 1 2 .1 x � 1f 1x 2

B150 2 � 0

>B¿ 150 2 � �20
B150 2 � 0B¿ 150 2 � �20,

B¿ 130 2 �

B¿ 10 2 �

B130 2 �

B10 2 �

B¿ 130 2 � �12B¿ 10 2 � 0,
B10 2 � 500, B130 2 � 320

�
5

4

750 �
x

3
� 2x2

>x2 � 40

t 7 0,

30t19 � t2 2 12
>t � 15,>t � 10,

t � 15,t � 10,

�3 50
�14

a�3�2, �
9�2

2
b

a3�2, 
9�2

2
b ,

y � 0, y � 6.36, y � �6.36

b � �812, 8 2 ;5x � y � 7 � 0
60x � y � 61 � 0

160x � y � 16 � 0
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3.

4. a.

b.

c.

d.

e.

f.

5. 14

6.

7.

8.

9.

10. (1, 0)

11.

Chapter 3

Review of Prerequisite Skills,
pp. 116–117

1. a.

b.

c.

d.

e.

f.

2. a.

b.
c. or 

d. or 

e. or 
f. or or 
g. or 

h. or or 

i. or 

3. a.
b. or 
c.

4. a. 25 cm2 c.
b. 48 cm2 d.

5. a.

b.

c.

d.

6. a.

b.

c.

d.

7. a. d.
b. e.
c. f.

8. a.
b.
c.
d.
e.
f.

9. a.

The function has a minimum value
of and no maximum value.

b.

The function has a maximum value
of 25 and no minimum value.

c.

The function has a minimum value
of 7 and no maximum value.

�5

5x�R � 2 � x 6 2065x�R � �1 6 x 6 365x�R � �10 � x � 1265x�R65x�R � x � �165x�R � x 7 56 1�4, 4 21�q, 0 2 1�2, 8 41�q, �2 4 3�5, q 213, q 2V � 8k3 cm3
SA � 24k2 cm2,
V � 24�3 cm3
SA � 72 cm2,
V � 5�5 cm3
SA �  30 cm2,
V � 27 cm3
SA � 54 cm2,
V � 175p cm3
h � 7 cm,
SA � 144p cm2
r � 6 cm,
SA � 80p cm2
h � 6 cm,
V � 48p cm3
SA � 56p cm2,

36p cm2
49p cm2

0 6 x 6 4
x 7 3x 6 0

x 7 3

t � ;1t � ;
9

4

t � �
1

2
t �

1

2
t � �3

x � 4x � 0
x � 1x � �3x � 0

t � 6t � 3

t � 3t � �
1

2

t � 1t � 3
x � �13

x �
14

5

y

x
0

12

2 4 6

4

8

–4

–8

–12

–2–4–6

y

x
0

12

2 4 6

4

8

–4

–8

–12

–2–4–6

y

x
0

6

2 4 6

2

4

–2

–4

–6

–2–4–6

y

x
0

6

2 4 6

2

4

–2

–4

–6

–2–4–6

y

x
0

6

2 4 6

2

4

–2

–4

–6

–2–4–6

y

x
0

3

1 2 3

1

2

–1

–2

–1–2–3

a � 1, b � �1

a�
1

3
, 

32

27
b ,

a�
1

4
, 

1

256
b

75

32

60x � y � 61 � 0

�
40

3

4x5 � 18x � 8

x5

2x16x2 � 7 2� 
2
3  18x2 � 7 2

51x2 � 6 24 13x2 � 8x � 18 213x � 4 26
�x� 

3
2 �

1

�3
� 2x� 

2
3

6012x � 9 24x2 � 15x�6

1 � 2x
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3.

4. a.

b.

c.

d.

e.

f.

5. 14

6.

7.

8.

9.

10. (1, 0)

11.

Chapter 3

Review of Prerequisite Skills,
pp. 116–117

1. a.

b.

c.

d.

e.

f.

2. a.

b.
c. or 

d. or 

e. or 
f. or or 
g. or 

h. or or 

i. or 

3. a.
b. or 
c.

4. a. 25 cm2 c.
b. 48 cm2 d.

5. a.

b.

c.

d.

6. a.

b.

c.

d.

7. a. d.
b. e.
c. f.

8. a.
b.
c.
d.
e.
f.

9. a.

The function has a minimum value
of and no maximum value.

b.

The function has a maximum value
of 25 and no minimum value.

c.

The function has a minimum value
of 7 and no maximum value.

�5

5x�R � 2 � x 6 2065x�R � �1 6 x 6 365x�R � �10 � x � 1265x�R65x�R � x � �165x�R � x 7 56 1�4, 4 21�q, 0 2 1�2, 8 41�q, �2 4 3�5, q 213, q 2V � 8k3 cm3
SA � 24k2 cm2,
V � 24�3 cm3
SA � 72 cm2,
V � 5�5 cm3
SA �  30 cm2,
V � 27 cm3
SA � 54 cm2,
V � 175p cm3
h � 7 cm,
SA � 144p cm2
r � 6 cm,
SA � 80p cm2
h � 6 cm,
V � 48p cm3
SA � 56p cm2,

36p cm2
49p cm2

0 6 x 6 4
x 7 3x 6 0

x 7 3

t � ;1t � ;
9

4

t � �
1

2
t �

1

2
t � �3

x � 4x � 0
x � 1x � �3x � 0

t � 6t � 3

t � 3t � �
1

2

t � 1t � 3
x � �13

x �
14

5

y

x
0

12

2 4 6

4

8

–4

–8

–12

–2–4–6

y

x
0

12

2 4 6

4

8

–4

–8

–12

–2–4–6

y

x
0

6

2 4 6

2

4

–2

–4

–6

–2–4–6

y

x
0

6

2 4 6

2

4

–2

–4

–6

–2–4–6

y

x
0

6

2 4 6

2

4

–2

–4

–6

–2–4–6

y

x
0

3

1 2 3

1

2

–1

–2

–1–2–3

a � 1, b � �1

a�
1

3
, 

32

27
b ,

a�
1

4
, 

1

256
b

75

32

60x � y � 61 � 0

�
40

3

4x5 � 18x � 8

x5

2x16x2 � 7 2� 
2
3  18x2 � 7 2

51x2 � 6 24 13x2 � 8x � 18 213x � 4 26
�x� 

3
2 �

1

�3
� 2x� 

2
3

6012x � 9 24x2 � 15x�6

1 � 2x
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d.

The function has a minimum value
of and no maximum value.

e.

The function has a minimum value
of .

The function has a maximum value
of 5.

f.

The function has a minimum value
of .

The function has a maximum value
of .

Section 3.1, pp. 127–129

1. At  the velocity is positive; this
means that the object is moving in
whatever is the positive direction for
the scenario. At the velocity is
negative; this means that the object is
moving in whatever is the negative
direction for the scenario.

2. a.

b.

c.
d.

e.

f.

g.

h.

i.

j.

3. a.

b.

c.

d.

e.

f.

4. a. i.
ii.

iii.
b. i.

ii.
iii.

5. a.

b. at and 
c. after 3 s

6. a. For moving in a positive
direction.
For moving in a negative
direction.

b. For the object is stationary.
For the object is moving in a
positive direction.

c. For the object is moving in a
negative direction.
For the object is moving in a
positive direction.

7. a.
b.

8. a.
b.

9. a.
b.

10. a.

b. 5 s
c. 5 s
d.
e. after 7 s

11. a.
b. 31.25 m
c.

12. a.

b. 38 m s
13. a.

The object moves to the right from
its initial position of 10 m from the
origin, 0, to the 19 m mark, slowing
down at a rate of 2 m s2. It stops at
the 19 m mark, then moves to the
left, accelerating at 2 m s2 as it
goes on its journey into the
universe. It passes the origin after

b.

The object begins at 9 m to the 
left of the origin, 0, and slows 
down to a stop after 2 s when 
it is 25 m to the left of the 
origin. Then, the object moves 
to the right, accelerating at faster
rates as time increases. It passes 
the origin just before 4 s
(approximately 3.7915) and
continues to accelerate as time 
goes by on its journey into space.

S–30 –25 –20 –15 –10 –5 0 5 10

t =2 t =0

 a � 6t
 � 31t � 2 2 1t � 2 2 � 31t2 � 4 2 v � 3t2 � 12

s � t3 � 12t � 9

0–5–10 20 2510

t =0
t =6

t =3

5 15
S

13 � �19 2  s.

>>
 a � �2
 � 213 � t 2 v � 6 � 2t

s � 10 � 6t � t2
>a18 2 � 12 m>s2

v18 2 � 98 m>s,
�25 m>s25 m>s0 6 t 6 6 s

a1t 2 �
105

2
t

1
2 �

35

4
t

3
2

v1t 2 �
35

2
t

3
2 �

7

2
t

5
2,

a15 2 � 2 m>s2
v15 2 � 3 m>ss14 2 � 80 m
t � 4 s
t � 3 s
v1t 2 � 2t � 6

t � 4,

t � 1,

t � 4,
t � 1,

t � 4,

t � 1,

t � 3t � 1
a1t 2 � 2t � 4
v1t 2 � t2 � 4t � 3,

3 6 t 6 7
7 6 t 6 91 6 t 6 3,

t � 7t � 3,
3 6 t 6 5
1 6 t 6 3
t � 3

a1t 2 � �541t � 3 2�3

v1t 2 �
271t � 3 2 2,

a1t 2 � �
1

4
1t � 1 2 32

v1t 2 �
1

2
1t � 1 2 12,a1t 2 � 2

v1t 2 � 21t � 3 2 ,a1t 2 � 12t�3
v1t 2 � 1 � 6t�2,
a1t 2 � 12t
v1t 2 � 6t2 � 36,
a1t 2 � 10
v1t 2 � 10t � 3,

h– 1x 2 �
10

9x
1
3

y–� 48x � 96

g– 1x 2 � � 
9

413x � 6 2 32
y–� 2 �

6

x4

f – 1x 2 �
�4x � 41x � 1 24

y–� 
3

�x
�

6

x4

h– 1x 2 � 36x2 � 24x � 6
y– � 2

f – 1x 2 � �
1

4
x�3

2

y– � 90x8 � 90x4

t � 5,

t � 1,

�3

�7

�1

�1
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14. away
15. a.

Since and then
and an element of

the real numbers. Therefore, the
acceleration is constant.

b.
16. a. The acceleration is continuous at

if 

For 

and 

and 

Therefore,

and 

Thus,

Also,

Therefore,

Thus, the acceleration is 
continuous at 

b. velocity approaches 1,
acceleration approaches 0

17.

Since g is a constant, a is a constant,
as required.

Note:

18.

Using the quotient rule,

Since 

, as required.

Section 3.2, pp. 135–138

1. a. The algorithm can be used; the
function is continuous.

b. The algorithm cannot be used; the
function is discontinuous at 

c. The algorithm cannot be used; the
function is discontinuous at 

d. The algorithm can be used; the
function is continuous on the given
domain.

2. a. max: 8, min:
b. max: 30, min:
c. max: 100, min:
d. max: 30, min:

3. a. max is 3 at 
min is at 

b. max is 4 at 
min is 0 at 

c. min is at 2,
max is 0 at 3

d. max is 0 at 
min is at 

y

x
0

8

2

–16

–8

–24

–4 –2

x � �2�20
x � 0,

y

x
0 2 4

2

–2

–4

–2

x � 0,
x � �1,�4

y

x
0

6

2 4 6

2

4

–2

–4

–6

–2–4

x � 2
x � 0,

y

x
0

3

1 2 3

1

2

–1

–2

–1–2

x � 2�1
x � 0,

�20
�100

�5
�12

x � 2.

x � 2.

�
m0a11 � v2

c2 2 32
�

m0ac2

c211 � v2

c2 2 32
�

m0 c ac2 � av2

c2 �
v2a
c2 dQ1 �

v2

c2R 3
2

�

m0Q1 �
v2

c2R�1
2 ca Q1 �

v2

c2R �
v2a
c2 d

1 �
v2

c2

dv

dt
� a,

�

1
2Q1 �

v2

c2R�1
2 a�

2v
 

dv
dt

c2
b � v

1 �
v2

c2

�
m0

dv
dtQ1 �

v2

c2R 1
2

1 �
v2

c2

F � m0 
d

dt
a v

�1 � 1vc 22 b
dv

dt
� a

ds

dt
� v

a � g

a �
1

2v
� 2gv

dv

dt
�

1

2
1b2 � 2gs 2 12 � a0 � 2g 

ds

dt
bv � 1b2 � 2gs 2 12v � �b2 � 2gs

t � 0.

lim
tS0

 a1t 2 � a10 2 .� 0

a10 2 �
0

1

lim
tS0

 a1t 2 � 0.
� 0

lim  
tS0�

a1t 2 �
0

1
lim  
tS0�

 

a1t 2 � 0,

v1t 2 � •                           0, if t 6 0
t 4 � 3t 21t 2 � 1 22,  if t � 0

a1t 2 � •                            0, if t 6 0
�2t 3 � 6t1t 2 � 1 23 , if t � 0

�
�2t 3 � 6t1t 2 � 1 23

�
6t � 4t5 � 12t31t2 � 1 23

�
4t5 � 6t3 � 4t31t2 � 1 23

�
4t1t4 � 3t2 21t2 � 1 23

�
14t3 � 6t 2 1t2 � 1 21t2 � 1 23

�
21t2 � 12 12t 2 1t4 � 3t2 21t2 � 1 22

a1t 2 �
14t3 � 6t 2 1t2 � 1 221t2 � 1 22

�
t4 � 3t21t2 � 1 22

v1t 2 �
3t21t2 � 1 2 � 2t1t3 21t2 � 1 22

s1t 2 �
t3

t2 � 1

t � 0,

lim
tS0

 a1t 2 � a10 2 .t � 0

�9k3 � 30k2 � 23k.t � 5 � 3k,

a1t 2 � 2k � 0
k�R,k � 0

� 2k
a1t 2 � 2k � 0
v1t 2 � 2kt � 16k2 � 10k 2s1t 2 � kt2 � 16k2 � 10k 2 t � 2k

t � 1 s;

A n s w e r s638 NEL



e. max is 8 at 
min is at 

f. max is at 
min is 0 at 

4. a. min value of 4 when 
max value of 10.4 when 

b. min value of 3 when 
max value of 4 when 

c. max value of 1 when 
min value of when 2

d. min value of when 
max value of 47 when 

e. max value of 2 when 
min value of when 

f. min value of 0.94 when 
max value of 1.6 when

5. a. max velocity is 

min velocity is 

b. min velocity is 0 m s, no maximum
velocity, but 

6. 20 bacteria cm3

7. a. 80 km h
b. 50 km h
c.
d.

8. min concentration is at 
max concentration is at 

9. 0.05 years or approximately 18 days
10. 70 km h; 
11. absolute max value 

absolute min value 

12. a.

b.
c. increasing:

decreasing:
13. Absolute max: Compare all local

maxima and values of and 
when the domain of is 
The one with the highest value is the
absolute maximum.
Absolute min: We need to consider all
local minima and the value of 
and when the domain of is

Compare them, and the
one with the lowest value is the
absolute minimum.
You need to check the endpoints
because they are not necessarily
critical points.

14. 245 units
15. 300 units

Mid-Chapter Review, 
pp. 139–140

1. a.
b.

c.

d.

2. a. 108 m
b.
c.

3. a.
b.
c.
d.
e. ,

4. a. Velocity 
Acceleration 

b. Object is stationary at time 
and 
Before is positive and
therefore the object is moving to 
the right.

Between and is
negative and therefore the object is
moving to the left.
After is positive and
therefore the object is moving to 
the right.

c. At that time, the object is
neither accelerating nor decelerating.

5. a. min value is 1 when 
max value is 21 when 

b. min value is 0 when 
max value is 25 when 

c. min value is 0 when 
max value is 0.38 when 

6.
7. a. 105 e. 3

b. 3 f. 1448

c. g.

d. h.
8.
9. a.

b.
c. 2916 m
d.

10. 16 m; 4 s
11. a.

b. 2.14 s
c. 22.95 m

Section 3.3, pp. 145–147

1. 25 cm by 25 cm 
2. If the perimeter is fixed, then the 

figure will be a square.
3. 150 m by 300 m
4. height 8.8 cm, length and

width 
5. 110 cm by 110 cm
6. 8 m by 8 m
7. 125 m by 166.67 m
8. 4 m by 6 m by 6 m
9. base 10 cm by 10 cm, height 10 cm

10. 100 square units when 
11. a.

b. ; yes

12. a. when and

b. when and

c. The largest area occurs when the
length and width are each equal to
one-half of the sides adjacent to the
right angle.

13. a. base is 20 cm and each side is 20 cm
b. approximately 260 000 cm3

L � 7.5 cm
W � 4 cm30 cm2

L � 6 cm
W � 2.5 cm15 cm2

h

d
�

1

1

r � 5.42, h � 10.84
5�2

22.4 cm
8.24 cm,

0 � t � 4.31

6.2 m>s2

27 s
189 m>s�1.7 m>s2

�
185

6
�78

�
202

27
�6

3.96 °C
x � �3

x � 1,
x � 3

x � �2,
x � 2

x � 0,

t � 1.2 s;

t � 2, v1t 2
t � 2, v1t 2t �

1
3

t �
1
3, v1t 2t � 2 s.

t �
1
3 s

is 10 m>sis 0 m>s�9.8 m>s2�9.8 m>s2
�8.67 m>st � 1.50 s
t � 0.61 s
6 m>s�18 m>s2
�45 m>s
g– 1x 2 � � 

x21x2 � 1 2 32 �
11x2 � 1 2 12

y– �
301x � 3 23

f – 1x 2 � 48x � 120
h– 1x 2 � 36x2 � 24x � 6

a � x � b.
f 1x 2f 1b 2 f 1a 2

a � x � b.f 1x 2 f 1b 2f 1a 20 6 x 6 2
2 6 x � 4

�2 � x 6 0
 �2 � x � 4

4

8

12

y
16

–4

–8

–16

–12

x

–2–3–4 1 2 43–1 0

� 10 
� 42,

$31.50> t � 3
t � 1

80 6 v � 100
0 � v 6 80

>> >
v1t 2 S 4 as tSq

>4
5 m>s4
3 m>s,

x � 2
x � 4,

x � �1�2
x � 1,

x � �3
x � 3,�169

x � 0,1
2

x � 1,
x � 4
x � 9,

x � 10
x � 2,

y

x
0

6

4

4

2

–2

–2 2

x � 0
x � 4,16

3

y

x
0

8

2

4

–4

–4 –2

x � �2�3
x � �1,
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14. a. triangle side length 0.96 cm,
rectangle 0.96 cm by 1.09 cm

b. Yes. All the wood would be used
for the outer frame.

15. 0.36 h after the first train left the station
16. 1:02 p.m.; 3 km
17.

Let 

and

The hypothesis is proven.
18. Let the height be h and the radius r.

Then,

Let M represent the amount of material,

Using the max min Algorithm,

Let or 

When 

Min amount of material is 

Ratio

19. a. no cut
b. 44 cm for circle; 56 cm for square

20.
21. Let point A have coordinates 

(Note that the x-coordinate of any 
point on the curve is positive, but that
the y-coordinate can be positive or
negative. By letting the x-coordinate be

we eliminate this concern.)
Similarly, let B have coordinates

The slope of 

AB is 

Using the mid-point property, C has 

coordinates 

Since CD is parallel to the x-axis, the 
y-coordinate of D is also The 

slope of the tangent at D is given by 

for the expression 
Differentiating,

And since at point D,

But this is the same as the slope of AB.
Then, the tangent at D is parallel to 
the chord AB.

22. when P is at the point 

23.

Section 3.4, pp. 151–154

1. a. $1.80
b. $1.07
c. 5625 L

2. a. 15 terms
b. 16 terms h
c. 20 terms h

3. a.
b. 1.5
c.

d. The level will be a maximum.
e. The level is decreasing.

4. $6000 h when plane is flying at 
15 000 m

5. 250 m by 375 m
6. $1100 or $1125
7. $22.50 
8. 6 nautical miles h
9. by 40.8 m by 24.0 m

10. ,
11. a. $15

b. $12.50, $825
c. If you increase the price, the 

number sold will decrease. Profit in
situations like this will increase for
several price increases and then it
will decrease because too many
customers stop buying.

12. 12.1 cm by 18.2 cm by 18.2 cm
13. $50
14. $81.25
15. 19 704 units
16.

Now 
The critical point occurs when

If , then

Therefore, the instantaneous rate of
change in profit is 0 when the marginal
revenue equals the marginal cost.

17. and h is about 900 cm
18.

19. maximum velocity: radius:
2r0
3 .4

27r0 A,

128.4 km>hr � 230 cm

� 0
P¿ 1x 2 � R¿ 1x 2 � C¿ 1x 2R¿ 1x 2 � C¿ 1x 2P¿ 1x 2 � 0.

P¿ 1x 2 � R¿ 1x 2 � C¿ 1x 2 .Marginal Cost � C¿ 1x 2 .Marginal Revenue � R¿ 1x 2 .P1x 2 � R1x 2 � C1x 2

h � 17.2 cmr � 4.3 cm
20.4 m

>
>

t � 1
>>

2k

�3
 by 2

3
 k2

15, 2.5 2

CD

y

x

6

4 6 8

8

2

4

–2

–4

–6

–8

2–2–4

B(b2, 2b)

A(a2, 2a)

0

dy

dx
�

2

a � b

y � a � b,

dy

dx
�

2

y

2y 
dy

dx
� 4

y2 � 4x.

dy
dx 

a � b.

Qa2 � b2

2 , a � bR.
2a � 2b
a2 � b2 �

2
a � b.

1b2, 2b 2 .a2,

1a2, 2a 2 .�17

h

d
�
Qk
p
R 1

3
� 2

2
3

2Q k
2pR 1

3

�
Qk
p
R 1

3
� 2

2
3

2
2
3 Qk
p
R 1

3

�
1

1

M � 2p a k

2p
b 2

3

� 2k a 2p

k
b 1

3

.

h �
k

p Q k
2pR 2

3

�
k

p
# 12p 2 23

k
2
3

�
k

1
3

p
1
3

� 2
2
3

d � 2 a k

2p
b 1

3

r � a k

2p
b 1

3

MSqrSq,
MSqrS 0,

r � a k

2p
b 1

3

.

r � 0r3 �
k

2p
,

dM

dr
� 0,

dM

dr
� 4pr �

2k

r2

0 � r � q� 2pr2 �
2k

r
,

� 2pr2 � 2pr a k

pr2
bM � 2pr2 � 2prh

h �
k

pr2
.pr2h � k,

� ab

W �
2ab

a2 � b2
ca2 � b2 � 

a2 � b2

2
d

L �
a2 � b2

2

dA

dL
� a2 � b2 � 2L � 0,

A � LW �
2ab

a2 � b2
3a2L � b2L � L2 4

W �
2ab

a2 � b2
 1a2 � b2 � L 2

a2 � b2 � L

a2 � b2
�

W

2ab

2 ab
w

L a2 + b2

a2 – b2
a2 – b2 – L
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Review Exercise, pp. 156–159

1. ,

2.

3. ,

4. ,

5. The upward velocity is positive for
zero for and

negative for 

6. a. min: ,
max: 0

b. min: ,
max: 16

c. min: 12,
max: 20

7. a. 62 m
b. Yes, 2 m beyond the stop sign 
c. Stop signs are located two or more

metres from an intersection. Since
the car only went 2 m beyond the
stop sign, it is unlikely the car
would hit another vehicle travelling
perpendicular.

8. min is 2, max is 
9. 250

10. a. i. $2200
ii. $5.50
iii. $3.00; $3.00

b. i. $24 640
ii. $61.60

iii. $43.20; $43.21
c. i.  $5020

ii. $12.55
iii. $0.03; $0.03

d. i. $2705
ii. $6.88

iii. $5.01; $5.01

2 � 3�3

�65

�52
Time

Ve
lo

ci
ty

 (m
/

s)

0
8

30

45

15

–15

–30

–45

642 10

v(t)

t

t 7 4.5 s.
t � 4.5 s,0 � t � 4.5 s,

a1t 2 � 10t�3

v1t 2 � 1 � 5t�2

a � 2 � 12t � 3 2 32v � 2t � 12t � 3 2 12
d2y

dx2
� 72x7 � 42x

f – 1x 2 � 12x2 � 20x�6

f ¿ 1x 2 � 4x3 � 4x�5
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11. 2000
12. a. moving away from its starting point

b. moving away from the origin and
towards its starting position

13. a. b. yes

14. 27.14 cm by 27.14 cm for the base and
height 13.57 cm

15. length 190 m, width approximately 63 m
16. 31.6 cm by 11.6 cm by 4.2 cm
17. radius 4.3 cm, height 8.6 cm
18. Run the pipe 7.2 km along the river shore

and then cross diagonally to the refinery.
19. 10:35 p.m.
20. $204 or $206 
21. The pipeline meets the shore at a point C,

5.7 km from point A, directly across from P.
22. 11.35 cm by 17.02 cm
23. 34.4 m by 29.1 m
24. 2:23 p.m.
25. 3.2 km from point C
26. a. absolute maximum:

absolute minimum:
b. absolute maximum:

absolute minimum:
c. absolute maximum:

absolute minimum:
d. absolute maximum:

absolute minimum:
27. a. 62.9 m c.

b. 4.7 s

28. a. d.

b. e.

c. f.

29. a. position: 1, velocity: ,

acceleration: speed:

b. position: , velocity: ,

acceleration: , speed:

30. a.

b.
c.
d. undefined 
e.

Chapter 3 Test, p. 160

1. a.
b.
c.
d.

2. a.
a13 2 � �44
v13 2 � �57,
f – 1x 2 � 9614x � 8 2y– � 60x�5 � 60x
f – 1x 2 � �180x3 � 24x
y– � 14

0.141 m>s2

2.36 m>s1.931 m>sa1t 2 �
2

9
 1t2 � t 2�4

3 12t2 � 2t � 1 2v1t 2 �
2

3
 1t2 � t 2�1

3 12t � 1 2 ,
4
9

10
27

4
9

8
3

1
6�Q 1

18R,
1
6

f – 18 2 � �
1

72
f – 10 2 � 192

f – 14 2 � � 
1

108
f – 1�1 2 � 26

f – 11 2 � �
5

16
f – 12 2 � 60

3.6 m>s2
f 1�2 2 � �56
f 14 2 � 2752,
f 1�5 2 � �63
f 15 2 � 67,
f 1�3 2 � �18
f 13 2 � 36,
f 11 2 � 5
f 17 2 � 41,

t �
2

3

b.

3. a.

b. m
c. ,
d. between and 
e. 2 m s2

4. a. min: max: 67 
b. min: 7.5, max: 10 

5. a. 2.1 s
b.

6. 250 m by 166.7 m
7. 162 mm by 324 mm by 190 mm
8.

Chapter 4

Review of Prerequisite Skills, pp.
162–163

1. a. or 

b. or 

c.

d. or or 

2. a.

b.
c.
d. or 

3. a. 

b. y

x

4

6

2

8

0

–4

–2

–8

–6

–12

–10

–4–6 –2–8 4 62 8

y

x

2

3

1

0

–2

–3

–1
–2 –1–3 2 31

x 7 1x 6 �4
�1 6 t 6 3
x � 2

x 6 �
7

3

y � �2y � �3y � 1

x � �
5

2

x � �2x � 7

y � 1y � �
3

2

$850>month

about  22.9

�63,
> t � 1.5 st � 0 s

1 m>s1 m>s�0.25
a1t 2 � 2
v1t 2 � 2t � 3,
a12 2 � �24
v12 2 � 6,



Review Exercise, pp. 156–159

1. ,

2.

3. ,

4. ,

5. The upward velocity is positive for
zero for and

negative for 

6. a. min: ,
max: 0

b. min: ,
max: 16

c. min: 12,
max: 20

7. a. 62 m
b. Yes, 2 m beyond the stop sign 
c. Stop signs are located two or more

metres from an intersection. Since
the car only went 2 m beyond the
stop sign, it is unlikely the car
would hit another vehicle travelling
perpendicular.

8. min is 2, max is 
9. 250

10. a. i. $2200
ii. $5.50
iii. $3.00; $3.00

b. i. $24 640
ii. $61.60

iii. $43.20; $43.21
c. i.  $5020

ii. $12.55
iii. $0.03; $0.03

d. i. $2705
ii. $6.88

iii. $5.01; $5.01

2 � 3�3

�65

�52
Time

Ve
lo

ci
ty

 (m
/

s)

0
8

30

45
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–15

–30

–45
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v(t)

t

t 7 4.5 s.
t � 4.5 s,0 � t � 4.5 s,

a1t 2 � 10t�3

v1t 2 � 1 � 5t�2

a � 2 � 12t � 3 2 32v � 2t � 12t � 3 2 12
d2y

dx2
� 72x7 � 42x

f – 1x 2 � 12x2 � 20x�6

f ¿ 1x 2 � 4x3 � 4x�5
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11. 2000
12. a. moving away from its starting point

b. moving away from the origin and
towards its starting position

13. a. b. yes

14. 27.14 cm by 27.14 cm for the base and
height 13.57 cm

15. length 190 m, width approximately 63 m
16. 31.6 cm by 11.6 cm by 4.2 cm
17. radius 4.3 cm, height 8.6 cm
18. Run the pipe 7.2 km along the river shore

and then cross diagonally to the refinery.
19. 10:35 p.m.
20. $204 or $206 
21. The pipeline meets the shore at a point C,

5.7 km from point A, directly across from P.
22. 11.35 cm by 17.02 cm
23. 34.4 m by 29.1 m
24. 2:23 p.m.
25. 3.2 km from point C
26. a. absolute maximum:

absolute minimum:
b. absolute maximum:

absolute minimum:
c. absolute maximum:

absolute minimum:
d. absolute maximum:

absolute minimum:
27. a. 62.9 m c.

b. 4.7 s

28. a. d.

b. e.

c. f.

29. a. position: 1, velocity: ,

acceleration: speed:

b. position: , velocity: ,

acceleration: , speed:

30. a.

b.
c.
d. undefined 
e.

Chapter 3 Test, p. 160

1. a.
b.
c.
d.

2. a.
a13 2 � �44
v13 2 � �57,
f – 1x 2 � 9614x � 8 2y– � 60x�5 � 60x
f – 1x 2 � �180x3 � 24x
y– � 14

0.141 m>s2

2.36 m>s1.931 m>sa1t 2 �
2
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 1t2 � t 2�4

3 12t2 � 2t � 1 2v1t 2 �
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108
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f 1�2 2 � �56
f 14 2 � 2752,
f 1�5 2 � �63
f 15 2 � 67,
f 1�3 2 � �18
f 13 2 � 36,
f 11 2 � 5
f 17 2 � 41,

t �
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b.

3. a.

b. m
c. ,
d. between and 
e. 2 m s2

4. a. min: max: 67 
b. min: 7.5, max: 10 

5. a. 2.1 s
b.

6. 250 m by 166.7 m
7. 162 mm by 324 mm by 190 mm
8.

Chapter 4

Review of Prerequisite Skills, pp.
162–163

1. a. or 

b. or 

c.

d. or or 

2. a.

b.
c.
d. or 

3. a. 

b. y

x

4

6

2

8

0

–4

–2

–8

–6

–12

–10

–4–6 –2–8 4 62 8

y

x

2

3

1

0

–2

–3

–1
–2 –1–3 2 31

x 7 1x 6 �4
�1 6 t 6 3
x � 2

x 6 �
7

3

y � �2y � �3y � 1

x � �
5

2

x � �2x � 7

y � 1y � �
3

2

$850>month

about  22.9

�63,
> t � 1.5 st � 0 s

1 m>s1 m>s�0.25
a1t 2 � 2
v1t 2 � 2t � 3,
a12 2 � �24
v12 2 � 6,



c.

d.

4. a. 0
b. 7
c. 27
d. 3

5. a.

b.

c.

d.

6. a.

b.

7. ,

8. a. If where n is a real
number, then 

b. If where k is a constant,
then 

c. If then 

d. If then  

e. If f and g are functions that have
derivatives, then the composite
function has a
derivative given by

f. If u is a function of x, and n is a
positive integer, then 

9. a. As .
b. As 

As 
c. As 

As 

10. a.

b.

c. no vertical asymptote

d.

11. a.
b.

c.

d.
12. a. i. no x-intercept; (0, 5)

ii. (0, 0); (0, 0)

iii.

iv. ; no y-intercept

b. i. Domain: ,
Range:

ii. Domain: ,
Range:

iii. Domain: ,

Range:

iv. Domain: ,
Range:

Section 4.1, pp. 169–171

1. a. (0, 1),
b. (0, 2)

c.

d. ,

2. A function is increasing when
and is decreasing when

3. a. i.
ii.

iii.
b. i.

ii.
iii. (2, 4)

c. i.
ii.

iii. none
d. i.

ii.
iii. (2, 3)

4. a. increasing: ;
decreasing:

b. increasing: ;
decreasing:

c. increasing: ;
decreasing:

d. increasing: ;
decreasing:

e. increasing: ;
decreasing:

f. increasing: ;
decreasing:

5. increasing: ;
decreasing:

6.

7.
8.

9. a. i.
ii.

iii.

b. i.
ii.

iii.
y

x

2

3

1

0

–2

–3

–1
–2 –1–3 2 31

x � �1, x � 1
�1 6 x 6 1
x 6 �1, x 7 1

y

x

2

3

1

0

–2

–3

–1
–1 2 3 4 51

x � 4
x 7 4
x 6 4

y

x

4

8

0

–4

–4 4

(1, 2)

(–5, 6)

c � �9b � �9,a � 3,

0

2

1

–2

–1

3

4

5

y

x

21 4 53–2 –1
(–1, 0)

(2, 5)

x 6 �3, �2 6 x 6 1
�3 6 x 6 �2, x 7 1

x 6 0
x 7 0

0 6 x 6 1x 6 �2,
x 7 1�2 6 x 6 0,

x 6 �1, x 7 3
�1 6 x 6 3

0 6 x 6 1
�1 6 x 6 0, 
x 6 �1, x 7 1
0 6 x 6 4
x 6 0, x 7 4

�2 6 x 6 0
x 6 �2, x 7 0

2 6 x 6 3x 6 �1,
3 6 x�1 6 x 6 2,

2 6 x�2 6 x 6 2,
x 6 �2
1�1, 2 2 , x 7 1x 6 �1,
�1 6 x 6 1

12, �1 21�1, 4 2 ,�1 6 x 6 2
x 7 2x 6 �1,

f ¿ 1x 2 6 0.
f ¿ 1x 2 7 0

a�1, �
5

2
ba1, 

5

2
b

1�2, �125 212.25, �48.2 2 ,a1

2
, 0b ,

1�4, 33 2
5y�R 0y � 265x�R 0x � 06e y�R 0y �

1

2
f

e x�R 0x �
1

2
f5y�R 0y � 465x�R 0x � 265y�R 0y � 065x�R 0x � �16Q25, 0R

a 5

3
, 0b ; a0, 

5

3
b

y � 2

y �
1
2

y � 4
y � 0

x � �311x � 3 2 2;
11x � 4 2 2 � 1;

x � 31
�x � 3;

x � 01
2x;

xSq, f 1x 2 S�q.
xS�q, f 1x 2 S�q.
xSq, f 1x 2 Sq.
xS�q, f 1x 2 S�q.
xS  ;q, f 1x 2 Sq

d

dx
1un 2 � nun�1du

dx
.

h¿ 1x 2 � f ¿ 1g1x 2 2 # g¿ 1x 2 .h1x 2 � f 1g1x 2 2
g1x 2 � 0.

�
f ¿ 1x 2g1x 2 � f 1x 2g¿ 1x 23g1x 2 42 ,h¿ 1x 2

h1x 2 �
f 1x 2
g1x 2 ,

� f 1x 2g¿ 1x 2k¿ 1x 2 � f ¿ 1x 2g1x 2k1x 2 � f 1x 2g1x 2 ,f ¿ 1x 2 � 0.
f 1x 2 � k,

f ¿ 1x 2 � nxn�1.
f 1x 2 � xn,

1�1, 4.5 2a 2

3
, 2.19b
x � 7 �

2

x � 1

x � 8 �
28

x � 3

t � 81t � 4 2 32
213x2 � 6x 2 16x � 6 2�

x2 � 2x � 31x2 � 3 22
x3 � 6x � x�2

y

x

6

4

2

0

–4

–6

–2
–4 –2–6 4 62

y

x

4

6

2

0

–4

–6

–2
–4 –2–6 4 62
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c. i.
ii.

iii.

d. i.
ii.

iii.

10.

Let then 

If therefore the

function is decreasing.
If therefore the
function is increasing.

11. ,
increasing: ,
decreasing: ,
local minimum:

12.

13. Let and 
Let and be any two values in the
interval so that 
Since both functions are
increasing:

(1)
(2)

results in

The function yu or is strictly
increasing.

14. strictly decreasing

Section 4.2, pp. 178–180

1. Determining the points on the graph of
the function for which the derivative of
the function at the x-coordinate is 0

2. a. Take the derivative of the function.
Set the derivative equal to 0. Solve
for x. Evaluate the original function
for the values of x. The (x, y) pairs
are the critical points.

b.

3. a. local minima: ,
local maximum:

b. local minimum: ,
local maximum: (3, 0.3)

c. local minimum: ,
local maximum: (0, 1)

4. a.

b.

c. (0, 1)

5. a. local minimum: (0, 3),
local maximum: (2, 27),
Tangent is parallel to the horizontal
axis for both.

b. (0, 0) neither maximum nor
minimum,
Tangent is parallel to the horizontal
axis.

c. (5, 0); neither maximum nor
minimum,
Tangent is not parallel to the
horizontal axis.

d. local minimum: ,
Tangent is parallel to the horizontal
axis.

and (1, 0) are neither
maxima or minima.
Tangent is not parallel to the
horizontal axis for either.

6. a.

1�1, 0 2
10, �1 2

0

10

–10

–20

20

30

t

2 4 6–2

h(t)

1�3, 1, 0 2 ,

y

x

0.5

0

–0.5

–2–4 2 4

10, 0 2

y

x

10

20

0

–10

–20

–2–4 2 4

10, 0 2 , 12�2, 0 2 , 1�2�2, 0 21�2, 5 21�3, �0.3 210, 0 2 12, �16 21�2, �16 2 ,

y

x

20

0

–20

–40

–4 4 8

14, �32 210, 0 2 ,

f(x)

g(x)

a bx1 x1

y

x

f 1x 2 # g1x 2f 1x2 2 # g1x2 2 7 f 1x1 2g1x1 211 2 � 12 2

yu � f 1x 2 # g1x 2g1x2 2 7 g1x1 2f 1x2 2 7 f 1x1 2
x1 6 x2,

x1 6 x2.a � x � b
x2x1

u � g1x 2 .y � f 1x 2

y

x

4

8

0

–4

–2 2 4

12, �44 2x 6 2
x 7 2

f ¿ 1x 2 � 0 for x � 2

f ¿ 1x 2 7 0,x 7 �b
2a ,

f ¿ 1x 2 6 0,x 6 �b
2a ,

x �
�b
2a .f ¿ 1x 2 � 0,

 f ¿ 1x 2 � 2ax � b
 f 1x 2 � ax2 � bx � c

0

2

1

3

4

5

y

x

21 4 53

x � 2
x 6 2
x 7 2

y

x

2

3

4

5

1

0
–1

–2 –1–3 2 31

x � �2, x � 3
x 6 �2, x 7 3
�2 6 x 6 3
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b.

c.

d.

7. a. local maximum

b. local maximum,
local minimum

c. local maximum,
local minimum

d. no critical points

e. local minimum

f. (0, 0) neither maximum nor
minimum,

local minimum

8. local minima at and 
local maximum at 

9.

10.

11.
minimum; the derivative is negative 
to the left and positive to the right

12. a.
b.
c.

13.
14. a. 

b.  

c.

d.  

15. a. , ,
b.
c. local minimum: and

,
local maximum:

16. a. local maximum: (0, 4)

x

4

2

0

–4

–2
–4 –2 42

y

10, �9 213, �198 2 1�2, �73 213, �198 2 c � 0b � �36a � �4

x

4

6

2

0

–4

–6

–2
–4 –2–6 4 62

f '(x)

x

4

6

2

0

–4

–6

–2
–4 –2–6 4 62

f '(x)

x

4

6

2

0

–4

–6

–2
–4 –2–6 4 62

f '(x)

x

4

6

2

0

–4

–6

–2
–4 –2–6 4 62

f '(x)

d � 0c � 0,b � 3,a � �1,
k 7 0
k � 0
k 6 0

q � 6p � �2,

c � 1b �
22

3
,a � �

11

9
,

f(x)

x

2

3

4

5

6

1

0
–1

–2

–2 –1–3–4 2 3 41

(3, 1)

(–1, 6)

x � �1
x � 2;x � �6

y

x

4

8

0–2–4 2 4

11, �1 2

y

x

4

8

0–2–4 2 4

11, 1 2

y

x

4

8

0

–4

–8

–1–2 1 2

y

x

4

8

0

–4

–8

–2–4 2 4

1�1, �5 21�2, �4 2

y

x

10

20

0

–10

–20

–4–8 4 8

13, �16 21�3, 20 2

y

x

10

20

0

–10

–20

–4–8 4 8

12, 21 2
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b. local minimum: ,
local maximum:

17.

Since has a local maximum at
then for and

for Since has a
local minimum at then

for and 
for 

If and 
then 
If and 
then 
Since for , and for

Therefore, has
a local maximum at 

Section 4.3, pp. 193–195

1. a. vertical asymptotes at and
horizontal asymptote at 

b. vertical asymptote at 
horizontal asymptote at 

2.

Conditions for a vertical asymptote:
must have at least one

solution s, and 

Conditions for a horizontal asymptote:
where or

, where 

Condition for an oblique asymptote:
The highest power of must be one
more than the highest power of 

3. a. 2
b. 5

c.

d.
4. a. large and positive to left of

asymptote, large and negative to
right of asymptote

b. large and negative to left of
asymptote, large and positive to
right of asymptote

c. large and positive to left of
asymptote, large and positive to
right of asymptote

d. hole at no vertical asymptote
e. large and positive to left of

asymptote, large and negative to
right of asymptote 

large and negative to left of
asymptote, large and positive to
right of asymptote

f. large and positive to left of
asymptote, large and negative to
right of asymptote 

large and negative to left of
asymptote, large and positive to
right of asymptote

5. a. large negative: approaches
from above, large positive:
approaches from below

b. large negative: approaches
from below, large positive:
approaches from above

c. large negative: approaches
from above, large positive:
approaches from above

d. no horizontal asymptotes
6. a.

b.

c.

d.

7. a.
b.
c.
d.

8. a. large negative: approaches from
below, large positive: approaches
from above

b. large negative: approaches from
above, large positive: approaches
from below

9. a. large and positive to left
of asymptote, large and negative to
right of asymptote

b. large and positive to left of
asymptote, large and positive to
right of asymptote

c. large and negative to left
of asymptote, large and positive to
right of asymptote 

d. large and negative to left of
asymptote, large and positive to
right of asymptote 

10. a.  
f(x)

x

2

4

0

–2

–4

–2–4 2 4

y � 1

x � 2;
y � 1

x � �2;
y � 1

x � 1;
y � 3

x � �5;

y � x � 3
y � x � 2
y � x � 3
y � 3x � 7

y

x

4

2

6

8

0

–4

–2

–6

–8

–4 –2–6–8 42 6 8

y

x

4

2

6

8

0

–4

–2
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–4 –2–6–8 42 6 8
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6

4

2

0
–2
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y

4

6

2

0

–4

–2
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x

y � 3;

y � 0;

y � 1;

x � 1;

x � �1;

x � 1;

x � �3;
x � 3,

x � 3;

x � 2;

x � �5;
q
�

5

2

k1x 2 .g1x 2
k�R.lim 

xSq
f 1x 2 � k

k�R,lim 
xSq

f 1x 2 � k,

lim 
xSq

f 1x 2 � q.
h1x 2 � 0

f 1x 2 �
g1x 2
h1x 2

y � 0
x � 0;

y � 1x � 2;
x � �2

x � c.
h1x 2h¿ 1x 2 6 0.x 7 c,

h¿ 1x 2 7 0x 6 c
h¿ 1x 2 6 0.

g¿ 1x 2 7 0,f ¿ 1x 2 6 0x 7 c,
h¿ 1x 2 7 0.

g¿ 1x 2 6 0,f ¿ 1x 2 7 0x 6 c,

 h¿ 1x 2 �
f ¿ 1x 2g1x 2 � g¿ 1x 2  f 1x 23g1x 2 42

 h1x 2 �
f 1x 2
g1x 2

x 7 c.
g¿ 1x 2 7 0x 6 cg¿ 1x 2 6 0

x � c,
g1x 2x 7 c.f ¿ 1x 2 6 0

x 6 cf ¿ 1x 2 7 0x � c,
f 1x 2h1x 2 �

f 1x 2
g1x 2

x

40

20

0

–40

–20
–4 –2 42

y

11.41, 39.6 211.41, �39.6 2
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b.

c.

d. 

e.

f.

11. a.

b.

12. a.

b.

13. a.

b.

14. a. and : and 
exist.

b. : the highest degree of x in the
numerator is exactly one degree
higher than the highest degree of x
in the denominator.

c. : the denominator is defined for
all .

has vertical 

Asymptotes at and .
As .
As .
As .
As .

has a horizontal asymptote at

has a vertical asymptote
at 
As .
As .

is an oblique asymptote for
.

has vertical

asymptotes at and .
As .
As .
As .
As .

has a horizontal asymptote 
at 

15.

16. a.

b.

17. 

Mid-Chapter Review,
pp. 196–197

1. a. decreasing: ,
increasing:

b. decreasing: (0, 2),
increasing:

c. increasing: ,
d. decreasing: ,

increasing: 10, q 21�q, 0 2 13, q 21�q, �3 21�q, 0 2 , 12, q 212, q 21�q, 2 2

f (x)

x
1

4

3

2

0
–1

–2

–3

–4

–2–4–6–8–10 2 4 6 8 10

� lim 
xSq

�2
� �2

� lim 
xSq 

�2x

x � 1

� lim 
xSq

x2 � 1 � x2 � 2x � 1

x � 1

lim 
xSq
c x2 � 1

x � 1
�

x2 � 2x � 1

x � 1
d� q

� lim 
xSq
1x � 1 2� lim 

xSq

1x � 1 2 1x � 1 21x � 1 2
lim 
xSq

x2 � 2x � 1

x � 1

� q

lim 
xSq

x2 � 1

x � 1
� lim 

xSq

x �
1
x

1 �
1
x

b �
3

5
a �

9

5
,

y � 1.
r 1x 2xS 4�, r1x 2 SqxS 4�, r1x 2 S�q

xS�4�, r1x 2 S�q
xS�4�, r1x 2 Sq x � 4x � �4

r 1x 2 �
1x � 3 2 1x � 2 21x � 4 2 1x � 4 2

h1x 2y � x
g1x 2 S�qxS 3�,
g1x 2 SqxS 3�,

x � 3.
g1x 2

y � 0.
f 1x 2 f 1x 2 S�qxS 7�,

f 1x 2 SqxS 7�,
f 1x 2 SqxS�2�,
f 1x 2 S�qxS�2�,

x � �2x � 7

f 1x 2 �
�x � 31x � 7 2 1x � 2 2x�R

h 1x 2
h 1x 2

lim 
xSq

r 1x 2lim 
xSq

f 1x 2r 1x 2f 1x 2
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4
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–2 2 4 6

y

0

2

1

–2

–1

y

x

42–4 –2

0

4

2

–2

6

8

y

x

42–4 –2

y = f ''(x)
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2. increasing: and ,
decreasing:

3.

4. a. d.
b. 0, e. 0
c. 0, f.

5. a. local maximum,
local minimum

b. local maximum,

local minimum
6.

7. local minimum,
increasing: ,
decreasing:

8. a. large and positive to left of
asymptote, large and negative to
right of asymptote

b. large and negative to left
of asymptote, large and positive to
right of asymptote

large and positive to left of
asymptote, large and negative to
right of asymptote

c. large and negative to left
of asymptote, large and positive to
right of asymptote

d. large and positive to left of
asymptote, large and negative to
right of asymptote

large and positive to left of
asymptote, large and negative to
right of asymptote

9. a. large negative: approaches
from above, large positive:
approaches from below

b. large negative: approaches
from below, large positive:
approaches from above

10. a. large and positive to left of
asymptote, large and positive to
right of asymptote

b. no discontinuities
c. ; large and negative

to left of asymptote, large and
positive to right of asymptote

large and negative
to left of asymptote, large and
positive to right of asymptote

11. a. is increasing.
b. is decreasing.

12. increasing: ,
decreasing:

13. increasing: ,
decreasing:

14.

15. a. i.

ii. increasing: ,

decreasing:

iii. local minimum at 

iv.

b. i.
ii. increasing: ,

decreasing:
iii. local minimum at 

local maximum at 
iv.

c. i.
ii. increasing: ;

decreasing:
iii. local maximum at 

local minimum at 
iv.

d. i.
ii. increasing: ;

decreasing:
iii. local maximum at 

local minimum at 
iv.

16. a. ; large and positive to left 
of asymptote, large and negative to 

right of asymptote; 
b. large and positive to left 

of asymptote, large and positive to
right of asymptote; 

c. large and positive to left 
of asymptote, large and negative to
right of asymptote; 

d. large and negative to left
of asymptote, large and positive to
right of asymptote; 

17. a. e.

b. f. 1

c. g. 1
d. 0 h. q

�3
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6

q�
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y � 2
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x � 1

;�2;�2
;3�3

;2;1,�4

y

x

4

2

6

8

0

–4

–2

–6

–8

–4 –2–6–8 42 6 8

(3, 5)

(–2, 0)

�1 6 x 6 2
x 7 2x 6 �1
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Section 4.4, pp. 205–206

1. a. A: negative, B: negative, C: positive,
D: positive

b. A: negative, B: negative, C: positive,
D: negative

2. a. local minimum: ,
local maximum:

b. local maximum:

c. local maximum: ,
local minimum: (1, 2)

d. (3, 8) is neither a local maximum 
or minimum.

3. a.

b.

c. no points of inflection
d. (3, 8)

4. a. above
b. 4; above

c. below

d. below

5. a. i.  concave up on ,
concave down on 

ii.  

iii.

b. i.  concave up on or ,
concave down on 

ii.  and 
iii.  

6. For any function find the
critical points, i.e., the values of x such
that or does not exist.
Evaluate for each critical value.
If the value of the second derivative at
a critical point is positive, the point is a
local minimum. If the value of the
second derivative at a critical point is
negative, the point is a local maximum.

7. Use the first derivative test or the
second derivative test to determine the
type of critical points that may be
present.

8. a. i. (0, 0)
ii.

b. i. ,

ii.

9.

10. , ,

11.

12.

For possible points of inflection, we
solve f – 1x 2 � 0:

f – 1x 2 � 12ax2 � 6bx
f ¿ 1x 2 � 4ax3 � 3bx2
f 1x 2 � ax4 � bx3

27

64

y

x

4

2

6

8

10

0
–2

–2–4 42 6 8

(2, 11)

(1, 5)

c � �1b � 9a � �3

y

x
2

4

0
–2

–4

–2–4 2 4 6 8

y

x

2

1

3

4

0

–2

–1

–3

–4

–2 –1–3–4 21 3 4

Q 3
�2, 

8�2
9 RQ� 3

�2, �
8�2

9 R

y

x

10

5

15

20

0

–10

–5

–15

–20

–25

–2–4 2

1�2, �16 2 ,

f – 1x 2 f ¿ 1x 2f ¿ 1x 2 � 0

y � f 1x 2 ,

y

x

2

4

0

–2

–2 2 4

y = f(x)

x � 2x � 0
0 6 x 6 2

x 7 2x 6 0

0

2

1

–1

3

4

y

x

1 2–1–2

y = f(x)

x � 1
x 7 1

x 6 1

�
2

27;

�
9

100�10
;

24;

Q4, 25
64RQ�4, 25

64R
Q43, �14 20

27R
1�1, �2 2Q0, 25

48R1�1, 20 215, �105 2
or 

The graph of is a parabola 

with x-intercepts 0 and 

We know the values of have 
opposite signs when passing through 
a root. Thus, at and 
at the concavity changes as 
the graph goes through these points.
Thus, has points of inflection at

and 

To find the x-intercepts, we solve

or 

The point midway between the 

x-intercepts has x-coordinate 

The points of inflection are (0, 0) and 

13. a.

b. Answers may vary. For example,
there is a section of the graph that
lies between the two sections of the
graph that approaches the asymptote.

14. no inflection points;
inflection point at ;

The graph of f has an inflection point at
when 

Section 4.5, pp. 212–213

1. A cubic polynomial that has a local
minimum must also have a local
maximum. If the local minimum is to
the left of the local maximum, then

as and
as If the local

minimum is to the right of the local
maximum, then as

and as 
2. A polynomial of degree three has at

most two local extremes. A polynomial
of degree four has at most three local
extremes. Since each local maximum
and minimum of a function corresponds

xS�q.f 1x 2 S�qxS�q
f 1x 2 S�q

xS�q.f 1x 2 S�q
xS�qf 1x 2 S�q

n � 3.x � c

x � cn � 3, n � 4:
n � 1, n � 2:

y

x

8

4

0
–4

–8

–12

–16

–2–4–6 2 4 6

Q� b
2a, � b4

16a3R.
�

b
2a.

x � �
b
ax � 0

x31ax � b 2 � 0

f 1x 2 � 0

x � �
b

2a.x � 0

f 1x 2x � �
b

2a,
x � 0

f – 1x 2�
b
2a.

y � f – 1x 2x � �
b

2a.x � 0

6x12ax � b 2 � 0
12ax2 � 6bx � 0
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to a zero of its derivative, the number
of zeros of the derivative is the
maximum number of local extreme
values that the function can have. For a
polynomial of degree n, the derivative
has degree so it has at most

zeros, and thus at most 
local extremes.

3. a. or 
b. no vertical asymptotes
c.

4. a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

5. a.

b.

c.

d.

e.

f.

y

x

4

2

6

8

0

–4

–2
–2–6 –4 862 4 10

y

x
2

4

6

8

0
–2

–4

–6

–8

–4–6 –2–8 4 62 8

(3, 3)

(–1, –5)

y

x

1.0

2.0

0

–1.0

–2.0

–2–4–6–8 2 4 6 8

y

4

8

0

–8

–12

–2–4–6 2 4 6
–4

x

y

x

4

2

6

8

0

–4

–2

–6

–8

–2–4 862 4 10 12

y

x

2

1

3

0
–1

–2

–3

–8 –4–12 84 12

y

x

20

40

0

–20

–40

–60

–80

–2 –1–3 21 3 4

(2, 48)

(3, 45)

(–2, –80)

y

x

4

8

0

–4

–8

–2–4 2 4

y

x

15

30

45

60

0–2 2 4 6 8 10

(3, 57)

(   , 30)2
3

y

x

15

30

0

–15

–30

–2 2 4 6 8 10

(5, 5)

(3, 21)

(1, 37)

x � 3

x � �1x � �3

n � 1n � 1
n � 1,
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g.

h.

i.

j.

6.

7. a. Answers may vary. For example:

b. Answers may vary. For example:

8.

9.

10. a. is a horizontal asymptote to
the right-hand branch of the graph.

is a horizontal asymptote
to the left-hand branch of the graph.

b. and are horizontal

asymptotes.
11.

For possible points of inflection, we

solve 

The sign of changes as x goes from

values less than to values greater

than Thus, there is a point of

inflection at 

At 

Review Exercise, pp. 216–219

1. a. i.
ii.

iii. (1, 20)
b. i.

ii.
iii.

2. No, a counter example is sufficient to
justify the conclusion. The function

is always increasing, yet the
graph is concave down for and
concave up for 

3. a. (0, 20), local minimum; tangent is
horizontal

b. (0, 6), local maximum; tangent is
horizontal 
(3, 33), neither local maximum nor
minimum; tangent is horizontal

c. , local minimum;

, local maximum; tangents at

both points are parallel
d. (1, 0), neither local maximum nor

minimum; tangent is not horizontal
4. a.

b.
c.
d.

5. a. ; large and negative to left of
asymptote, large and positive to
right of asymptote

b. ; large and positive to left 
of asymptote, large and negative to
right of asymptote

c. hole at 
d. large and positive to left

of asymptote, large and negative to
right of asymptote 

large and negative to left of
asymptote, large and positive to
right of asymptote

6. (0, 5); Since the derivative is 0 at ,
the tangent line is parallel to the x-axis
at that point.  Because the derivative is
always positive, the function is always
increasing and, therefore, must cross the
tangent line instead of just touching it.

x � 0

x � 5;

x � �4;
x � �3

x � �5

x � 3
c 6 x 6 d
x 6 a, d 6 x 6 e
b 6 x 6 c
a 6 x 6 b, x 7 e

Q7, 1
14R

Q�1, �1
2R

x 7 0.
x 6 0

f 1x 2 � x3

16.5, �1 211, �1 2 , 3 6 x 6 6.51 6 x 6 3,
x 7 6.5

�3 6 x 6 1,x 6 �3,

x 7 1
x 6 1

2b a�b

3a
b � c � c�

b2

3a

dy

dx
� 3a a�b

3a
b 2

�x �
b

3a
,

x �
�b
3a .

�b
3a .

�b
3a

d2y
dx2

x � �
b

3a

d2y
dx2 � 0:

 
d2y

dx2
� 6ax � 2b � 6a a x �

b

3a
b

 
dy

dx
� 3ax2 � 2bx � c

y � ax3 � bx2 � cx � d

y � �
3
2y �

3
2

y � �1

y � 1

x

4

6

2

0

–4

–6

–2
–4 –2–6 4 62

y

(–1, –1.6)

y

x

2

1

3

0

–2

–1

–3

–4 –2 42 6 8

0

6

8

4

2

2

4

6

8

y

x

4 62 8–4–6–8 –2

0

6

8

10

4

2

2

4

6

8

10

y

x

4 62 8 10–4–6–8–10 –2

y

x

2

1

4

3

0

–2

–3

–1

–4

–2–3 –1–4 21 3 4

d � 0c � 3,b � 0,a � �
1

4
,
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7.

8. a. i. concave up: ;
concave down:

ii. points of inflection: ,

iii.

b. i. concave up: ,

concave down: ,

ii. points of inflection:
, and 

iii.

9. a.
b.

10. a.

b.

c.

d.

e.

f.

11. a. ,
b. There are three different graphs that

result for values of k chosen.

y

x

2

4

0

–2

–4

–2–4 2 4

k � 2

y

x

2

4

0

–2

–4

–2–4 2 4

k � 0

x � ; k�2 � k � 2

y

x

4

8

0

–4

–4 4 8

(1.6, 0.3)

(4.4, 5.8)

y

x

2

4

0

–2

–4

–2–4 2 4

y

x

20

40

–20

–40

–2 4 620

y

x

2

4

0

–2

–4

–2–4 2 4

y

x

2

4

0

–2

–4

–2–4 2 4

y

x

4

8

0

–4

–8

–2–4 2 4

(2, –9)(–2, –9)

y

x

4

6

8

2

0

–4

–2
–4 –2 4 62

b � 0a � 1,

y

x

5

10

–10

–5

–5–10 5 100

x � 5x � 1
x � �4.5,

1 6 x 6 5
x 6 �4.5

5 6 x
�4.5 6 x 6 1

y

x

40

80

–40

–80

–4 8 1240

x � 5
x � �1

x 6 �1, 3 6 x
�1 6 x 6 3

y

x

4

6

8

10

2

0
–2

–4

–6

–2 –1 2 3 41

(–2, 10)

(1, –6)

(3, 4)
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For all other values of k, the graph will
be similar to the graph below.

12. a.
b.

13. ;
increasing: ;
decreasing:

14. local maximum: ,
local minimum: (1.107, 0.446),
absolute maximum: (3, 24.5),
absolute minimum:

15.

16. a. oblique asymptote,
vertical asymptotes at 

and horizontal asymptote at

vertical asymptotes at 
and horizontal asymptote at

vertical asymptote at 
b.

17. Domain: ;
x-intercept: ;
y-intercept: 8;
vertical asymptote: large and
negative to the left of the asymptote,
large and positive to the right of the
asymptote;
no horizontal or oblique asymptote;
increasing: ;
decreasing: ;
concave up: ;
concave down: ;
local minimum at (1.59, 7.56);
point of inflection at 

18. If is increasing, then
From the graph of for

If is decreasing, then
. From the graph of 
for At a stationary

point, . From the graph, the zero
for occurs at . At ,

changes from negative to positve,
so has a local minimum point there.
If the graph of is concave up, then
is positive. From the slope of the
graph of is concave up for

If the graph of is
concave down, then is negative.
From the slope of the graph of is
concave down for and

Graphs will vary slightly.

19. domain: ;
x-intercept and y-intercept: ;
vertical asymptote: large and
positive on either side of the asymptote;
horizontal asymptote: ;
increasing: ;
decreasing: ;

concave down: ;
concave up: ;
local minimum at ;
point of inflection:

20. a. Graph A is f, graph C is and
graph B is We know this because
when you take the derivative, the
degree of the denominator increases
by one. Graph A has a squared term
in the denominator, graph C has a
cubic term in the denominator, and
graph B has a term to the power of
four in the denominator.

b. Graph F is f, graph E is and graph
D is We know this because the
degree of the denominator increases
by one degree when the derivative is
taken.

Chapter 4 Test, p. 220

1. a. or or
or 

b. or or

c. (0, 1),
d.
e.
f. or 
g.

2. a. or or 

b. local maximum

local maximum

: local minimum
3. y

x

4

6

2

0

–4

–6

–2
–4 –2–6 4 62

(–1, 7)

(1, 4)

(3, 2)

13, �45 2Q12, 15
8 R:

Q�1
2, �17

8 R:
x �

1

2
x � �

1

2
x � 3

110, �3 21�8, 0 2 , 4 6 x 6 8�3 6 x 6 0
f – 1x 2 7 0

x � 4x � �3,
18, �2 21�6, �2 2 ,1�9, 1 2 ,4 6 x 6 8

�3 6 x 6 0�9 6 x 6 �6
x 7 80 6 x 6 4

�6 6 x 6 �3x 6 �9

f –.
f ¿

f –.
f ¿,

0

2

–2

4

6

y

x

2 4–2–4

1�2, �1.11 21�1, �1.25 2�2 6 x 6 1, x 7 1
x 6 �2

x 6 �1, x 7 1
�1 6 x 6 1

y � 0

x � 1;
10, 0 25x�R 0  x � 16

0

y

x

1 2–1

1

–1

2

–2

x 7 0.6.
x 6 �0.6

ff ¿,
f –

f�0.6 6 x 6 0.6.
f

f ¿,
f –f

f
f ¿ 1x 2 x � 0x � 0f ¿ 1x 2x � 0

x 6 0.f ¿ 1x 2 6 0
f ¿,f ¿ 1x 2 6 0

f 1x 2x 7 0.
f ¿,  f ¿1x 2 7 0

f ¿ 1x 2 7 0.f 1x 2
0

8

4

–8

–4

12

16

y

x

42 6–4 –2–6

1�2, 0 2�2 6 x 6 0
x 6 �2, x 7 0
x 6 0, 0 6 x 6 1.59
x 7 1.59

x � 0;

�2
5x�R 0 x � 06

0

4

2

–4

–2

6

8

10

y

x

2 4–2–4

y � 2s1x 2 :y � 1
x � 1;

x � �1r1x 2 :y � 0
x � 3;

x � �1q1x 2 : y � 0.75xp1x 2 :

y

x

100

150

200

50

–100

–50

–150

–200

–4–8 4 80

1�4, �7 2
1�2.107, 17.054 20 6 x 6 2x 6 �2,

x 7 2�2 6 x 6 0,
x � 2x � 0,x � �2,

y � 4x � 11
y � x � 3

y

x

2

4

0

–2

–4

–2–4 2 4
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4. hole at large and negative to
left of asymptote, large and positive to
right of asymptote;

;
Domain:

5.

6. There are discontinuities at 
and 

is a vertical 
asymptote.

is a vertical 
asymptote.

The y-intercept is and x-intercept
is .

is a local minimum and

is a local maximum.

is a horizontal asymptote.

7.

Chapter 5

Review of Prerequisite Skills,
pp. 224–225

1. a. c.

b. 4 d.

2. a.

b.

c.

d.

e.

f.

3. a.

x-intercept:

b.

no x-intercept

4. a. b. c.

5. a. e.

b. f.

c. g.

d. h.

6. a. c. e.

b. d. f.

7. a. ,

b. ,

c. ,

d. ,

is undefined

8. a. period: ,
amplitude: 1

b. period: ,
amplitude: 2

c. period: 2,
amplitude: 3

d. period: ,

amplitude:

e. period:
amplitude: 5

f. period:

amplitude:

9. a.

b.

10. a.
LS

RS

Therefore,
sec x csc x.

tan x � cot x �

 �
1

cos x sin x

 �
1

cos x �
1

sin x

 � sec x csc x
 �

1

cos x � sin x

 �
sin2 x � cos2 x

cos x � sin x

 �
sin x
cos x �

cos x
sin x

 � tan x � cot x
tan x � cot x � sec x csc x

3p
2

5p
2

7p
2

3

2

1

0
– 1

–2

–3

2p 3ppp
2

x

y

3p
2

3

4

2

1

0 2ppp
2

x

y

3
2

2p,

2p,

2
7

p
6

4p

p

tan  
p

2

cos  
p

2
� 0

cos u �
1

�5

sin u � �
2

�5

tan u �
�5

2

sin u � �
�5

3

tan u � �
5

12

cos u � �
12

13

�ba
b

a

bab

11p

6

p

6

5p

4
�
p

2

�
2p

3

p

4

3p

2
2p

y

x

x

r

y

r

80
–2

y

x

42 6–4 –2–8 –6

4

2

6

8

10

1�1, 0 2
2 30

3

2

1

–1

–2

–3

1–2–3 –1

x

y

loga T � b

log3 z � 8

log10 450 � w

logx 3 � 3

log4 
1

16
� �2

log5 625 � 4

9

4

1

9

1

9

y

x

4

6

8

2

0
–2

–4

–6

–8

–2 –1–3–4 2 3 41

(0, 2)

(–2, 6)

c � 2b � 3,

y

x

4

6

8

2

0
–2

–4

–6

–8

–4 –2–6–8–10 4 6 8 102

y � 0

1�1, �1 2Q�9, �1
9R�5

�
10
9

lim
xS3�

f 1x 2 � �q

lim
xS3�

f 1x 2 � q
¶ x � 3

lim
xS3�

f 1x 2 � q

lim
xS3�

f 1x 2 � �q
¶ x � �3

x � 3.
x � �3

y

x
20

–40

–60

–80

–100

–120

–140

–20
–4 –2–6 4 6 8 1020

5x�R 0 x � �2, x � 36y � 1

x � �2;
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4. hole at large and negative to
left of asymptote, large and positive to
right of asymptote;

;
Domain:

5.

6. There are discontinuities at 
and 

is a vertical 
asymptote.

is a vertical 
asymptote.

The y-intercept is and x-intercept
is .

is a local minimum and

is a local maximum.

is a horizontal asymptote.

7.

Chapter 5

Review of Prerequisite Skills,
pp. 224–225

1. a. c.

b. 4 d.

2. a.

b.

c.

d.

e.

f.

3. a.

x-intercept:

b.

no x-intercept

4. a. b. c.

5. a. e.

b. f.

c. g.

d. h.

6. a. c. e.

b. d. f.

7. a. ,

b. ,

c. ,

d. ,

is undefined

8. a. period: ,
amplitude: 1

b. period: ,
amplitude: 2

c. period: 2,
amplitude: 3

d. period: ,

amplitude:

e. period:
amplitude: 5

f. period:

amplitude:

9. a.

b.

10. a.
LS

RS

Therefore,
sec x csc x.

tan x � cot x �

 �
1

cos x sin x

 �
1

cos x �
1

sin x

 � sec x csc x
 �

1

cos x � sin x

 �
sin2 x � cos2 x

cos x � sin x

 �
sin x
cos x �

cos x
sin x

 � tan x � cot x
tan x � cot x � sec x csc x

3p
2

5p
2

7p
2

3

2

1

0
– 1

–2

–3

2p 3ppp
2

x

y

3p
2

3

4

2

1

0 2ppp
2

x

y

3
2

2p,

2p,

2
7

p
6

4p

p

tan  
p

2

cos  
p

2
� 0

cos u �
1

�5

sin u � �
2

�5

tan u �
�5

2

sin u � �
�5

3

tan u � �
5

12

cos u � �
12

13

�ba
b

a

bab

11p

6

p

6

5p

4
�
p

2

�
2p

3

p

4

3p

2
2p

y

x

x

r

y

r

80
–2

y

x

42 6–4 –2–8 –6

4

2

6

8

10

1�1, 0 2
2 30

3

2

1

–1

–2

–3

1–2–3 –1

x

y

loga T � b

log3 z � 8

log10 450 � w

logx 3 � 3

log4 
1

16
� �2

log5 625 � 4

9

4

1

9

1

9

y

x

4

6

8

2

0
–2
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–8

–2 –1–3–4 2 3 41

(0, 2)
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c � 2b � 3,

y

x
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2

0
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y � 0

1�1, �1 2Q�9, �1
9R�5

�
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9

lim
xS3�

f 1x 2 � �q

lim
xS3�

f 1x 2 � q
¶ x � 3

lim
xS3�

f 1x 2 � q
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xS3�

f 1x 2 � �q
¶ x � �3

x � 3.
x � �3
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x
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b.

LS

RS

Therefore,

11. a.

b.

Section 5.1, pp. 232–234

1. You can only use the power rule when
the term containing variables is in the
base of the exponential expression. In
the case of the exponent
contains a variable.

2. a.
b.
c.
d.

e.

f.

3. a.
b.

c.

d.

e.

f.

4. a.

b.

c.

5. a.

b.

c. The answers agree very well; the
calculator does not show a slope of
exactly 0.5, due to internal rounding.

6.

7.

8. (0, 0) and 

9. If then

and

10. a. ,

,

b.

11. a. ,

b. ,

c. ,

12. a. 31 000

b.

c. bacteria h
d. 31 000 at time 
e. The number of bacteria is constantly

decreasing as time passes.

13. a.

b.

From a, which

gives Thus,

c. 40 m/s
d.

14. a. i. e
ii. e

b. The limits have the same value
because as x , 0.

15. a.
b.

16. or 

17. a.

b.

c. Since 

18. a. Four terms:
Five terms:
Six terms:
Seven terms: 2.718 055

2.716 666
2.708 333
2.666 666

�
11cosh x 22

�

1

4
 14 21cosh x 22

�
1e2t � 2 � e�2t 2 41cosh x 22

�

1

4
3 1e2x � 2 � e�2x 21cosh x 22

�

1

2
 1ex � e�x 2 a 1

2
b 1ex � e�x 21cosh x 22

�

1

2
 1ex � e�x 2 a 1

2
b 1ex � e�x 21cosh x 22

�

1sinh x 2 a d

dx
 cosh x b1cosh x 22

d

dx
 1tanh x 2 �

a d

dx
 sinh x b 1cosh x 21cosh x 22

tanh x �
sinh x
cosh x,

� sinh x

d

dx
 1cosh x 2 �

1

2
1et � e�t 2� cosh x

�
1

2
1ex � e�x 2

d

dx
 1sinh x 2 �

d

dx
 c 1

2
1ex � e�x 2 dm � 2m � �3

e2
1

S1
xqS

about 12 s, about 327.3 m

a � 10 a1 �
v

40
b � 10 �

1

4
v.

e
t
4 � 1 �

v

40
.

v � 40 Q1 � e� t
4R,a �

dv

dt
� 40 a 1

4
� e� t

4 b � 10e� t
4

40 Q1 � e� t
4R

t � 0
>�17

�
100

3
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d2y

dx2
� ex12 � x 2
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dx
� ex13 � x 2

d2y

dx2
� 4xe2x � 4e2x
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dx
� e2x12x � 1 2

d2y

dx2
� �3ex

dy

dx
� �3e3x

dn y

dxn � 1�1 2n 13n 2  e�3x

d3y

dx3
� �27e�3x

d2y

dx2
� 9e�3x
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dx
� �3e�3x

�
1

25
 y

�
1

25
c 5
2
a e

x
5 � e�x

5 b d
y– �

5

2
a 1

25
e

x
5 �

1

25
e�x

5 b
y¿ �

5

2
a 1

5
e

x
5 �

1

5
e�x

5 b ,

y �
5

2
 1ex

5 � e�x
5 2 ,

a2, 
4

e2
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1

e

2 30
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1

–1
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1–2–3 –1

x

y

ex � y � 0

y �
1

2
x � 1

�2 � 3e

1

e

e3 � e�3

2e2t11 � e2t 22
2tet2

� 3e�t

�xex � ex a 1

2�x
b

�3x2e�x31x 2 � e�x3

x2

e3x13x � 1 26x2ex3

1

2�x
 e�x

1�6 � 2x 2e5 �  6x �  x2

�3e�3x
20e10t
3e3t �  5
3e3x

y � ex,

5p

3
x �
p

3
,

5p

6
x �
p

6
,

sin x
1 � sin2 x

� tan x sec x.

 �
sin x
cos2 x

 �
sin x
cos x �

1

cos x

� tan x sec x
 �

sin x

cos2 x

�
sin x

1 � sin2 x

sin x
1 � sin2 x

 � tan x � sec x
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b. The expression for e in part a is a

special case of 

in that it is the 

case when Then 
is in fact 

The value of
x is 1.

Section 5.2, p. 240
1. a.

b.

c.

d.

e.

f.

2. a.

b.

c.

d.

3.

4.
5.
6. a. about years

b. about % year
7. a. In 1978, the rate of increase of debt

payments was $904 670 000 annum
compared to $122 250 000 annum
in 1968. The rate of increase for
1978 is 7.4 times larger than that
for 1968.

b. The rate of increase for 1998 is 
7.4 times larger than that for 1988.

c. Answers may vary. For example,
data from the past are not necessarily
good indicators of what will happen
in the future. Interest rates change,
borrowing may decrease, principal
may be paid off early.

8.

9.

From the graph, the values of 
quickly rise in the range of about

The slope for these
values is positive and steep. Then as
the graph nears , the steepness
of the slope decreases and seems to
get very close to 0. One can reason
that the car quickly accelerates for the
first 20 units of time. Then, it seems
to maintain a constant acceleration for
the rest of the time. To verify this, one
could differentiate and look at values
where is increasing.

Section 5.3, pp. 245–247

1. a. absolute max: about 0.3849,
absolute min: 0

b. absolute max: about 10.043,
absolute min: about 

2. a. max: 0.3849,
min: 0;

max: about 10,
min: about 

b. The graphing approach seems to be
easier to use for the functions. It is
quicker and it gives the graphs of
the functions in a good viewing
rectangle. The only problem may
come in the second function,
because for , the function
quickly approaches values in the
negative thousands.

3. a. 500 squirrels
b. 2000 squirrels
c. (54.9, 10)
d.

e. P grows exponentially until the
point of inflection, then the growth
rate decreases and the curve
becomes concave down.

4. a. 1001 items
b. 500 items

5. 500 units
6. 47.2%; 0.462 h
7. a.

b. The growth rate of capital
investment grew from 468 million
dollars per year in 1947 to 2.112
billion dollars per year in 1967.

c. 7.5%
d. dollars,

dollars year

e. Statistics Canada data shows the
actual amount of U.S. investment in
1977 was dollars. The
error in the model is 3.5%.

f. dollars,

dollars year
8. a. 478 158; 38.2 min after the drug was

introduced
b. 42.72 min after the drug was

introduced
9. 10 h of study should be assigned to the

first exam and 20 h of study for the
second exam.

10. Use the algorithm for finding extreme
values. First, find the derivate .
Then find any critical points by setting

and solving for x. Also find
the values of x for which is
undefined. Together these are the
critical values. Now evaluate for
the critical values and the endpoints 2
and The highest value will be the
absolute maximum on the interval, and
the lowest value will be the absolute
minimum on the interval.

11. a. is increasing on the intervals 
and 

Also, is decreasing on the
interval 

b. 0
1�2, 0 2 .f 1x 2 10, q 2 .1�q, �2 2f 1x 2

�2.

f 1x 2f ¿ 1x 2f ¿ 1x 2 � 0

f ¿ 1x 2

>dC
dt � 42.975 � 109

C � 570.490 � 109
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�23.03x � y � 13.03 � 0
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�
3 ln 10

4

 3
x
2 3x ln 3 � 4 4

x3

�
2t

t2
�

2t ln 2

t

13 2x2 3 12x2 ln 3 2 � 1 45x 3 1x5 � ln 5 2 � 5x4 440012 2 x�3ln 2

2x13x2�2 2 ln 3

1105�6n�n2 2 ln 101�6 � 2n 231103t�5 2 ln 10

ln 3.113.1 2x � 3x2

3123x 2 ln 2

1
5! � p .� 1

4! �� 1
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� 1
2!e1 � e � 1 � 1

1!

ex � e1 � ex � 1.
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3! � x4

4! � p .
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1! � x2
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12. a. no maximum or minimum value

b. min: no max

c. min: no max

d. no max or min

13. about 0.61
14. a.

b. increasing when and 

decreasing when 

c. about s

d.
15. The solution starts in a similar way to 

that of question 9. The effectiveness
function is

The derivative simplifies to

This expression is very difficult to
solve analytically. By calculation on a
graphing calculator, we can determine
that the maximum effectiveness occurs
when h.

16. a.

b. after 4.6 days, 5012
c. The rate of growth is slowing down

as the colony is getting closer to its
limiting value.

Mid-Chapter Review, 
pp. 248–249

1. a.
b.
c.
d.
e.

f.

2. a.
b.

3.
4. a. ,

b. ,

c. ,

5. a.
b.
c.
d.
e.
f.

6. a. 5500

b.

c. decreasing by about 15 rabbits/month
d. 5500

e.

The graph is constantly decreasing.
The y-intercept is (0, 5500). Rabbit
populations normally grow
exponentially, but this population is
shrinking exponentially. Perhaps a
large number of rabbit predators,
such as snakes, recently began to
appear in the forest. A large number
of predators would quickly shrink
the rabbit population.

7. at about 0.41 h
8. The original function represents

growth when meaning that 
c and k must have the same sign. The
original function represents decay
when c and k have opposite signs.

9. a. 5000
b. 5751
c. 9111

10. a. 406.80 mm Hg
b. 316.82 mm Hg
c. 246.74 mm Hg

11. 15% per year
12.

So,

This means that the function is 
increasing when 

13.

14. a.
b.
c. ,

,

d. No
A¿ 110 2 � $104.35
A¿ 15 2 � $77.98
A¿ 12 2 � $65.47
A¿ 1t 2 � 100011.06 2 t ln 1.06
 A1t 2 � 100011.06 2 t
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e.

f. All the ratios are equivalent (they
equal which is about 
0.058 27), which means that

is constant.

15.

Section 5.4, pp. 256–257

1. a.
b.
c.
d.
e.
f.
g.
h.
i.

j.

2. a.

b.

c.

d.

e.
f.

3. a.

b.
c.

d.

e.

f.
4. a. One could easily find and

to see that they both equal
However, it is

easier to notice a fundamental
trigonometric identity. It is known
that So,

Therefore, is in fact equal to
So, because 

b. and are each others’
negative. That is,

, while

5. a.

b.

c.

d.

6. a. absolute max: ,
absolute min:

b. absolute max: 2.26,
absolute min:

c. absolute max: ,
absolute min:

d. absolute max: 5,
absolute min:

7. a. for positive
integers k

b. 8
8. a.

b.

9. ,

10.
11. a. for positive

integers k
b. 4
c. minimum: 0 maximum: 4

12.

13.

14. First find 

So,

Therefore,

Section 5.5, p. 260

1. a.
b.
c.

d.

e.
f.

2. a.

b.
3. a.

b.
c.
d.
e.

f.

4. a.

b.
5. and 

6.

7.

The denominator is never negative.
for since

reaches its minimum of at

Since the derivative of the

original function is always positive in
the specified interval, the function is
always increasing in that interval.

8.

9. Write tan and use the 
quotient rule to derive the derivative of 
the tangent function.

10.
11. f – 1x 2 � 8 csc2 x cot x

�csc2 x

x �
sin x
cos x

�4x � y � 12 � p 2 � 0

x �
p
2 .

�1sin x

�
p
2 6 x 6 p2 ,1 � sin x 7 0

 �
1 � sin x

cos2 x

 �
cos2 x � sin x � sin2 x

cos2 x

 �
cos2 x � 1�sin x � sin2 x 2

cos2 x

 
dy

dx
�

cos2 x � 11 � sin x 2 1�sin x 2
cos2 x

 �
1 � sin x

cos x

 �
1

cos x
�

sin x

cos x

y � sec x � tan x

ap
4

, 0.57 b 2pp,x � 0,
2 sec2 x11 � 3 tan2 x 2cos x � sec x �

2 sin2 x

cos 
3 x

1

2�x
 etan�x sec2 2�x

sin2 x13 tan x cos x � sin x sec2 x 221tan x � cos x 2 1sec2 x � sin x 2�2 tan 1cos x 2sec2 1cos x 2sin x
�4x 3 tan1x2 � 1 2 4�3sec2 1x2 � 1 2cos x sec2 1sin x 2y � �2x

y � 2 a x �
p

4
b151tan 5x cos 5x � sin 5x sec2 5x 22x sec2 1x2 2 � 2 tan x sec2 x

x12 tan px � px sec2 px 2
tan2 px

6x2 tan 1x2 2sec21x3 22 sec2
 x � 2 sec 2x

3 sec2 3x

y– � k2y � 0.

� 0
� k2A cos kt � k2B sin kt

� �k2A cos kt � k2B sin kt

� k21A cos kt � B sin kt 2� �k2A cos kt � k2B sin kt

y– � k2y

 y– � �k2A cos kt � k2B sin kt

 y¿ � �kA sin kt � kB cos kt
 y � A cos kt � B sin kt

y–.
u �
p

6

u �
p

3

3p
4 � pkt �

p
4 � pk,

��3

1sec x 2 ¿ � sec x tan x
1csc x 2 ¿ � �csc x cot x
ap

4
,�2 b

p 2p

2

1

0
–1

–2

x

f (x)

3p
4 � pkt �

p
4 � pk,

�5

��2
�2

�5.14

��2
�2

� 12x � 2 sin x cos x 2m¿ 1x 2 � 31x2 � cos2 x 22� sin 2x sin 3x cos x
� 2 sin x sin 3x cos 2x

� 3 sin x sin 2x cos 3xh¿ 1x 2v¿ 1t 2 �
�sin t � 2 1sin t 2 1cos t 2

2�1 � cos t � sin2 t

v¿ 1t 2 �
sin 1�t 2  cos 1�t 2

�t

g¿ 1x 2 � �21sin x 2 1cos x 2 .f ¿ 1x 2 � 1sin x 2 1cos x 2g¿ 1x 2f ¿ 1x 2

f ¿ 1x 2 � g¿ 1x 2 . f 1x 2 � g1x 2 ,g1x 2 . f 1x 2sin2 x � 1 � cos2 x.
sin2 x � cos2 x � 1.

2 1sin x 2 1cos x 2 .g¿ 1x 2 f ¿ 1x 22x � y � p � 0

y �
�3

2
� � a x �

p

4
b

y � �3 a x �
p

2
by � �1

�2x � y � 0

�x � 2y � ap
3

� �3 b � 0

� 3x sin x � 3 cos x
2x3 cos x � 6x2 sin x
ex12 cos x 2

1

1 � cos x

�sin 1sin 2x 2 � 2 cos 2x

�
2 sin 2x

x
�

cos 2x

x2

2 cos 12x 2�
1

x2
 cos a 1

x
b2x � sin x

9 cos 13x � 2p 2ex cos 1ex 22x1ln 2 2 � 2 cos x � 2 sin x
3 cos 13x 2 � 4 sin 14x 28 sin 1�4x 213x2 � 2 2 1cos 1x3 � 2x � 4 2 2�6 sin 3x
2 cos 2x

y � y¿ � cex
 � cex

 y¿ � c1ex 2 � 10 2 1ex 2y � cex

A¿ 1t 2
A1t 2

ln 1.06,

A¿ 110 2
A110 2 � ln 1.06

A¿ 15 2
A15 2 � ln 1.06,

A¿ 12 2
A12 2 � ln 1.06,

A n s w e r s 657NEL



Review Exercise, pp. 263–265

1. a.
b.
c.

d.
e.

f.

2. a.
b.
c.
d.

e.

f.

3. a.
b.

c.

d.
e.
f.

4. a.
b. The function has a horizontal

tangent at (1, e). So this point could
be possible local max or min.

5. a.
b. The slope of the tangent to at 

the point with x-coordinate is 0.

6. a.
b.

7.

Now,

8.
9.

10. about m per unit of time

11. a.
b. After 10 days, about 0.1156 mice

are infected per day. Essentially,
almost 0 mice are infected per day
when 

12. a.
b.

13. a.
b.
c.
d.

14. a.
b.

c.

d.
e.
f.

15. a.
b.

c.

d.
e.
f.

16.

17.
Thus,

The acceleration at any time t is

Hence,
Now,

18. displacement: 5,
velocity: 10,
acceleration: 20

19. each angle rad, or 
20. 4.5 m
21. 2.5 m
22. 5.19 ft
23. a.

b.

Chapter 5 Test, p. 266

1. a.
b.

c.

d.

e.

f.

2. ,
The tangent line is the given line.

3.
4. a.

Thus, the acceleration is a constant
multiple of the velocity. As the
velocity of the particle decreases,
the acceleration increases by a
factor of k.

b. 10 cm s

c.

5. a.
b.

6. absolute max: 1,
absolute min: 0

7. 40.24

8. minimum: , no maximum

9. a.

b. increasing:

decreasing: and

c. local maximum at local

minimum at 

d.

Cumulative Review of Calculus,
pp. 267–270

1. a. 16 c.

b. d.
2. a. m s

b. m s
3.
4. a. m s

b. m s
c. m s>53.655

>19.6
>19.6

f 1x 2 � x3
>15
>13

160 ln 2�2

1

6

–p p3p
4

0

2

1

–2

–1

–3

–4

3

4

y

x– 3p
4

p
2– p

2
p
4– p

4

x � �
5p
6

x � �
p
6 ;

�
p
6 6 x 6 p

�p � x 6 �
5p
6

�
5p
6 6 x 6 �

p
6 ;

x � �
p

6
, �

5p

6
, 
p

2

Q�4, � 1
e4R

� csc3 x � sin x
f – 1x 2 � csc x cot2 x
f – 1x 2 � 21sin2 x � cos2 x 2
ln 2

k
; �5k
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Review Exercise, pp. 263–265

1. a.
b.
c.

d.
e.

f.

2. a.
b.
c.
d.

e.

f.

3. a.
b.

c.

d.
e.
f.

4. a.
b. The function has a horizontal

tangent at (1, e). So this point could
be possible local max or min.

5. a.
b. The slope of the tangent to at 

the point with x-coordinate is 0.

6. a.
b.

7.

Now,

8.
9.

10. about m per unit of time

11. a.
b. After 10 days, about 0.1156 mice

are infected per day. Essentially,
almost 0 mice are infected per day
when 

12. a.
b.

13. a.
b.
c.
d.

14. a.
b.

c.

d.
e.
f.

15. a.
b.

c.

d.
e.
f.

16.

17.
Thus,

The acceleration at any time t is

Hence,
Now,

18. displacement: 5,
velocity: 10,
acceleration: 20

19. each angle rad, or 
20. 4.5 m
21. 2.5 m
22. 5.19 ft
23. a.

b.

Chapter 5 Test, p. 266

1. a.
b.

c.

d.

e.

f.

2. ,
The tangent line is the given line.

3.
4. a.

Thus, the acceleration is a constant
multiple of the velocity. As the
velocity of the particle decreases,
the acceleration increases by a
factor of k.

b. 10 cm s

c.

5. a.
b.

6. absolute max: 1,
absolute min: 0

7. 40.24

8. minimum: , no maximum

9. a.

b. increasing:

decreasing: and

c. local maximum at local

minimum at 

d.

Cumulative Review of Calculus,
pp. 267–270

1. a. 16 c.

b. d.
2. a. m s

b. m s
3.
4. a. m s

b. m s
c. m s>53.655

>19.6
>19.6

f 1x 2 � x3
>15
>13
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y

x– 3p
4

p
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p
4– p
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x � �
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6

x � �
p
6 ;
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p
6 6 x 6 p

�p � x 6 �
5p
6
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6 6 x 6 �

p
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6
, �

5p

6
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5. a. 19 000 fish year
b. 23 000 fish year

6. a. i. 3
ii. 1

iii. 3
iv. 2

b. No, does not exist. In order 

for the limit to exist,

and must exist and they  

must be the same. In this case,
but 

so 

does not exist.
7. is discontinuous at 

but 

8. a. d.

b. 6 e.

c. f.

9. a.

b.

10. a.

b.

c.

d.

e.

f.

11.
12. 3
13. a.

b. 46 people per year
c. 2006

14. a.

b.

c.

d.

15. a. maximum: 82, minimum: 6
b. maximum: minimum: 2

c. maximum: minimum:

d. maximum: 5, minimum: 1

16. a.

b. stationary when or 
advancing when and
retreating when 

c.
d.
e.

17.
18. cm, cm
19. cm, cm
20. a.

b. 46.7 cm by 46.7 cm
by 46.6 cm

21.
22. $70 or $80
23. $1140

24. a.

is critical number,
Increase:
Decrease:

b.

is critical number,

Increase:

Decrease:

c.

are critical numbers,
Increase:
Decrease:

d. The function has

no critical numbers. The function is 
decreasing everywhere it is defined,
that is,

25. a. is a horizontal asymptote.
are the vertical asymptotes.

There is no oblique asymptote.

is a local maximum.

b. There are no horizontal asymptotes.
are the vertical asymptotes.

is an oblique asymptote.
is a local 

maximum, is a local
minimum.

26. a.

b.

27. a.
b.
c.
d.

28.
29. a. 5 days

b. 27
30. a.

b.

c.

d.

e.
f.

31. about 4.8 m
32. about 8.5 m

Chapter 6

Review of Prerequisite Skills,
p. 273

1. a. d.

b. e.

c. f. 1

2.

3. a. , ,

b. , ,

4. , ,
5. , ,
6. 5.82 km
7. 8.66 km
8. 21.1 km
9. 59.4 cm2

�T � 34°�S � 102°�R � 44°
YZ � 6.78XZ � 7.36�Z � 50°

 �C � 52.4°
 �B � 29.7° �A � 97.9°

 �C � 53.5°
 �B � 36.5° AB � 29.7

4

3

1

2

�2

2
��3

�3

2

�3

2

�2x sin x2 cos 1cos x2 22x sec2 x2 � 2 tan x sec2 x

1 � 2 cos x1cos x � 2 22
2x � 3 cos 3x

2�x2 � sin 3x

8 cos 2x 1sin 2x � 1 232 cos x � 15 sin 5x

y � 2e1x � 1 2 � e
1cos x 2esin x
13 ln 6 263x�8
e3x13x � 1 21�20 2e5x�1

4 6

3x——–—–
x2 – 4

y =

0

4

6

2

–4

–6

–2

y

x

2–2–4–6

2

y = 4x3 + 6x2 – 24x – 2

0

20

30

10

–10

y

x

1–1–2–3

1�3, 6�3 21��3, �6�3 2y � 4x
x � ;1

Q0, �8
9R

x � ;3
y � 0

x � 2.

dy
dx � �

21x � 2 2 2.�2 6 x 6 2
x 7 2,x 6 �2,

x � ;2

dy

dx
� 6x2 � 24,

x 6 �
4
3

x 7 �
4
3,

x � �
4
3

dy

dx
� 12x � 16,

x 7 2
x 6 2,

x � 2

dy

dx
� �10x � 20,

x � 4

101 629.5 cm3;
140 � 2x

h � 27.5r � 6.8
h � 8.6r � 4.3

14 062.5 m2
4.5 6 t � 8
0 � t 6 4.5
t � 4.5

v1t 2 6 0
v1t 2 7 0,

t � 3,t � 6
a1t 2 � 18t � 81
v1t 2 � 9t2 � 81t � 162,

1
2

e4

1 � e4 ,

9 1
3,

f – 1x 2 � 12x2 �
20

x6

f ¿ 1x 2 � 4x3 �
4

x5
;

f – 1x 2 �
3

�x5
f ¿ 1x 2 � �

2

�x3
;

f – 1x 2 � �
12

x4
f ¿ 1x 2 �

4

x3
;

f – 1x 2 � 20x3 � 30x
f ¿ 1x 2 � 5x4 � 15x2 � 1;

p¿ 1t 2 � 4t � 6

4x � 3y � 10 � 0
� 32x � 612x � 1 22 45 3x2 � 12x � 1 23 44
14x2 � 1 24184x2 � 80x � 9 213x � 2 24
� 1x2 � 3 22120x4 � 5 24x1x2 � 3 2 14x5 � 5x � 1 2

61x � 3 22
3x2

�2x3 � 1

3x2 � 8x � 5

�
1

x2

6x � 1
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2
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9
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12

4

3
�

1

5

lim
xS2�

 f 1x 2 � 3.lim
xS2�

 f 1x 2 � 5,
x � 2.f 1x 2
lim
xS4

 f 1x 2lim
xS4�

 f 1x 2 � �q,

lim
xS4�

 f 1x 2 �q,

lim
xS4�

 f 1x 2 lim
xS4�

 f 1x 2lim
xS4

 f 1x 2
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5. a. 19 000 fish year
b. 23 000 fish year

6. a. i. 3
ii. 1

iii. 3
iv. 2

b. No, does not exist. In order 

for the limit to exist,

and must exist and they  

must be the same. In this case,
but 

so 

does not exist.
7. is discontinuous at 

but 

8. a. d.

b. 6 e.

c. f.

9. a.

b.

10. a.

b.

c.

d.

e.

f.
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12. 3
13. a.
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c. 2006

14. a.

b.

c.

d.

15. a. maximum: 82, minimum: 6
b. maximum: minimum: 2

c. maximum: minimum:

d. maximum: 5, minimum: 1

16. a.

b. stationary when or 
advancing when and
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d.
e.
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by 46.6 cm

21.
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24. a.

is critical number,
Increase:
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b.

is critical number,

Increase:

Decrease:

c.

are critical numbers,
Increase:
Decrease:

d. The function has

no critical numbers. The function is 
decreasing everywhere it is defined,
that is,

25. a. is a horizontal asymptote.
are the vertical asymptotes.

There is no oblique asymptote.

is a local maximum.

b. There are no horizontal asymptotes.
are the vertical asymptotes.

is an oblique asymptote.
is a local 

maximum, is a local
minimum.
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b.

27. a.
b.
c.
d.

28.
29. a. 5 days

b. 27
30. a.
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e.
f.
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32. about 8.5 m
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Section 6.1, pp. 279–281

1. a. False; two vectors with the same
magnitude can have different
directions, so they are not equal.

b. True; equal vectors have the same
direction and the same magnitude.

c. False; equal or opposite vectors
must be parallel and have the same
magnitude. If two parallel vectors
have different magnitude, they
cannot be equal or opposite.

d. False; equal or opposite vectors
must be parallel and have the same
magnitude. Two vectors with the
same magnitude can have directions
that are not parallel, so they are not
equal or opposite.

2. The following are scalars: height,
temperature, mass, area, volume,
distance, and speed. There is not a
direction associated with any of these
qualities.
The following are vectors: weight,
displacement, force, and velocity.
There is a direction associated with
each of these qualities.

3. Answers may vary. For example:
A rolling ball stops due to friction,
which resists the direction of motion.
A swinging pendulum stops due to
friction resisting the swinging
pendulum.

4. Answers may vary. For example:
a.

b.

c. & & & 
& 

5.

a.
b.
c. but 

d.
e.

6. a. b. c.

d. e.

7. a. 100 km h, south
b. 50 km h, west
c. 100 km h, northeast
d. 25 km h, northwest
e. 60 km h, east

8. a. 400 km h, due south
b. 70 km h, southwesterly
c. 30 km h southeasterly
d. 25 km h, due east

9. a. i. False; they have equal magnitude,
but opposite direction.

ii. True; they have equal magnitude.
iii. True; the base has sides of equal

length, so the vectors have equal
magnitude.

iv. True; they have equal magnitude
and direction.

b. , ,

10. a. The tangent vector describes
James’s velocity at that moment. 
At point A, his speed is 15 km h and
he is heading north. The tangent
vector shows his velocity is 
15 km h, north.

b. James’s speed
c. The magnitude of James’s velocity

(his speed) is constant, but the
direction of his velocity changes at
every point.

d. C
e. 3.5 min
f. southwest

11. a. or 3.16
b.
c.
d. (0, 0)

Section 6.2, pp. 290–292

1. a.

b.

c.

d.

2. a.

b.

c.

d.
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3. a.

b.

c.

d.

4. a.

b. 

c. The resultant vectors are the same.
The order in which you add vectors
does not matter.

5. a.

b.

6.

so

7. a.

b.

c.

d.

e.

f.

g.

h.
8. a.

b. See the figure in part a. for the
drawn vectors.

and 
so 

9. a. 11 km h
b.

c. 3 km h

10. a.

b. The vectors form a triangle
with side lengths , and 

Find using the

cosine law.

11. 170 km h, N28.1°W
12. ,
13. 0.52
14. The diagonals of a parallelogram

bisect each other. So,

Therefore,

15. Multiple applications of the Triangle
Law for adding vectors show that

(since both 
are equal to the undrawn vector ),
and that 
(since both are equal to the undrawn
vector ).
Adding these two equations gives

16. and represent the
diagonals of a parallelogram with sides

and 

Since and the only
parallelogram with equal diagonals is a
rectangle, the parallelogram must also
be a rectangle.
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b

ca

a – b + c
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–c

–b

a

a + b – c

–c

b

a

a + b + c
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17.

Let point M be defined as shown. Two
applications of the triangle law for
adding vectors show that

Adding these two equations gives

From the given information,
and

(since they are
opposing vectors of equal length), so

, as desired.

Section 6.3, pp. 298–301

1. A vector cannot equal a scalar.
2. a.

b.

c.

d.

3. E25°N describes a direction that is 25°
toward the north of due east. N65°E and
“a bearing of 65°” both describe a
direction that is 65° toward the east of
due north. 

4. Answers may vary. For example:
a.

b.

c.

d.

e.

5. a.

b.

c.

d.

6. Answers may vary. For example:

a.

b.

c.

d.

e.

2a – 3b

a
a

–b
–b

–b

2a + 3b

a
a b

b
b

–3b

3b

2a

a b

–x

–x

–2x – y

–y

y –x

–x

–2x + y

–y

–y

–y

x

x – 3y

y

y

y

x

x + 3y

10v! 0  v!
�2v
!

�
2

3
 v
!

1

2
 v
!

2v
!

6 cm

2 cm

9 cm

3 cm

GQ
!
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!
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!
� 0
!

QM
!
� RM

!
� 0
!2MG

!
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!

� GR
!
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!
� 0
!

GQ
!
� QM

!
� 2 MG

!
 

GR
!
� RM

!
� MG

!
� 0
!GQ

!
� QM

!
� MG

!
� 0
!

G

RQ

P

M
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7. a. Answers may vary. For example:
infinitely many

b. Answers may vary. For example:
not unique

8.

9. yes 

10. a. collinear
b. not collinear
c. not collinear
d. collinear

11. a. is a vector with length 1 unit in 

the same direction as 

b. is a vector with length 1 unit

in the opposite direction of 

12.

13. a. d.

b. e.

c.

14. or 2.24, from toward

15. 2.91, 9.9° from toward 

16.

17.

But 

So, or  

18.

Notice that

We can conclude that is parallel to 

and 
19.

Answers may vary. For example:

a. and 
b. and 

c. and 
d. and 

20. a.
b.

21. a.

b.

The two are, therefore, parallel

(collinear) and .
22. Applying the triangle law for adding

vectors shows that

The given information states that

By the properties of trapezoids, this
gives 

, and since

, the original
equation gives

Section 6.4, pp. 306–307

1. a. 0
b. 1
c.
d. 1

2.

3.

4. Answers may vary. For example:

5.

6. a.

b.
c. Yes, the diagonals of a rectangular

prism are of equal length.

7.

8. a.

b.

c.

9. ,

10.
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!
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11. a.

b.

12. Applying the triangle law for adding
vectors shows that

The given information states that

By the properties of trapezoids, this
gives

, and since

, the original equation
gives

Mid-Chapter Review, 
pp. 308–309

1. a. , ,
,

There is not enough information to
determine if there is a vector equal
to 

b.

(parallelogram)

2. a. c. e.
b. d. f.

3. a.
b. 53°

4. 4 or 
5. In quadrilateral PQRS, look at 

PQR. Joining the midpoints 
B and C creates a vector that is
parallel to and half the length of

. Look at SPR. Joining the
midpoints A and D creates a vector 

that is parallel to and half
the length of . is parallel to

and equal in length to .
Therefore, ABCD is a
parallelogram.

6. a.
b. 71°

c.

d.
7. 3
8.

9. , ,

,
10. Construct a parallelogram with sides

and . Since the diagonals
bisect each other, 2 is the diagonal
equal to . Or 

and 

So, . 

And . 

Now ,

Multiplying by 2 gives 

11.

12. 460 km h, south

13. a.
b.
c.

14. a.

b.

c.

d.

15.

Section 6.5, pp. 316–318

1. No, as the y-coordinate is not a real
number.

2. a. We first arrange the x-, y-, and 
z-axes (each a copy of the real line)
in a way so that each pair of axes 
are perpendicular to each other (i.e.,
the x- and y-axes are arranged in
their usual way to form the xy-
plane, and the z-axis passes through
the origin of the xy-plane and is
perpendicular to this plane). This is
easiest viewed as a “right-handed
system,” where, from the viewer’s
perspective, the positive z-axis
points upward, the positive x-axis
points out of the page, and the
positive y-axis points rightward in
the plane of the page. Then, given
point P(a, b, c), we locate this
point’s unique position by moving 
a units along the x-axis, then from
there b units parallel to the y-axis,
and finally c units parallel to the 
z-axis. It’s associated unique
position vector is determined by
drawing a vector with tail at the
origin O(0, 0, 0) and head at P.

b. Since this position vector is unique,
its coordinates are unique.
Therefore, and

3. a. and 
b.

4. This is not an acceptable vector in as
the z-coordinate is not an integer.
However, since all of the coordinates
are real numbers, this is acceptable as a
vector in 

5.
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6. a. is located on the 
y-axis. 
and are three other
points on this axis.

b. the vector with
tail at the origin and 
head at A.

7. a. Answers may vary. For example:

b. Yes, these vectors are collinear
(parallel), as they all lie on the same
line, in this case the z-axis.

c. A general vector lying on the z-axis
would be of the form 
for any real number a. Therefore, this
vector would be represented by
placing the tail at O and the head at
the point (0, 0, a) on the z-axis.

8.

9. a.

b.
10. a.

b.

c.

d.

e.

f.

11. a.

b.

c.
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y
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x

O(0, 0, 0)

(1, 0, 0)

(0, –2, 0)
C(1, –2, 1)

(1, 0, 1)
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d.

e.

f.

12. a.
b. Since P and Q represent the same

point in , they will have the same
associated position vector, i.e.,

So, since these vectors
are equal, they will certainly have
equal magnitudes, i.e.,

13. xy-plane, ; xz-plane, ; 
yz-plane, .

14. a. Every point on the plane containing
points M, N, and P has y-coordinate
equal to 0. Therefore, the equation
of the plane containing these points
is (this is just the xz-plane).

b. The plane contains the origin
O(0, 0, 0), and so since it also
contains the points M, N, and P as
well, it will contain the position 

vectors associated with these points
joining O (tail) to the given point
(head). That is, the plane 

contains the vectors 

and 
15. a.

b.

c. 7 units
d.
e. Every point contained in rectangle

BCEP has y-coordinate equal to 4,
and so is of the form (x, 4, z), where
x and z are real numbers such that

and 
16. a.

b.

c.

d.

e.

f.

17.

18. First, by the triangle
law of vector addition, where

and are drawn in standard
position (starting from the origin O

(0, 0, 0)), and is drawn starting 

from the head of Notice that OA
!
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!
.
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lies in the xy-plane, and is
perpendicular to the xy-plane (so is 

perpendicular to ). So,

and form a right triangle and, by
the Pythagorean theorem,

Similarly, by the 
triangle law of vector addition, where

and and
these three vectors form a right
triangle as well. So,

Obviously and so
substituting gives

19.

Section 6.6, pp. 324–326

1. a.

b. ,

c. ,

2.

a.

b.

3. 5
4. a. ,

b. 5.83
5. a. ,

b. ,

6. a.
b.
c. (1, 11)

7. a.

b.

c.
8. a. about 

b. about 
c. about 
d. about 

9. a. , ,

,

b. , ,

,

10. a. , ,

b. so obviously

we will have 

11. a.

b. , ,

,

c.

Since , the
triangle is a right triangle. 

12. a.

b.

c. , ,
13. a. ,

b. ,
14. a.

b. Because ABCD is a rectangle, we
will have

So, and i.e.,

15. a.

b.

16.

17. a. about 
b. about 35.4°

80.9°

a 9

41
, 

40

41
b

Q a0, �
21

4
b

P a 21

10
, 0 b C10, 172.y � 17,x � 0

y � 9 � 8
x � 6 � 6

1x � 6, y � 9 2 � 16, 8 21x, y 2 � 1�6, 9 2 � 18, 112 � 12, 32BC
!
� AD

!

x

y

A(2, 3)

D(8, 11)

C(x, y)

B(–6, 9)

y � 4.x � �12
y � �2x � 7

Z110, 4 2Y14, �8 2X1�6, 12 2

x

y
X(–6, 12)

Y(4, –8)

B(7, –2)

C(2, 8)

A(–1, 2)

Z(10, 4)

x

y

A(–1, 2)

B(7, –2)

C(2, 8)

�CB
!
�2 � �AC

!
�2 � �AB

!
�2

�AB
!
�2 � 25

�CB
!
�2 � 125, �AC

!
�2 � 100,

CB
!
 � 11.18�AC

!
� � 10

�AB
!
� � 5AB

!14, 3 2
x

y

A(2, 3)

B(6, 6)
C(–4, 11)

�OA
!
� � �BC

!
�.

� BC
!
,OA

!
� 16, 3 2BC
!
� 16, 3 2 BA

!
� 1�5, 9 2OC

!
� 117, �3 2�GH

!
� � 5�EF

!
� � 7.21

�CD
!
� � 4.47�AB

!
� � 4.47

� 15, 0 2GH
!

� 1�6, 4 2EF
! � 12, 4 2CD

!
� 14, 2 2AB
! 18.38

18.38
6.71
4.12

�29i
!
� 28j

!
3i
!
� 51j

!
7i
!
� 8j
!

1�30, 0 21�2, 7 20a!� b
! 0 � 28.28

0a!� b
! 0 � 100.02
0b! 0 � 410a! 0 � 61

b � 5a � �3

2OA
!
 and �2OA

!

1

2
OA
!
 and �

1

2
OA
!
,

y

x

10

15

20

5

0

–10

–15

–20

–5
–6 –3–9–12 6 9 123

(12, 20)

O(0, 0)

(–3, –5)

(–12, –20)

(3, 5)

y

x

20

25

30

15

10

0
–5

5

–6 –3–9 6 93

O(0, 0) OA

A(6, 10)

�BA
!
� � 3.61�AB

!
� � 3.61

�OB
!
� � 5.39�OA

!
� � 3.16

x

B(2, 5)

y

A(–1, 3)

AB

BA

BA
!
� 1�3, �2 2AB

!
� 13, 2 2 ,

16, �5, 2 2� 15
�OP
!
� � �225

� 225
� 125 � 100

�OP
!
�2 � �OA

!
�2 � �OB

!
�2

�OB
!
�2 � 100,

� 125
� 25 � 100

�OA
!
�2 � 0a! 0 2 � �b

!
�2

b
!
� 10, �10, 0 2 ,a

!
� 15, 0, 0 2OA

!
� a
!
� b
!

�OP
!
�2 � �OA

!
�2 � �OB

!
�2

OB
! OA

!
,OP

!
,OA

!

OB
!
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Section 6.7, pp. 332–333

1. a.
b. about 

2. ,

3. 3
4. a.

b. , ,

c. ,

,

represents the vector from the

tip of to the tip of It is the
difference between the two vectors.

5. a.
b.

c.

d.

6. a.

b.

c.

d.
7. a. about 

b. about 
c. about 
d. about 

8. ,

9. a. The vectors , and 
represent the xy-plane, xz-plane,
and yz-plane, respectively. They 
are also the vector from the origin
to points , and 

, respectively.

b. ,

,

c. ,

,

d. , is a direction vector
from A to B.

10. a. 7
b. 13
c. (5, 2, 9)
d. 10.49
e.
f. 10.49

11. In order to show that ABCD is a
parallelogram, we must show that 

or This will
show they have the same direction,
thus the opposite sides are parallel.

We have shown and

so ABCD is a parallelogram.

12. , ,

13. a.

b. ,
,

,
,
,
,

,

14. (1, 0, 0)

15. 4.36

Section 6.8, pp. 340–341

1. They are collinear, thus a linear
combination is not applicable.

2. It is not possible to use in a spanning
set. Therefore, the remaining vectors
only span 

3. The set of vectors spanned by (0, 1) 
is If we let then

4. spans the set This is any
vector along the x-axis. Examples:
(2, 0, 0), .

5. As in question 2, it isn’t possible to use
in a spanning set.

6.
are all the possible

spanning sets for with 2 vectors.
7. a.

b.
8.

9. a. It is the set of vectors in the 
xy-plane.

b.
c. By part a., the vector is not in the

xy-plane. There is no combination
that would produce a number other
than 0 for the z-component.

d. It would still only span the 
xy-plane. There would be no 
need for that vector.

10. , ,
11.

12. a. ,

b.

13. a. The statement a
does

not have a consistent solution.
b.

14.
15. ; Non-parallel vectors

cannot be equal, unless their
magnitudes equal 0.

16. Answers may vary. For example:
and ,

and ,

and 

17. As in question 15, non-parallel vectors.
Their magnitudes must be 0 again to
make the equality true.

So, when , their sum will be 0.

Review Exercise, pp. 344–347

1. a. false; Let , then:

b. true; and both
represent the lengths of the
diagonal of a parallelogram, the
first with sides and and the
second with sides and since
both parallelograms have as a
side and diagonals of equal length

c. true; Subtracting from both sides
shows that .b

!
� c
!a
!@b! @  � @c! @ . a

!c
!
;a

! b
!

a
!

@a!� c
! @@a!� b

! @ � 0 6 0a! 0 � 00 0 0a!� b
! 0 � 0a!� 1�a

!2 0b
!
� �a

!
� 0

m � �3
�3m � 2,

m2 � m � 6 � 1m � 2 2 1m � 3 2�3m � 1,
m2 � 2m � 3 � 1m � 1 2 1m � 3 2

q �
2

3
p �

13

3

q � 0p � 25

q � 1p � �6

n � 3m � 2,
�7

� 1�3, 14, 7 231�1, 3, 4 2 � 510, �1, 1 2
b14, 1, �2 2 � 1�14, �1, 16 21�1, 2, 3 2 �

� 181�1, 1 214, �11 2 � �712, 1 2� 1141�1, 1 21124, �5 2 � 11912, 1 212, �3 2 � �112, �1 2 � 41�1, 1 2b � x � 2y
a � x � y

� 811, 5 2� 2 1�1, 321�10, �342 c � 3b � 24a � �2

�211, 0, 0 2 � 410, 1, 0 2

13, 4, 0 2 � 311, 1, 0 2 � 10, 1, 0 21�1, 2, 0 2 � �111, 1, 0 2 � 310, 1, 0 25 11, 1, 0 2 , 10, 1, 0 2 613, 4, 0 2 � 311, 0, 0 2 � 410, 1, 0 21�1, 2, 0 2 � �111, 0, 0 2 � 210, 1, 0 25 11, 0, 0 2 , 10, 1, 0 2 6:�7i
!
� 23j

!
� 14k

!14i
!
� 43j

!
� 40k

!R2
5 1�1, 1 2 , 1�3, 6 2 6 5 12, �4 2 , 1�1, 1 2 6,5 1�1, 2 2 , 1�1, 1 2 6,0
!

1�21, 0, 0 2m11, 0, 0 2 .i
!
m10, 1 2 � 10, �1 2 . m � �1,m10, 1 2 .R

2.

0
!

V8 � 1�2, 11, 5 2V7 � 10, 9, 0 2V6 � 1�2, 7, 4 2V5 � 1�2, 6, 6 2V4 � 10, 5, �1 2V3 � 10, 4, 1 2V2 � 1�2, 2, 5 2V1 � 10, 0, 0 2

z

x

y

A

B
O

C

OA

OB

OC

c � 0b � 7a �
2

3

BC
!
� AD

!
,

AB
!
� DC

!� 13, �4, 12 2DC
!� 13, �4, 12 2AB
!

BC
!
� AD

!
.AB

!
� DC

!

1�5, �2, �9 2

AB
!10, �b, c 2�OB

!
� � �b2 � c2

�OB
!
� � �a2 � c2

�OA
!
� � �a2 � b2

OC
!
� 0i
!
� bj
!
� ck
!OB

!
� ai
!
� 0j
!
� ck
!OA

!
� ai
!
� bj
!
� 0k
!

10, b, c 2 1a, b, 0 2 , 1a, 0, c 2
OC
!

OB
!

OA
!
,

y
!
� �2i

!
� 2j
!
� 6k
!x

!
� i
!
� 4j
!
� k
!11.18

5.39
1.41
5.10

�9i
!
� 3j
!
� 3k
!

9i
!
� 3j
!
� 3k
!

3i
!
� 0j
!
� 0k
!

i
!
� 2j
!
� 2k
!

12, 30, �13 2a�13

2
, 2, 

3

2
b1�7, �16, 8 211, �3, 3 2 OB

!
.OA

!AB
!�AB
!
� � 14.07

AB
!
� 15, �2, �13 2�OP
!
� � 12.57

�OB
!
� � 3�OA

!
� � 13

1�1, 6, 11 2
�OB
!
� � 6.40OB

!
� 13, 4, �4 24.58

�1i
!
� 2j
!
� 4k
!
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d. true; Draw the parallelogram
formed by and and 
are the opposite sides of a
parallelogram and must be equal.

e. true; the distributive law for scalars
f. false; Let and let

Then,
and 

but 

so 
2. a.

b.
3. a. ,

b.

4. a.

b.

5.

6. a. ,

b.

7. a. ,

,

b. 12.5
c. 18.13
d.

8. a.

b. 5

9. ,

,

10. a. where P(x, y, z)
is the point.

b. (0, 0, 0) and 

11. a. , ,

b. , ,

12. a. yes
b. yes

13. a.

Since the
triangle is right-angled

b.

14. a. and 

b. and 

c.

But 

Therefore,
15. a. C(3, 0, 5), P(3, 4, 5), E(0, 4, 5),

F(0, 4, 0)
b. ,

c.
d.

16. a. 7.74
b. 2.83
c. 2.83

17. a. 1236.9 km
b. S14.0°W

18. a. Any pair of nonzero, noncollinear
vectors will span To show that
(2, 3) and (3, 5) are noncollinear,
show that there does not exist any
number k such that .
Solve the system of equations:

Solving both equations gives two

different values for k, and so 
(2, 3) and (3, 5) are noncollinear
and thus span .

b. ,
19. a. Find a and b such that

i.
ii.
iii.
Use the method of elimination with 
i. and iii.

By substitution, .

lies in the plane determined by 
and because it can be written as a
linear combination of and 

b. If vector is in the span of and 
then can be written as a linear
combination of and Find m and
n such that

Solve the system of equations:

Use the method of elimination:

By substitution,
So, vector is in the span of 
and 

20. a.

b.
c.
d. (4, 4, 0)

21. 7
22. a. ,

,

b. If A, B, and C are vertices of a right
triangle, then

So, triangle ABC is a right triangle.

23. a.
b.
c.
d.
e. b
!
� c
!0

!�b
!
� a
!
� c
!a

!
� b
!a

!
� b
!
� c
!

 � 100
 �AB
!
�2 � 102
 � 100
 � 20 � 80

�BC
!
�2 � �CA

!
�2 � 12�5 22 � 1�8022 �BC

!
�2 � �CA

!
�2 � �AB

!
�2

�CA
!
� � �80 � 8.94

�BC
!
� � 2�5 � 4.47

�AB
!
� � 10

1�4, 0, �4 21�4, �4, �4 2

y

z

x

(0, 0, 0)

(0, 0, 4)

(0, 4, 0)

(4, 0, 0) (4, 4, 0)

(4, 0, 4)

(0, 4, 4)

(4, 4, 4)

c
!
.

b
!

a
! m � 11.

 3 � n
 33 � 11n

 �  �13 � �2m � 3n
 46 � 2m � 8n

2123 2 � 21m � 4n 2 23 � m � 4n
 36 � 3m � n

 �13 � �2m � 3n

3m � n, m � 4n 2� 1�2m � 3n,
� 13n, n, 4n 2� 1�2m, 3m, m 2� n13, 1, 4 21�13, 36, 23 2 � m1�2, 3, 1 2c

!
.b

!a
! c

!
,b

!
a
!

c
!
.b

!c
! b

!
a
!

a � 2

 3 � b
 33 � 11b

�    5 � �2a � 3b
 28 � 2a � 8b

 2114 2 � 21a � 4b 2
14 � a � 4b
9 � 3a � b
5 � �2a � 3b

� b, a � 4b 215, 9, 14 2 � 1�2a � 3b, 3a
� 13b, b, 4b 215, 9, 14 2 � 1�2a, 3a, a 2� b13, 1, 4 215, 9, 14 2 � a1�2, 3, 1 2n � 621m � �770

R2

5
3,3

2

3k � 5
2k � 3

k12, 3 2 � 13, 5 2
R2.

50.2°
90°
CF
!
� 1�3, 4, �5 2DB
!
� 13, 4, �5 2

0AD
! 0 2 � 0DC

! 0 2 � 0DB
! 0 20AC

! 0 2 � 0DB
! 0 20AD

! 0 2 � 0DC
! 0 2 � 0AC

! 0 2EA
!

CE
!
,AB

!
DC
!
,

ED
!

EB
!
,BC

!
DA
!
,

�6

3

�AB
!
�2 � �AC

!
�2 � �BC

!
�2

�AB
!
�2 � 9, �AC

!
�2 � 3, �BC

!
�2 � 6

c � �10b �
7

3
a � 8

c � 10b � 26.5a � �3

a1, 
1

3
, 0 b

x � 3y � 6z � 0
31�3, 1 2 � 21�1, 2 2 � 1�11, 7 2
1

3
1�11, 7 2 � a�2

3
b 1�1, 22� 1�3, 12

1

2
 1�11, 7 2� a�3

2
 b 1�3, 1 2� 1�1, 2 2

c

b

a

a – b a – b
a – b + c

16, 2, �2 2
 �CA
!
� � �45

 �BC
!
� � �59

�AB
!
� � �14

u � 84.4°
OA
!
� OB

!
� 19, �4, �4 2OA

!
� OB

!
� 1�3, 8, �8 2a�

6

7
, 

2

7
, 

3

7
b

a�
2

3
, �

1

3
, �

2

3
b1�6, �3, �6 2a�

2

7
, 

3

7
, 

6

7
b0XY

! 0 � 7

XY
!
� 1�2, 3, 6 2a

!
� 3b

!
� 3c
!20a

!
� 30b

!
� 8c
!0a!� b

! 0 � 0c!� d
! 00c!� b

! 0 � 0c!� c
! 0 � 02c

! 00a!� b
! 0 � 0a!� 1�a

!2 0 � 0
0c! 0 � 0d! 00a! 0 � 0�a

! 0 � 0b! 0c
!
� d
!
� 0.

b
!
� �a

!

RS
!

FW
!

SW
!
.RF

!
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24.

25. a.

b.

c.
26. Case 1 If and are collinear, then

is also collinear with both 
and . But is perpendicular to and

, so is perpendicular to .
Case 2 If and are not collinear,
then by spanning sets, and span a
plane in R3, and is in that
plane. If is perpendicular to and ,
then it is perpendicular to the plane
and all vectors in the plane. So, is
perpendicular to .

Chapter 6 Test, p. 348
1. Let P be the tail of and let Q be 

the head of The vector sums
and can

be depicted as in the diagram below,
using the triangle law of addition. 

We see that 

This is the associative
property for vector addition.

2. a. (8, 4, 8)
b. 12

c.

3.

4. a. ,
b. , ,

5. a. and span because any
vector (x, y) in can be written as
a linear combination of and 
These two vectors are not multiples
of each other.

b. ,

6. a.

b. cannot be written as a linear
combination of and In other
words, does not lie in the plane
determined by and 

7. , relative to x

8.

Also,

Thus,

Chapter 7

Review of Prerequisite Skills,
p. 350

1. km h N E
2. 15.93 units W N
3.

4. a.
b.
c.
d.

5. a. (x, y, 0)
b. (x, 0, z)
c. (0, y, z)

6. a.

b.
c.

d.

7. a.

b.

c.

Section 7.1, pp. 362–364

1. a. 10 N is a melon, 50 N is a chair,
100 N is a computer

b. Answers will vary.
2. a.

b.
3. a line along the same direction

4. For three forces to be in equilibrium,
they must form a triangle, which is a
planar figure.

5. a. The resultant is 13 N at an angle of
N W. The equilibrant is 13 N
at an angle of S W.

b. The resultant is 15 N at an angle of
S W. The equilibrant is 15 N at
N E.

6. a. yes b. yes c. no d. yes
7. Arms 90 cm apart will yield a resultant

with a smaller magnitude than at 
30 cm apart. A resultant with a smaller
magnitude means less force to counter
your weight, hence a harder chin-up.

8. The resultant would be 12.17 N at
from the 6 N force toward the 

8 N force. The equilibrant would be
12.17 N at from the 6 N force
away from the 8 N force.

9. 9.66 N from given force, 2.95 N
perpendicular to 9.66 N force

10. 49 N directed up the ramp
11. a.

b.
12. approximately south of east
13. a. 7

b. The angle between and the
resultant is The angle between

and the equilibrant is .
14. a.

For these three equal forces to be in
equilibrium, they must form an
equilateral triangle. Since the
resultant will lie along one of these
lines, and since all angles of an
equilateral triangle are the
resultant will be at a angle with
the other two vectors.

60°
60°,

1 N

1 N1 N

60°60°

60°

163.7°f
!
1

16.3°.
f1

7.1 N 45°
60°

13 N

7 N

8 N

15°

145.3°

34.7°

36.9°
36.9°

22.6°
22.6°

180°

10 N

20 N

30 N

12i
!
� j
!
� 2k
!5i

!
� j
!
� k
!i

!
� 3j
!
� k
!4i

!
� 6j
!
� 8k
!�8i

!
� 11j

!
� 3k
!6i

!
� 2j
!i

!
� 7j
!

l � 9.2212, 0, �9 2 ;l � 1.4111, 1, 0 2 ; l � 16.911�9, 3, 14 2 ;13, �2, 7 2 ; l � 7.87

y
A(0, 1, 0)

z

x

B(–3, 2, 0)

C(–2, 0, 1)

D(0, 2, –3)

32.2°
7.1°>v � 806

DE
!
�

1

2
 BA
!

BA
!
� 2b

!
� 2a

!
BA
!
� CA

!
� CB

!

DE
!
� b
!
� a
!DE

!
� CE

!
� CD

!

u � 3.61; 73.9°�13

q
!
.p

!r
! q

!
.p

!r
!711, 2,�3 211, 12, �29 2 � �213, 1, 4 2 �

q � 3p � �2

b
!
.a

!R2
R2,b

!
a
! c � �11b � 5a � 1

� 3b
!
� 5a

!
y
!

x
!
� 2b

!
� 3a

!
�19

a�
2

3
, �

1

3
, �

2

3
b

(b + c) 

(a + b) 
b

a

 = (a + b) + c =  a + (b + c) PQ

Q

P

c

1a!� b
!2 � c

!
.

PQ
!
� a
!
� 1b!� c

!2 �

3 1a!� b
!2 � c

!43a!� 1b!� c
!2 4c
!
.

a
!

2b
!
 � 4c

!
 

a
!
 

c
!
 b

!
 a

!
 

2b
!
 � 4c

!
 

c
!
 b

!
 

c
!
 b

!
 

2b
!
 � 4c

!
 a

!
 c

!
 

b
!
 a

!
 c

!
 

b
!
 2b

!
 � 4c

!
 

c
!
 b

!
 

�4 0a! 0 2 � 9 0b! 0 2� 0a! 0 2 � 0b! 0 2� 0a! 0 2 � 0b! 0 2 a

b
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24.

25. a.

b.

c.
26. Case 1 If and are collinear, then

is also collinear with both 
and . But is perpendicular to and

, so is perpendicular to .
Case 2 If and are not collinear,
then by spanning sets, and span a
plane in R3, and is in that
plane. If is perpendicular to and ,
then it is perpendicular to the plane
and all vectors in the plane. So, is
perpendicular to .

Chapter 6 Test, p. 348
1. Let P be the tail of and let Q be 

the head of The vector sums
and can

be depicted as in the diagram below,
using the triangle law of addition. 

We see that 

This is the associative
property for vector addition.

2. a. (8, 4, 8)
b. 12

c.

3.

4. a. ,
b. , ,

5. a. and span because any
vector (x, y) in can be written as
a linear combination of and 
These two vectors are not multiples
of each other.

b. ,

6. a.

b. cannot be written as a linear
combination of and In other
words, does not lie in the plane
determined by and 

7. , relative to x

8.

Also,

Thus,

Chapter 7

Review of Prerequisite Skills,
p. 350

1. km h N E
2. 15.93 units W N
3.

4. a.
b.
c.
d.

5. a. (x, y, 0)
b. (x, 0, z)
c. (0, y, z)

6. a.

b.
c.

d.

7. a.

b.

c.

Section 7.1, pp. 362–364

1. a. 10 N is a melon, 50 N is a chair,
100 N is a computer

b. Answers will vary.
2. a.

b.
3. a line along the same direction

4. For three forces to be in equilibrium,
they must form a triangle, which is a
planar figure.

5. a. The resultant is 13 N at an angle of
N W. The equilibrant is 13 N
at an angle of S W.

b. The resultant is 15 N at an angle of
S W. The equilibrant is 15 N at
N E.

6. a. yes b. yes c. no d. yes
7. Arms 90 cm apart will yield a resultant

with a smaller magnitude than at 
30 cm apart. A resultant with a smaller
magnitude means less force to counter
your weight, hence a harder chin-up.

8. The resultant would be 12.17 N at
from the 6 N force toward the 

8 N force. The equilibrant would be
12.17 N at from the 6 N force
away from the 8 N force.

9. 9.66 N from given force, 2.95 N
perpendicular to 9.66 N force

10. 49 N directed up the ramp
11. a.

b.
12. approximately south of east
13. a. 7

b. The angle between and the
resultant is The angle between

and the equilibrant is .
14. a.

For these three equal forces to be in
equilibrium, they must form an
equilateral triangle. Since the
resultant will lie along one of these
lines, and since all angles of an
equilateral triangle are the
resultant will be at a angle with
the other two vectors.

60°
60°,

1 N

1 N1 N

60°60°

60°

163.7°f
!
1

16.3°.
f1

7.1 N 45°
60°

13 N

7 N

8 N

15°

145.3°

34.7°

36.9°
36.9°

22.6°
22.6°

180°

10 N

20 N

30 N

12i
!
� j
!
� 2k
!5i

!
� j
!
� k
!i

!
� 3j
!
� k
!4i

!
� 6j
!
� 8k
!�8i

!
� 11j

!
� 3k
!6i

!
� 2j
!i

!
� 7j
!

l � 9.2212, 0, �9 2 ;l � 1.4111, 1, 0 2 ; l � 16.911�9, 3, 14 2 ;13, �2, 7 2 ; l � 7.87

y
A(0, 1, 0)

z

x

B(–3, 2, 0)

C(–2, 0, 1)

D(0, 2, –3)

32.2°
7.1°>v � 806

DE
!
�

1

2
 BA
!

BA
!
� 2b

!
� 2a

!
BA
!
� CA

!
� CB

!

DE
!
� b
!
� a
!DE

!
� CE

!
� CD

!

u � 3.61; 73.9°�13

q
!
.p

!r
! q

!
.p

!r
!711, 2,�3 211, 12, �29 2 � �213, 1, 4 2 �

q � 3p � �2

b
!
.a

!R2
R2,b

!
a
! c � �11b � 5a � 1

� 3b
!
� 5a

!
y
!

x
!
� 2b

!
� 3a

!
�19

a�
2

3
, �

1

3
, �

2

3
b

(b + c) 

(a + b) 
b

a

 = (a + b) + c =  a + (b + c) PQ

Q

P

c

1a!� b
!2 � c

!
.

PQ
!
� a
!
� 1b!� c

!2 �

3 1a!� b
!2 � c

!43a!� 1b!� c
!2 4c
!
.

a
!

2b
!
 � 4c

!
 

a
!
 

c
!
 b

!
 a

!
 

2b
!
 � 4c

!
 

c
!
 b

!
 

c
!
 b

!
 

2b
!
 � 4c

!
 a

!
 c

!
 

b
!
 a

!
 c

!
 

b
!
 2b

!
 � 4c

!
 

c
!
 b

!
 

�4 0a! 0 2 � 9 0b! 0 2� 0a! 0 2 � 0b! 0 2� 0a! 0 2 � 0b! 0 2 a

b
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b. Since the equilibrant is directed
opposite the resultant, the angle
between the equilibrant and the
other two vectors is 

15. 7.65 N, from toward 
16. rope: N 

rope: 143.48
17. 24 cm string: approximately 39.2 N,

32 cm string: approximately 29.4 N
18. to the starboard side
19. a. magnitude for resultant and

equilbrant 
b.

20. We know that the resultant of these
two forces is equal in magnitude and
angle to the diagonal line of the
parallelogram formed with and 
as legs and has diagonal length

We also know from the 

cosine rule that 

where is the supplement to in, our
parallelogram. Since we know

then 

Thus, we have

Section 7.2, pp. 369–370

1. a. 84 km h in the direction of the
train’s movement

b. 76 km h in the direction of the
train’s movement

2. a. 500 km h north
b. 700 km h north

3. 304.14, W S
4. 60° upstream
5. a. 2 m s forward

b. 22 m s in the direction of the car
6. 13 m s, N W
7. a. 732.71 km h, N W

b. about 732.71 km
8. a. about 1383 km

b. about east of north
9. a. about south of west

b. 2 h, downstream to the bank

10. a. 5 km h
b.
c. 20 min

11. a. about west of north
b. about 108 km h

12.

Since her swimming speed is a
maximum of 4 km h, this is her
maximum resultant magnitude, which
is also the hypotenuse of the triangle
formed by her and the river’s velocity
vector. Since one of these legs is 
5 km h, we have a triangle with a leg
larger than its hypotenuse, which is
impossible.

13. a.
b. 100 s

14. a. , upstream
b. about 58.6 s

15. 35 h

Section 7.3, pp. 377–378

1. To be guaranteed that the two vectors
are perpendicular, the vectors must be
nonzero.

2. is a scalar, and a dot product is
only defined for vectors.

3. Answers may vary. For example, let

but 
4. because 
5.
6. a. 16

b.
c. 0
d.
e. 0
f.

7. a.
b.
c.
d.
e.
f.

8. 22.5
9. a.

b.
10. 0
11. 1

12. a.

b.

13. a.

b. , vectors are perpendicular.
Therefore , which
is the Pythagorean theory.

14. 14
15.

16. 3
17.
18.

because 

is a scalar

because 

Section 7.4, pp. 385–387

1. Any vector of the form is
perpendicular to Therefore, there are
infinitely many vectors perpendicular
to Answers may vary. For example:

2. a. 0; 
b. acute
c. obtuse

3. Answer may vary. For example:
a. is perpendicular to every

vector in the xy-plane.
b. is perpendicular to every

vector in the xz-plane.
c. is perpendicular to every

vector in the yz-plane.
4. a. ;

b. no

1�4, �5, �6 2  and a5, �3, �
5

6
b11, 2, �1 2  and 14, 3, 10 211, 0, 0 210, 1, 0 210, 0, 1 2�3 6 0;

34 7 0;
90°

11, 1 2 , 12, 2 2 , 13, 3 2 .a
!
.

a
!
.

1c, c 2
d
! # a! � 0

c
! # a! � d

! # a! � c
! # a!

0a! 0 � 1c
! # a! � 1d! � c

!2 # a!c
! # a! � 1b! # a!2 0a! 0 2b
! # a!

c
! # a! � 1b! # a!2 1a! # a!2c
! # a! � 11b! # a!2a!2 # a!b
!
� d
!
� c
!d

!
� b
!
� c
!�7

� 2 0u! 0 2 � 2 0v! 0 2� 0v! 0 2� 2u
! # v!

� 0u! 0 2� 0v! 0 2� 0u! 0 2 � 2u
! # v!
# 1u! � v

!2� 1u! � v
!2# 1u! � v

!2� 1u! � v
!20u! � v

! 0 2 � 0u! � v
! 0 2

0a! 0 2 � @b! @ 2 � 0c! 0 2b
! # c! � 0

� @b! @ 2 � 2b
! # c! � 0c! 0 2� 1b! � c

!2 # 1b! � c
!20a! 0 2 � a

! # a!
� 0a! 0 2 � @b! @ 2 � @b! @ 2� a

! # b!� 0a! 0 2 � a
! # b!

� b
! # b!� b

! # a!� a
! # b!� a

! # a!
1a! � b

!2 # 1a! � b
!2� @b! @ 2� 0a! 0 2 � 2a

! # b!
� @b! @ 2� a

! # b!� 0a! 0 2 � a
! # b!

� b
! # b!� b

! # a!� a
! # b!� a

! # a!
1a! � b

!2 # 1a! � b
!2

6 0x! 0 2 � 19x
! # y! � 3 @y! @ 22 0a! 0 2 � 15 @b! @ 2 � 7a

! # b!
120°
60°
127°
53°
80°
30°
�26.2

�1

�6.93

�1
c
!
� a
!

a
! # b! � b

! # a! � b
! # c!
a
!
� �c

!
.a

! # c! # c! � 0,
a
! # b! # b! � 0,c

!
� �i

!
i

 ˆ #b
!
� j
!
,a

!
� i ˆ,

a
! # b!

about 58.5°

about 68 m

>
>5

4

>18.4°

about 0.67 km
>

53.1°
10.4°
12.5°

5.5°>37.6°> >>
9.5°
>>
>>

� �  @ f1! @2 � @ f2! @2 � 2 @ f1! @ @ f2! @cos u

@ f1! � f2
! @� @ f1! @ 2 � @ f2! @ 2 � 2 @ f1! @ @ f2! @ cos f

@ f1! � f2
! @2� @ f1! @ 2 � @ f2! @ 2 � 2 @ f1! @ @ f2! @ cos f

@ f1! � f2
! @2 � �cos u.cos f � cos 1180 � u 2f � 180 � u,

uf

� @ f1! @ 2 � @ f2! @ 2 � 2 @ f1! @ @ f2! @ cos f,

@ f1! � f2
! @ 2@ f1! � f2

! @ . f2

!
f1

!

u10N � 136.7°
u8N � 125.6°,u5N � 111.3°,

� 13.75 N

8.5°

30°
175.7345°

f3

!
f2

!
67.5°

� 120°.180° � 60°
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5. a. The vectors must be in which is
impossible

b. This is not possible since does not
exist in 

6. a. about 
b. about 
c. about 
d. about 

7. a.

b.
8. a.

b. and ; and

c.

or

9. a.
b.

10. a. i.

ii. Answers may vary. For example,
.

b. Unique for collinear vectors; not
unique for perpendicular vectors

11.
12. a.

b.
13. a. Answers may vary. For example,

.
b. Answers may vary. For example,

.
14. 3 or 
15. a.

b. 0
16. Answers may vary. For example,

and 

Let 
is perpendicular to 

and 
Let 

is perpendicular to 
and 

17. 4 or 

18. a.
Therefore, since the two diagonals
are perpendicular, all the sides must
be the same length.

b. ,

,

c.
19. a.

b.
20. or 

Mid-Chapter Review, 
pp. 388–389

1. a. 3
b. 81

2. 15 cm cord: 117.60 N; 
20 cm cord: 88.20 N

3. 0
4. a. about 575.1 km h at S 7.06° E

b. about 1.74 h
5. a. about 112.61 N

b. about 94.49 N

6. 4.5
7. a. 34

b.

8. a. 0
b. 5
c.

d. 0

e. 34

f. 9

9. a. or 

b. no value
10. a.

b. 24
c. or 1.41
d.
e.

11. about 

12. N, from the 4 N force
towards the 3 N force. N,

from the 4 N
force away from the 3 N force.

13. a. about 
b. about 

14. a. about 
b. about 2.17 h

15. or 

16. a. about 6.12 m
b. about 84.9 s

17. a. when and have the same length
b. Vectors and determine a

parallelogram. Their sum is
one diagonal of the parallelogram
formed, with its tail in the same
location as the tails of and 
Their difference is the other
diagonal of the parallelogram.

18. about 268.12 N

Section 7.5, pp. 398–400

1. a.

b.

2. Using the formula would cause a
division by 0. Generally the has any
direction and 0 magnitude. You cannot
project onto nothing.

3. You are projecting onto the tail of ,
which is a point with magnitude 0.
Therefore, it is the projections of 
onto the tail of are also 0 and 

4. Answers may vary. For example,

scalar projection on 

vector projection on 

scalar projection on 

vector projection on 
5. scalar projection of  on 

vector projection of  on 

scalar projection of  on 

vector projection of  on 

scalar projection of  on 

vector projection of  on 
Without having to use formulae, a
projection of on or is
the same as a projection of 

on on and on ,
which intuitively yields the same
result.

6. a. scalar projection:

vector projection:

b.
about 163.0°

about 74.9°,about 82.5°,

458
441 1�4, 5, �20 2
p
! # q!@q! @ �

458
21 ,

k
!10, 0, 5 2j

!
,10, 2, 0 2i

!
,

1�1, 0, 0 2k
!

j
!
,i
!
,1�1, 2, 5 2 k
!
� �5k

!
;a

!
k
!
� �5,a

!
j
!
� 2j
!
,a

!
j
!
� 2,a

!
i
!
� �i

!
,a

!
i
!
� �1,a

!
p
!
� A
!
Dq

!
p
!
� 0A!D 0 ,q

!
q
!
� A
!
C,p

!
q
!
� @A!C @ ,p

!
A

D

C

E

Bq

p

q
!
� A
!
Bp

!
� A
!
E,

0
!
.a

! b
!

0
!
;

b
!

a
!

0
!

vector projection � 3j
!scalar projection � 3,

vector projection � 2i
!scalar projection � 2,

a
!
� b
! b

!
.a

!

a
!
� b
!b

!
a
!

y
!

x
!

a�
1

�6
, 

2

�6
, �

1

�6
b

x
!
� a 1

�6
, �

2

�6
, 

1

�6
b

N 2.6° E
87.9°
109.1°

180° � 25.3° � 154.7°
E
!
� 6.08

25.3°F
!
� 6.08

126.9°
�12
�4
�2

i
!
� 4j
!
� k
!

x � �
1

3
x � �3

5i
!
� 4j
!
� 3k
!

34

63

>

u � 70.5°a � 109.5°
87.4°
16, 18, �4 2u2 � 120°u1 � 60°;
@AB
! @ � @BC

! @ � �6

BC
!
� 12, 1, 1 2AB
!
� 11, 2, �1 2

 a
! # b!� 0

�
44

65

1�2, �4, 2 2 . 11, 2, �1 211, 1, 3 2x � y � 1.
1�2, �4, 2 2 . 11, 2, �1 211, 0, 1 2x � z � 1.

 x � 2y � z � 0
 1x, y, z 2 11, 2, �1 2 � 0

11, 1, 3 2 .11, 0, 1 2
3 � 4p � q � 0

�1
11, 1, 1 213, 1, 1 250°
F � 10, 0, 5 2 E � 10, 4, 5 2 ,D � 17, 0, 5 2 , C � 10, 4, 0 2 ,B � 17, 4, 0 2 , A � 17, 0, 0 2 ,O � 10, 0, 0 2 , uC � 63.4°uB � 26.6°;uA � 90°;

q � �50p � 1,

q � 3p �
8

3
;

30°
90°
� 0
� �1 � 1
11, 1 2 # 1�1, 1 2� 0
� 1 � 1
11, 1 2 # 11, �1 21�1, 1 2 11, 1 211, �1 211, 1 2

0

2

1

–2

–1

y

x

2

(0, 1)

(1, 0)

1–2 –1

k �  0

k �
2

3

154°
64°
123°
148°
R2.

R3

R3,
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7. a. scalar projection: 0,
vector projection:

b. scalar projection: 2,
vector projection:

c. scalar projection:

vector projection:

8. a. The scalar projection of on the 
x-axis is The vector

projection of on the x-axis is 
The scalar projection of on the 
y-axis is 2; The vector 
projection of on the y-axis is 
The scalar projection of on the 
z-axis is 4; The vector 
projection of on the z-axis is 

b. The scalar projection of on the 
x-axis is The vector 
projection of on the x-axis is 

The scalar projection of 
on the y-axis is 2m; 
The vector projection on the 
y-axis is The scalar
projection of on the z-axis

is 4m; The vector projection 
of on the z-axis is 

9. a.

vector projection:
scalar projection:

b.

The vector projection is the scalar 

projection multiplied by 

10. a.

b.

So, the vector projection is

11. a. scalar projection of on the 
x-axis is vector projection of

on the x-axis is scalar
projection of on the y-axis is 1;
vector projection of on the 
y-axis is scalar projection of 
on the z-axis is 2; vector projection
of on the z-axis is 

b.

12. a.

b.

c. In an isosceles triangle, CD is a
median and a right bisector of BA.

d. Yes
13. a.

b.

is the vector projection of on 
is the vector projection of on 

14. a.

b. The scalar projection of on 

is 

The scalar projection of on 
is 6.

c. Same lengths and both are in the
direction of Add to get one
vector.

15. a.

b. Answers may vary. For example:

c. If two angles add to 90°, then all
three will add to 180°.

16. a. about 
b. about 

17.

18. Answers may vary. For example:

Section 7.6, pp. 407–408

1. a.

is perpendicular to Thus,
their dot product must equal 0. The
same applies to the second case.

b. is still in the same plane
formed by and thus is
perpendicular to making the
dot product 0 again.

c. Once again, is still in the
same plane formed by and thus 

is perpendicular to 
making the dot product 0 again.

2. produces a vector, not a scalar.
Thus, the equality is meaningless.
a
!
� b
!

a
!
� b
!

a
!
� b
! b

!
,a

!a
!
� b
!

a
!
� b
! a
!
� b
!

b
!
,a

!a
!
� b
!

b

y

x

z

a3b a1b

a

a
!
.a

!
� b
!

a3b b

a

y

z

x

A (a, b, 0)

B (0, c, d)

y

z

x

sin2 a � sin2 b � sin2 g � 2

1 � 3 � 1sin2 a � sin2 b � sin2 g 2� 11 � sin2 g 21 � 11 � sin2 a 2 � 11 � sin2 b 21 � cos2 a � cos2 b � cos2 g

cos2 x � 1 � sin2 x
cos2 x � sin2 x � 1

125.3°
54.7°

10, �3, 1 210, �3
2 , 12 2 ,

� 1

�
a2 � b2 � c 2

a2 � b2 � c 2

�
c 2

a2 � b2 � c2

�
b2

a2 � b2 � c 2

�
a2

a2 � b2 � c 2

� a c

�a2 � b2 � c2
b 2

� a b

�a2 � b2 � c2
b 2

� a a

�a2 � b2 � c2
b 2

1 � cos2 a � cos2 b � cos2 g

OD
!
.

OD
!

AC
!

�
1
3 �

19
13 � 619

3 .
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!
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!

�
1

3

b
!

a
!
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! a

!
b
!

OQ
!

10

P

Q O

12

a

b

135°

�7.07, �8.49

C

DB
u u

A

ab
b

c

@BD
! @

C

B u u A

a b

cD

@BD
! @

70.5°
2k
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.AB

!
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!

j
!
;
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!AB

! �2i
!
;AB

! �2;
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!

� 0a! 0 a a
!0a! 0 b � �a

!
.

� � 0a! 01�a
!2  #  a!0a! 0  �  

� 0a! 0 20a! 0
–a aB O A

0a! 0 � a
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!
.

a
!0a! 0 ,

� 0a! 0 .� 0a! 0 11 20a! 0 cos u � 0a! 0 cos 0
0a! 0a
!

a

4mk
!
.m a

!10, 0, Z 2 m a
! 2mj
!
;10, Y, 0 2 m a
!10, Y, 0 2 m a

!
�mi
!
;

m a
! �m;1X, 0, 0 2 m a

! 4k
!
.a

!
10, 0, Z 2 a

! 2j
!
;a

!
10, Y, 0 2 a

! �i
!
;a

!
�1;1X, 0, 0 2 a

!
50
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13,
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3. a. It’s possible because there is a
vector crossed with a vector, then
dotted with another vector,
producing a scalar.

b. This is meaningless because 
produces a scalar. This results in a
scalar crossed with a vector, which
is meaningless.

c. This is possible. produces a

vector, and also produces a
vector. The result is a vector dotted
with a vector producing a scalar.

d. This is possible. produces a

scalar, and produces a vector.
The product of a scalar and vector
produces a vector.

e. This is possible. produces a

vector, and produces a
vector. The cross product of a
vector and vector produces a vector.

f. This is possible. produces a
vector. When added to another
vector, it produces another vector.

4. a.
b.
c.
d.
e.
f.

5. 1
6. a.

b. Vectors of the form (0, b, c) are in
the yz-plane. Thus, the only vectors
perpendicular to the yz-plane are
those of the form (a, 0, 0) because
they are parallel to the x-axis.

7. a.

b.

Using the associative law of
multiplication, we can rearrange this:

8. a.

b.

9. a.

b.

c.

10.

is perpendicular to 
11. a.

b.
c. All the vectors are in the xy-plane.

Thus, their cross product in part b.
is between vectors parallel to the 
z-axis and so parallel to each other.
The cross product of parallel
vectors is 

12. Let , , and

Then,

Thus,

13. By the distributive property of 
cross product:

By the distributive property again:

A vector crossed with itself 
equals thus:

Section 7.7, pp. 414–415

1. By pushing as far away from the hinge
as possible, is increased, making
the cross product bigger. By pushing at
right angles, sine is its largest value, 1,
making the cross product larger.

2. a. 0
b. This makes sense because the

vectors lie on the same line. Thus,
the parallelogram would just be a
line making its area 0.

3. a. 450 J
b. about 10 078.91 J
c. about 32 889.24 J
d. 35 355.34 J

4. a.

b.

c.

d.

5. a. square units

b. square units

6. 2,

7. a. square units

b. square units.

c. Any two sides of a triangle can be
used to calculate its area.

8. about 

9. or about 1.18

10. a.

Looking at x-components:

y-components:

Substitute a:

Substitute b back into the 
x-components:

Check in z-components:

b.

Review Exercise, pp. 418–421

1. a.

b.
c. 16
d. The cross products are parallel, so

the original vectors are in the same
plane.
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2. a. 3

b. 7

c.

d.

e. 5
f.

3. a. 6

b.

4. about 
5. a.

b. about 
6. rope at 

rope at 
7. 304.14 km h, W 
8. a.

b. approximately 56.78

9.

10. a. about is the largest angle
b. 36.50

11. 30 cm string: 78.4 N; 
40 cm string: 58.8 N

12. a.

b. The resultant is 13 N in a direction
W. The equilibrant is 13 N

in a direction E.
13. a. Let D be the origin, then:

b. about 
c. about 3.58

14. 7.5
15. a. about 

b. about 8 min 3 s
c. Such a situation would have

resulted in a right triangle where
one of the legs is longer than the
hypotenuse, which is impossible.

16. a.

b. about 
17. a. and 

b.

c.

18. a. about 
b. about 0.75
c.
d. about 

19. a. special 
b. not special

20. a.
b.
c. 0
d.

21. about 
22.
23.
24. 5 or 
25. about 
26. a.

b.
c. about 

27. a. about 7.30
b. about 3.84
c. about 3.84

28. a. scalar: 1,
vector:

b. scalar: 1,
vector:

c. scalar: ,

vector:

29. a.

b. ; When dotted with it equals 0.
30. 7.50 J

31. a.
b. with the x-axis:

with the y-axis:

with the z-axis:

with the x-axis:

with the y-axis:

with the z-axis:

c.

32.

33. a.

b. acute case:
obtuse case:

34.
35.

36.

37.
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area of triangle 

Chapter 7 Test, p. 422

1. a.
b.
c. 0
d. 0

2. a. scalar projection:

vector projection:

b. x-axis: y-axis:
z-axis:

c. or 5.10
3. Both forces have a magnitude of 78.10

N. The resultant makes an angle 33.7
to the 40 N force and 26.3 to the 50 N
force. The equilibrant makes an angle
146.3 to the 40 N force and 153.7 to
the 50 N force.

4. 1004.99 km h, N 5.7 W
5. a. 96 m downstream

b. upstream
6. 3.50 square units.
7. cord at 

cord at 
8. a. 0

So, the equation holds for these
vectors.

b.

So, the right side of the equation is

Chapter 8

Review of Prerequisite Skills,
pp. 424–425

1. a.
b.

2. a. yes c. yes
b. yes d. no

3. yes
4.
5. a. (3, 1)

b. (5, 6)
c.

6.
7. a.

b.
8.

9. a.
b.
c.
d.

10. a.
b.
c.
d.

11. a. slope: ; y-intercept:

b. slope: y-intercept:

c. slope: y-intercept:
d. slope: 1; y-intercept: 3

12. Answers may vary. For example:
a. (8, 14)
b.

c.

d.

13. a.
b.
c.
d.
e.
f.

14. The dot product of two vectors yields a
real number, while the cross product of
two vectors gives another vector.

Section 8.1, pp. 433–434

1. Direction vectors for a line are unique
only up to scalar multiplication. So,
since each of the given vectors is just a 

scalar multiple of each is an 

acceptable direction vector for the line.
2. a. Answers may vary. For example,

(1, 5), and (4, 3).
b.

If then and
So is a point

on the line.
3. Answers may vary. For example:

a. direction vector: (2, 1); point: (3, 4)
b. direction vector: ; 

point: (1, 3)
c. direction vector: (0, 2); point: (4, 1)
d. direction vector: ; point: (0, 6)

4. Answers may vary. For example:

5. a. is a point on the line.
When and .

b. Answers may vary. For example:

c. Answers may vary. For example:

6. Answers may vary. For example:
a. (0, 0), and (3, 4)
b.
c. This describes the same line as part a.

7. One can multiply a direction vector 
by a constant to keep the same line,
but multiplying the point yields a
different line.

8. a.

b.
t�Ry � 7 � 2t,

x � 0,t�R;r
!
� 10, 7 2 � t10, 2 2 ,

4

6

8

10

2
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–4 –2–6 4 620
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1
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45°: about 254.0 N;

28.7°

°> °°

°
°

�26
131.8�

109.5�;48.2�;

1
9 12, �1, �2 2 .1
3,

1�4, �1, �3 21�4, �1, �3 2
ABC � 0

cos C � �1
cos B � 1
cos A � 1
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area of triangle 

Chapter 7 Test, p. 422

1. a.
b.
c. 0
d. 0

2. a. scalar projection:

vector projection:

b. x-axis: y-axis:
z-axis:

c. or 5.10
3. Both forces have a magnitude of 78.10

N. The resultant makes an angle 33.7
to the 40 N force and 26.3 to the 50 N
force. The equilibrant makes an angle
146.3 to the 40 N force and 153.7 to
the 50 N force.

4. 1004.99 km h, N 5.7 W
5. a. 96 m downstream

b. upstream
6. 3.50 square units.
7. cord at 

cord at 
8. a. 0

So, the equation holds for these
vectors.

b.

So, the right side of the equation is

Chapter 8

Review of Prerequisite Skills,
pp. 424–425

1. a.
b.

2. a. yes c. yes
b. yes d. no

3. yes
4.
5. a. (3, 1)

b. (5, 6)
c.

6.
7. a.

b.
8.

9. a.
b.
c.
d.

10. a.
b.
c.
d.

11. a. slope: ; y-intercept:

b. slope: y-intercept:

c. slope: y-intercept:
d. slope: 1; y-intercept: 3

12. Answers may vary. For example:
a. (8, 14)
b.

c.

d.

13. a.
b.
c.
d.
e.
f.

14. The dot product of two vectors yields a
real number, while the cross product of
two vectors gives another vector.

Section 8.1, pp. 433–434

1. Direction vectors for a line are unique
only up to scalar multiplication. So,
since each of the given vectors is just a 

scalar multiple of each is an 

acceptable direction vector for the line.
2. a. Answers may vary. For example,

(1, 5), and (4, 3).
b.

If then and
So is a point

on the line.
3. Answers may vary. For example:

a. direction vector: (2, 1); point: (3, 4)
b. direction vector: ; 

point: (1, 3)
c. direction vector: (0, 2); point: (4, 1)
d. direction vector: ; point: (0, 6)

4. Answers may vary. For example:

5. a. is a point on the line.
When and .

b. Answers may vary. For example:

c. Answers may vary. For example:

6. Answers may vary. For example:
a. (0, 0), and (3, 4)
b.
c. This describes the same line as part a.

7. One can multiply a direction vector 
by a constant to keep the same line,
but multiplying the point yields a
different line.
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x � 0,t�R;r
!
� 10, 7 2 � t10, 2 2 ,
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9. a.

b. ;

10. a.
b.

11. 9
12. First, all the relevant vectors are found.

a.

b.

c.

13. a. A(5, 12); 

b. or about 24.04
14. In the parametric form, the second

equation becomes 
If t is solved for in 

this equation, we obtain and 

Setting these two expressions
equal to each other, the line is 

described by or by 

simplifying, So, the 

second equation describes a line with a 

slope of . If y is solved for in the first 

expression, we see that 
(1, 6) is on the second line but not the
first. Hence, both equations are lines
with slope of and must be parallel.

Section 8.2, pp. 443–444

1. a.
b.
c. (0, 9)
d.

e.

2. a.–b.

c. It produces a different line.

3. a.

b.

c.

d.

4. If the two lines have direction vectors
that are collinear and share a point 
in common, then the two lines are
coincident. In this example, both have
(3, 2) as a parallel direction vector and
both have as a point on the
line. Hence, the two lines are
coincident.

5. a. The normal vectors for the lines are
and which are

collinear. Since in two dimensions,
any two direction vectors
perpendicular to are
collinear, the lines have collinear
direction vectors. Hence, the lines
are parallel.

b.
6.
7.
8.
9. a.

b.
10. a. c. e.

b. d. f.
11. a.

b. acute: , obtuse:
12. a.

b.

c.

Since the dot product of the vectors is
0, the vectors are perpendicular, and

.
13. The sum of the interior angles of a

quadrilateral is . The normals
make angles with their respective
lines at A and C. The angle of the
quadrilateral at B is . Let x
represent the measure of the interior
angle of the quadrilateral at O.

Therefore, the angle between the
normals is the same as the angle
between the lines.

14.

Section 8.3, pp. 449–450 

1. a.
b.
c.
d.
e.

f.

2. a.
b.
c.
d.
e.
f.

3. a.

b.
; 

4. a.
b.
c. Since two of the coordinates in the

direction vector are zero, a
symmetric equation cannot exist.

5. a.

x � 1
3 �

y � 2
�2 �

z � 1
1

t�R;z � 1 � t,
y � 2 � 2t,x � �1 � 3t,

t�R;r
!
� 1�1, 2, 1 2 � t13, �2, 1 2 ,

t�Rz � �4,y � 5,x � �1 � t,
t�Rr

!
� 1�1, 5, �4 2 � t11, 0, 0 2 ,s�Rz � 5 � s,y � �3 � 5s,

x � 3 � 4s,t�Rz � 4 � t,
y � 2 � 5t,x � �1 � 4t,

s�Rq
!
� 13, �3, 52 � s1�4, 5, �12 ,t�R;r
!
� 1�1, 2, 4 2 � t14, �5, 1 2 ,12, �1, 2 210, 0, 2 21�1, 0, 2 213, �4, �1 212, 1, �1 21�1, 1, 9 2a 1

3
, �

3

4
, 

2

5
b13, �2, �1 21�2, �3, 1 21�2, 1, 3 211, �1, 3 21�3, 1, 8 2

2  ; �3

 x � u

 360° � u � x � 360°
 90° � 90° � 180° � u � x � 360°

180° � u

90°
360°

�ACB � 90°

� 0
� �24 � 24

 CA
! # CB
!
� 1�3 2 18 2 � 14 2 16 2� 18, 6 2CB

!
 � 18 � 0, 4 � 1�2 22� 1�3, 4 2CA
!
 � 1�3 � 0, 2 � 1�2 22

60

4

2

–2

–4
C(0, –2)

A(–3, 2)

6

8
y

x

2 4–2

B(8, 4)

10,�2 2 135°45°

4

6

2

–4

–2

–6

–4 –2–6 4 620

y

x

63°37°42°
54°63°82°

4x � y � 14 � 0

4

6

2

–2
–4 –2–6 4 620

y

x

2x � y � 16 � 0
x � y � 2 � 0
4x � 5y � 21 � 0

k � 12

12, �3 2
14, �6 2 ,12, �3 2

1�4, 0 2

t�Ry � t,x � 4,
t�R;r

!
� 14, 0 2 � t10, 1 2 ,t�Ry � �1,x � t,

t�R;r
!
� 10, �1 2 � t11, 0 2 ,t�Ry � 5 � 3t,x � 2t,

t�R;r
!
� 10, 5 2 � t12, 3 2 , t�Ry � �6 � 7t,x � 8t,

t�R;r
!
� 10, �6 2 � t18, 7 2 ,

r

q
4

6

2

–2
–4 –2–6 4 620

y

x

t�Ry � 1 � 6t,x � �2 � 5t,
t�R;r

!
� 1�2, 1 2 � t15, 6 2 , t�Ry � 9 � 5t,x � 7 � 6t,

t�R;r
!
� 17, 9 2 � t16, �5 2 ,n
!
� 15, 6 2m
!
� 16, �5 2

2
3

y �
2
3x � 5.

2
3

y � 6 �
2
3x �

2
3.

x � 1
6 �

y � 6
4 ,

t �
y � 6

4 .

t �
x � 1

6

t�R.y � 6 � 4t,
x � 1 � 6t,

�578

B1�12, �5 2 �
2

3
AD
!

AC
!
� 1�4, 62 �

2

3
1�6, 92AD

!
� 1�6, 9 2 � 31�2, 3 2 � 3AB

!AC
!
� 1�4, 6 2 � 21�2, 3 2 � 2AB

!AD
!
� 1�6, 9 2AC
!
� 1�4, 6 2AB
!
� 1�2, 3 2
10, �1.2 2 t�Rr
!
� 12, 0 2 � t15, �3 2 ,t�Ry � 5,x � 4 � 5t,

t�Rr
!
� 14, 5 2 � t15, 0 2 ,

4

6

8

2

–2
–4 –2–6–8 4 6 820

y

x

N(9, 5)

M(4, 5)
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b.

c.

d.

Since two of the coordinates in the
direction vector are zero, there is no
symmetric equation for this line.

e.

f.

Since two of the coordinates in the
direction vector are zero, there is no
symmetric equation for this line.

6. a.

b. about 
7. The directional vector of the first line is

So,
is a directional vector for

the first line as well. Since 
is also the directional vector of the
second line, the lines are the same if the
lines share a point. (1, 1, 3) is a point on 
the second line. Since 

(1, 1, 3)
is a point on the first line as well.
Hence, the lines are the same.

8. a. The line that passes through (0, 0, 3)
with a directional vector of 

is given by the
parametric equation is 

So, the y-coordinate
is equal to only when 
At and

So,
is a point on the line.

So, the y-coordinate is equal to 5
only when At 

and
So,

is a point on the line.
b.

9.
10. a.

b. (1, 1, 3),
c. (2, 1, 4),
d.

11. a.

b.

c.

d.

12.

13.
14. and 
15. about 

Mid-Chapter Review, 
pp. 451–452

1. a.
b. (2, 3), (5, 1)

c.

d.

2. a. (0, 6)

b.

3. approximately 
4. x-axis: about y-axis: about 
5.

6.

7.
8. approximately and 

9.

10. x-axis:
y-axis:
z-axis:

11. a.

b.

12. 17.2 units, 12

13. a.
b.
c. about 
d.

14.

15.

16. a.
b.
c.

17. a. yz-plane at (0, 8, 4); xz-plane at 
(6, 0, 0); xy-plane at (6, 0, 0)

b. x-axis at (6, 0, 0)
c.

18. a.

b.

c.

d.
; There

is no symmetric equation for this
line.

19.
20.
21.

22. Since 
the point lies on the line.

Section 8.4 pp. 459–460

1. a. plane; b. line; 
c. line; d. plane;

2. a.
b.
c.

t,
3. a.

b. and 
c.
d. and 
e. For the point the first

two parametric equations are the
same, yielding and 
however, the third equation would
then give:

which is not true. So, there can be
no solution.

�8 � �7
�8 � �1 � 310 2 � 213 2�8 � �1 � 3m � 2n

n � 3;m � 0

B10, 15, �8 2 ,n � 3m � 0
1�2, �17, 10 2 10, 5, �2 212, �3, �3 210, 0, �1 2 s�R� t11, �2, 5 2 ,r
!
� 12, 1, 3 2 � s14, �24, 9 211, �2, 5 214, �24, 9 2

17, �1, 8 27 � 4
3 �

�1 � 2
1 �

8 � 6
2 � 1,

11, 3, �5 2 , �311, 3, �5 2 . t�Rx � t, y � �8 � 13t, z � 1,
t�Rr

!
� t15, �5, �1 2 ,

t�Rz � �2t,y � 0,x � 2,
t�R;r

!
� 12, 0, 0 2 � t10, 0, �2 2 ,x

�1 �
y
5 �

z � 6
1

t�R;z � 6 � t,y � 5t,x � �t,
t�R;r

!
� 10, 0, 6 2 � t1�1, 5, 1 2 ,x � 3
2 �

y � 6
4 �

z � 9
6

t�R;z � 9 � 6t,
y � 6 � 4t,x � 3 � 2t,

t�R;r
!
� 13, 6, 9 2 � t12, 4, 6 2 ,x � 1

�5 �
y � 2

�2 �
z � 8

1

t�R;z � 8 � t,
y � �2 � 2t,x � 1 � 5t,t�R;

r
!
� 11, �2, 8 2 � t1�5, �2, 1 2 ,

y

(6, 0, 0)

10

10

10

(0, 8, 4)

z

x

t�Ry � t,x � 0,
t�Ry � �1 � t,x � 1 � t,

t�Ry � 10 � 2t,x � �5 � 3t,

Q 2
�5

, 1
�5
R t�Ry � 6 � 2t,x � �4 � 12t,

t�R;r
!
� 1�4, 6 2 � t112, �2 2 ,x � 6y � 32 � 0;

t�Rr
!
� t13, 4 2 ,36.9°

t�Ry � 6 � 3t,x � 4t,
t�Rr

!
� 10, 6 2 � t14, �3 2 ,

1

19

�7
t�Rz � t,y � 0,x � 0,
t�R;z � 0,y � t,x � 0,
t�R;z � 0,y � 0,x � t,

x � 3

1
�

z � 6

�3
y � �4,

49.7°137.7°,79.3°,
t�Rz � 5 � t,y � 2 � 9t,x � 1 � t,

x

3
�

y

�4
�

z � 2

4

5x � 7y � 41 � 0
39°51°;

86.8°

10, �3 2Q�14
3 , 0R;Q18

5 , 0R; 11, �2, 5 214, 0, 6 2 ,1�2, �4, 4 2 , 11, 1 2Q0, 85R,Q�1, 11
5 R,1�1, 5 2 , 1�3, 4 21�5, 1 2 ,1�7, �2 2 ,

17°
P214, �3, �4 2P112, 3, �2 2 12, 1, 2 2 .1�2, �1, 2 2 ,t�R

z � 13t,y � �5 � 25t,x � 2 � 34t,
t�R

z � 3 � 5t,y � 2 � 3t,x � �4,
t�R;t10, 3, 5 2 ,r

!
� 1�4, 2, 3 2 �

t�R
z � 4t,y � 2 � t,x � �1 � 3t,

t�R;t13, �1, 4 2 ,r
!
� 1�1, 2, 0 2 �

x � 4
5 �

y � 2
�1 �

z � 9
�6s�R;

s15, �1, �6 2 ,r
!
� 1�4, 2, 9 2 �

x � 4
�4 �

y � 2
�6 �

z � 5
8

t�R;z � 5 � 8t,
y � �2 � 6t,x � 4 � 4t,

1�4, 2, 3 21�4, 5, 821�4, �1, �22, 1�1, 2, 0 21�4, 3,�4 2 , 1�4, 2, 9 21�9, 3, 15 2 , 14, �2, 5 210, �8, 13 2 ,18, 4, �3 2 ,�1
�2 � t � 5

z � 3 � 6t,y � t,x � �3t,
5, �272B1�15,

z � 3 � 615 2 � �27.
x � �315 2 � �15

t � 5,t � 5.

A16, �2, 15 261�2 2 � 15.z � 3 �

x � �31�2 2 � 6t � �2,
t � �2.�2

t�R.z � 3 � 6t,
y � t,x � 3t,

�6 21�3, 1,

1 � 1
2 �

3 � 5
�2 ,1 �

1 � 7
8 �

1�4, �1, 1 21�4, �1, 1 218, 2, �2 2 � �21�4, �1, 1 2 .35.3°
s�Rz � 5,

y � 11 � s,x � �7 � s,
t�R;z � 7 � t,

y � 10 � t,x � �6 � t,

t�R;z � 4 � t,y � 2,x � 1,
t�R;r

!
� 11, 2, 4 2 � t10, 0, 1 2 ,z � 0x

�4 �
y
3,

t�R;z � 0,y � 3t,x � �4t,
t�R;r

!
� t1�4, 3, 0 2 ,

t�R;z � 0,y � t,x � �1,
t�R;r

!
� 1�1, 0, 0 2 � t10, 1, 0 2 ,x � �2y � 3
1 �

z
1,

t�R;z � t,y � 3 � t,x � �2,
t�R;r

!
� 1�2, 3, 0 2 � t10, 1, 1 2 ,x � �1y � 1
1 �

z
1,

t�R;z � t,y � 1 � t,x � �1,
t�R;r

!
� 1�1, 1, 0 2 � t10, 1, 1 2 ,
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4. a.
, t,

b.
, t,

5. a.
, t, does not

represent a plane because the
direction vectors are the same. We
can rewrite the second direction
vector as . And so we
can rewrite the equation as:

This is an equation of a line in .
6. a.

t,

t,
b.

t,

t,
c.

t,

t,
7. a. and 

b.
gives the

following parametric equations:

The third equation then says:

which is a false

statement. So, the point 
is not on the plane.

8. a.

b.
9. (0, 0, 5)

10.
t,

11.
m,

12. a. (1, 0, 0), (0, 1, 0) and (1, 1, 0),

b. t,

t,
13. a. t,

b.
t,

c. The planes are parallel since they
have the same direction vectors.

14.

15.
16. The fact that the plane

contains both of
the given lines is easily seen when
letting and respectively.

Section 8.5 pp. 468–469

1. a.
b. In the Cartesian equation:

If the plane passes through
the origin.

c. (0, 0, 0),
2. a.

b. In the Cartesian equation:
So, the plane passes through the
origin.

c.
3. a.

b. In the Cartesian equation:
So, the plane passes through the
origin.

c.
4. a.

b.
5. Method 1: Let A(x, y, z) be a point on

the plane. Then,
is a

vector on the plane.

Method 2: so the
Cartesian equation is

We know the point is on the
plane and must satisfy the equation, so

This also gives the equation:

6. a.
b.
c. There is only one simplified

Cartesian equation that satisfies the
given information, so the equations
must be the same.

7.
8.

9. a.

b.

c.

10.
11.
12. a. First determine their normal

vectors, and Then the angle
between the two planes can be
determined from the formula:

b. 30°
13. a. 53.3°

b.
14. a. 8 

b.
c. No, the planes cannot ever be

coincident. If they were, then they
would also be parallel, so and
we would have the two equations:

Here all of
the coefficients are equal except for
the D-values, which means that
they don’t coincide.

15.

16.

17.

Section 8.6, pp. 476–477

1. a. A plane parallel to the yz-axis, but
two units away, in the negative 
direction.

b. A plane parallel to the xz-axis, but
three units away, in the positive
y direction.

c. A plane parallel to the xy-axis, but
4 units away, in the positive
z direction.

x

8x � 2y � 16z � 5 � 0

�
2

�5
x �

1

�5
y � �3z � 0

3x � 5y � z � 18 � 0

4x � 8y � 2z � 8 � 0.
2x � 4y � z � 4 � 01
4x � 8y � 2z � 1 � 0.

k � 8,

�
5
2

2x � 3y � z � 5 � 0

cos u �
n1
!
 #  n2
!0n1

! 0 0n2
! 0
n2
!
.n1

!

2x � 4y � z � 6 � 0
21x � 15y � z � 1 � 0

a 3

13
, �

4

13
, 

12

13
b

a 4

�26
, �

3

�26
, 

1

�26
b

a 2

3
, 

2

3
, �

1

3
b20x � 9y � 7z � 47 � 0

7x � 17y � 13z � 24 � 0

7x � 19y � 3z � 28 � 0
7x � 19y � 3z � 28 � 0

x � 7y � 5z � 43 � 0.

D � �43
43 � D � 0

1�3 2 � 713 2 � 515 2 � D � 0

1�3, 3, 5 2x � 7y � 5z � D � 0

n
!
� 11, 7, 5 2x � 7y � 5z � 43 � 0.

1x � 3 2 � 71y � 3 2 � 51z � 5 2 � 0
n
! # PA
!
� 0

PA
!
� 1x � 3, y � 3, z � 5 2

�8x � 12y � 7z � 0
x � 5y � 7z � 0
10, 0, 0 2 , 10, 1, 0 2  10, 0, 1 2

D � 0.
n
!
� 1A, B, C 2 � 11, 0, 0 210, 0, 0 2 , 15, 2, 0 2  15, 2, 1 2

D � 0.
n
!
� 1A, B, C 2 � 12, �5, 0 21�11, 1, �1 2111, �1, 1 2 ,D � 0,

Ax � By � Cz � D � 0

n
!
� 1A, B, C 2 � 11, �7, �18 2

t � 0,s � 0

r
!
� OP

!
0 � sa

!
� tb
!

t�Rr
!
� 10, 3, 0 2 � t10, 3, 2 2 ,� 1�1, �5, 7 227

13
1�3, 2, 4 2 �

17

13
1�4, 7, 1 21�4, 7, 12 � 1�3, 2, 42 � 1�1, 5, �32 ,

s�R� t13, �1, 7 2 ,r
!
� 1�2, 2, 3 2 � s1�1, 2, 5 2s�R

r
!
� s1�1, 2, 5 2 � t13, �1, 7 2 ,s�Rz � 0,

y � t,
x � s,

s�R;r
!
� s11, 0, 0 2 � t10, 1, 0 2 ,1�1, 1, 0 2n�R

r
!
� m12, �1, 7 2 � n1�2, 2, 3 2 ,

s�R� t13, �1, 2 2 ,r
!
� 12, 1, 3 2 � s14, 1, 5 21�3, 5, 6 2 t�Rp
!
� 1�3, 5, 6 2 � t12, 1, �3 2 ,s�R;l
!
� 1�3, 5, 62 � s1�1, 1, 22 ,A10, 5, �4 2�4 �

17

2
,

�4 � 1 �
1

2
� 214 2�4 � 1 � s � 2t

t � 2 � 2 � 4

t � 2 � 4 a 1

4
b

1

2
� s

3 � 6s
5 � 2s � 12 � 4s 25 � 2s � t
0 � 2 � 4s � t1 t � 2 � 4s

s14, 2, �1 2 � t1�1, 1, 2 210, 5,�4 2 � 12, 0, 1 2 �

t � 1s � 1
s�Rz � �6t � 2s,

y � 1 � 4t � s,
x � 1 � 3t � 7s,

s�R;� s17, 1, 2 2 ,r
!
� 11, 1, 0 2 � t13, 4, �6 2s�Rz � s,

y � t,
x � 1 � t � s,

s�R;� s1�1, 0, 1 2 ,r
!
� 11, 0, 0 2 � t1�1, 1, 0 2s�Rz � 7 � s,

y � 2 � t � 4s,
x � �1 � 4t � 3s,

s�R;� s13, 4, �1 2 ,r
!
� 1�1, 2, 7 2 � t14, 1, 0 2 R3

n�R� 11, 0, �1 2 � n12, 3, 42 ,12, 3, �4 2� 11, 0, �1 2 � 1s � 2t 2� 2t12, 3, �4 2r
!
� 11, 0, �1 2 � s12, 3, �4 212 2 12, 3, �4 2

s�R,� t14, 6, �8 2 s12, 3, �4 2r
!
� 11, 0, �1 2 �

s�R� s13, �3, �1 2r
!
� 1�2, 3, �2 2 � t10, 0, 1 2s�R� s13, �3, 0 2r
!
� 1�2, 3, 1 2 � t10, 0, 1 2
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2.
3. P must lie on plane since the point

has an x-coordinate of 5, and doesn’t
have a y-coordinate of 6.

4.

5. a. i.

no z-intercept
ii.

iii. no x-intercept,

b. i. (0, 0, 1),
ii. (4, 3, 0),
iii. (1, 0, 0), (0, 1, 13)

6. a. i. (0, 0, 0), (1, 2, 0), (0, 5, 1)
ii.

b.

7. yz-plane, xz-plane, xy-plane

8. a.

b.

c.

d.

9. a.
b.

c.

10. a.

b.

c.

11. a.

b.

c.
z

8
� 1

x

5
�

z

7
� 1

x

3
�

y

4
�

z

6
� 1

y

z

x

y

z

x

y

z

x

y

z

x

1

2

–1

–2

–1–2 1 20

y

x

y1x � 2 2 � 0

y

z

x

y

z

x

y

z

x

y

z

x

2x � y � 0

15, 0, �3 213, �2, 0 2z-intercept � �39
y-intercept � 3,

z-intercept � 24
y-intercept � �30,
x-intercept � 40,

y-intercept � 6,
x-intercept � 9,

1

2

–1

–2

–2 20

y

x

p1

1�2, 3, 4 2
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Review Exercise, pp. 480–483

1. Answers may vary. For example,

2.

Both Cartesian equations are the same
regardless of which vectors are used.

3. a. Answers may vary. For example,

b. Answers may vary. For example,

c. There are two parameters.
4.

5. a.
b.
c.

6.
7.

8.
9.

10. Answers may vary. For example,

11. Answers may vary. For example,

12. Answers may vary. For example,

13.

14. a.

b.

c.

d.

e.

15. a. Answers may vary. For example,

b. Answers may vary. For example,

c. Answers may vary. For example,

d. Answers may vary. For example,

16. They are in the same plane because
both planes have the same normal
vectors and Cartesian equations.

17.

18. a. The plane is parallel to the z-axis
through the points (3, 0, 0) and

b. The plane is parallel to the y-axis
through the points (6, 0, 0) and

c. The plane is parallel to the x-axis
through the points (0, 3, 0) and

19. a. A
b.

20. a. c.
b. d.

21. a.
b.

22. a. i. no ii. yes iii. no
b. i. yes ii. no iii. no

23.

24.
t�Rz � 4 � 3s � t, s,

y � 4 � t,x � 1 � s � 3t,
1x, y, z 2 � 14, 5, 8 2 � 14, 5, 6 2� 21�6, 6, �1 21x, y, z 2 � 14, 1, 6 2 � 413, �2, 1 2� q1�6, 6, �1 21x, y, z 2 � 14, 1, 6 2 � p13, �2, 1 2

90°
44.2°

90°59.0°
37.4°45.0°

b � �1a � �8,

10, 0, �6 2 .
10, 0, �2 2 .
10, �2, 0 2 .

a 20

3
, 

10

3
, �

1

3
b2x � 3y � z � 1 � 0

D � 1
211 2 � 31�1 2 � 1�6 2 � D � 0

D � 1
211 2 � 312 2 � 13 2 � D � 0

2x � 3y � z � D � 0
Ax � By � Cz � D � 0

� 12, �3, 1 211, 1, 1 2 � 12, 5, 11 2 � 16, �9, 3 2� 12, �3, 1 21�3, 5, 21 2 � 10, 1, 3 2 � 1�6, 9, �3 2u, v�R� v12, 5, 11 2 ,L2: r
!
� 11, �1, �6 2 � u11, 1, 1 2s, t�R� t10, 1, 3 2 ,L1: r
!
� 11, 2, 3 2 � s1�3, 5, 21 2

78x � 10y � 12z � 168 � 0
z � �5 � 9t � s;

y � 3 � 3t � 9s,x � 1 � t � s,
t, s�R;� s11, �9, �1 2 ,r

!
� 11, 3, �5 2 � t11, 3, 9 23x � y � 13 � 0

z � �1 � 5t � s;
y � 1 � 3t,x � 4 � t,

t, s�R;� s10, 0, 1 2 ,r
!
� 14, 1, �1 2 � t11, �3, 5 2�4x � 11z � 18 � 0
D � �18

BC
!
� 1�4, 0, 11 2

15x � 8y � 2z � 41 � 0
z � 2 � t � 3s;y � 1 � 4t � 3s,

x � 3 � 2t � 2s,
t, s�R;� s12, 3, �3 2 ,r

!
� 13, 1, 2 2 � t12, 4, 1 2

y

z

x

y

z

x

y

z

x

y

z

x

y

x

z

18x � 19y � 15z � 145 � 0
s, t�R;z � 1 � 5s � t,

y � �4 � 3s � 3t
x � 3 � s � 4t,

s, t�R;� t14, 3, �1 2 ,r
!
� 13, �4, 1 2 � s11, �3, �5 2

z � 7 � 2t;y � 0,x � t,
t�R;r

!
� 10, 0, 7 2 � t11, 0, 2 2 ,z � 6 � 3s � ty � �5t,x � s � 3t,

s, t�R;� t13, �5, �1 2 ,r
!
� 10, 0, 6 2 � s11, 0, 3 2

x � 2

3
�

y � 3

�2
�

z � 3

1

z � �3 � s;y � 3 � 2s,x � 2 � 3s,
s�R;r

!
� 12, 3, �3 2 � s13, �2, 1 2 ,34x � 32y � 7z � 229 � 0

3x � y � z � 7 � 0
z � 1 � sy � 2 � t,x � �1,

t, s�R;� s10, 0, 1 2r
!
� 1�1, 2, 1 2 � t10, 1, 0 219x � 7y � 8z � 0

3y � z � 7 � 0
3x � 5y � 2z � 7 � 0
x � 3y � 3z � 3 � 0

x � 7

2
�

y � 1

�3
�

z � 2

1

z � �2 � t;y � 1 � 3t,x � 7 � 2t,
t�R;r

!
� 17, 1, �2 2 � t12, �3, 1 2 ,t, s�Rz � 9 � t � 3s,

y � 3 � t � 2s,x � 4 � 7t � 3s,
t, s�R;� s13, 2, 3 2 ,r

!
� 14, 3, 9 2 � t17, 1, 1 2

x � 4

7
�

y � 3

1
�

z � 9

1

t�R;
z � 9 � t,y � 3 � t,x � 4 � 7t,

t�R;r
!
� 14, 3, 9 2 � t17, 1, 1 2 ,

3x � y � z � 6 � 0
D � �6

311 2 � 12 2 � 11�1 2 � D � 0
13 2x � 11 2y � 1�1 2z � D � 0

Ax � By � Cz � D � 0
� 13, 1, �1 2b

!
� c
!
� 11, 0, 3 2 � 12, �1, 5 2s, t�R� t11, 0, 3 2 ,r

!
� 11, 2, �1 2 � s12, �1, 5 2BC
!
� 11, 0, 3 2 � b

!AC
!
� 12, �1, 5 2 � c

!
3x � y � z � 6 � 0
z � �1 � 2s � 3t
y � 2 � s,
x � 1 � s � t,
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25. A plane has two parameters, because a
plane goes in two different directions,
unlike a line that goes only in one
direction.

26. This equation will always pass through
the origin, because you can always set

and to obtain (0, 0, 0).
27. a. They do not form a plane, because

these three points are collinear.

b. They do not form a plane, because
the point lies on the line.

28.
29.
30. a., b.

c.
d. no

31. a.
b.
c.

32. a. These lines are coincident. The
angle between them is 

b. ,

33. a.

b.

c.

d.

e.

f.

34. a.
b.
c.
d.

e.
f.

Chapter 8 Test, p. 484

1. a. i.

ii.
b. no

2. a.

b. (6, 4, 3)
3. a.

b.
4. a.

b.

5. a.

b.

6. a. about 
b. i. 4

ii.

c. The y-intercepts are different and
the planes are parallel.

7. a.

b.

c. The equation for the plane can be
written as For
any real number t,

so 
(0, 0, t) is on the plane. Since this is
true for all real numbers, the z-axis
is on the plane.

Chapter 9

Review of Prerequisite Skills,
p. 487

1. a. yes c. yes
b. no d. no

2. Answers may vary. For example:
a. ;

b. ;

c. ;

d. ;

e. ;

f.
;

3. a.
b.
c.
d.
e.
f.

4.
5. is not parallel to the plane. is on

the plane.
is parallel to the plane.
is not parallel to the plane.

6. a.
b.

7.

8.

Section 9.1, pp. 496–498

1. a.

b. This line lies on the plane.
2. a. A line and a plane can intersect in

three ways: (1) The line and the
plane have zero points of
intersection. This occurs when the
lines are not incidental, meaning
they do not intersect.
(2) The line and the plane have only
one point of intersection. This
occurs when the line crosses the
plane at a single point.
(3) The line and the plane have an
infinite number of intersections.
This occurs when the line is

s�Rr
!
� 11, 2, �3 2 � s15, 1, 1 2p: x � 2y � 3z � 6,

3y � z � 13
� s10, 1, 0 2 , s, t�R

r
!
� 11, �4, 3 2 � t11, 3, 3 2x � 6y � 10z � 30 � 0

x � y � z � 2 � 0
L3

L2

L1L1

5x � 11y � 2z � 21 � 0
x � y � z � 6 � 0
11x � 6y � 38 � 0
6x � 5y � 3z � 0
4x � 3y � 15 � 0
y � 0
2x � 6y � z � 17 � 0

t�R� 6t,
z � �1y � 5 � 10t,x � 2 � 10t,

t�R
r
!
� 12, 5, �1 2 �  t 110, �10, �6 2,t�R

z � �1 � 3t,y � 5t,x � 2 � 3t,
t�Rr

!
� 12, 0, �1 2 � t 1�3, 5, 3 2 ,t�R

z � 5 � 5t,y � 3 � 10t,x � 1 � 5t,
t�Rr

!
� 11, 3, 5 2 � t15, �10, �5 2 ,t�Ry � �11t,x � �1 � �2t,

t�Rr
!
� 1�1, 0 2 � t 1�2, �11 2 ,t�Ry � 7 � 14t,x � �3 � 7t,

t�Rr
!
� 1�3, 7 2 � t 17, �14 2 ,t�Ry � 5 � 2t,x � 2 � 5t,

t�Rr
!
� 12, 5 2 � t 15, �2 2 ,

01t 2 � 0,A10 2 � B10 2 �

Ax � By � 0z � 0.

y

z

x

4

6

2

–4

–2

–6

–4 –2–6 4 620

y

x

�
1

5

70.5°

x

4
�

y � 5

�2
�

1

2

a0, 5, �
1

2
b3x � 13y � 2z � 61 � 0

s, t�R� t15, 1, �1 2 ,r
!
� 14, �3, 5 2 � s12, 0, �3 2�x � 7y � 3z � 0

s, t�Rr
!
� s12, 1, 3 2 � t11, 2, 5 2 ,

x

2
�

y

3
�

z

4
� 1

2x � 3y � 8z � 28 � 0
s, t�R

z � 4 � s,y � 2 � 2s � 2t,
x � 1 � s � 3t,

s, t�R;� t13, 2, 0 2 ,� s11, �2, �1 2r
!
� 11, 2, 4 2

�5x � y � 7z � 18 � 0
y � 2z � 4 � 0

3x � y � 4z � 26 � 0
z � 3 � 0
29x � 27y � 24z � 86 � 0
2x � 4y � 5z � 23 � 0

z � 5 � 6ty � 3 � t,x � 1,
r
!
� 11, 3, 5 2 � t10, 1, 6 2 ; t�Rr
!
� 11, 3, 5 2 � t10, 6, 4 2 ,c � 4;b � 6,a � 0,

z � 5y � 3,x � 1 � t,
t�R;r

!
� 11, 3, 5 2 � t11, 0, 0 2 ,

x � 1

�6
�

x � 3

�13
�

x � 5

14

z � 5 � 14t;
y � 3 � 13t,x � 1 � 6t,

t�R;
r
!
� 11, 3, 5 2 � t1�6, �13, 14 2 ,

x � 1

�8
�

x � 3

6
�

x � 5

�2

z � 5 � 2t;
y � 3 � 6t,x � 1 � 8t,

t�R;r
!
� 11, 3, 5 2 � t1�8, 6, �2 2 ,

x � 1

�2
�

y � 3

�4
�

z � 5

�10

z � 5 � 10t;
y � 3 � 4t,x � 1 � 2t,

t�R;
r
!
� 11, 3, 5 2 � t1�2, �4, �10 2 ,86.82°Q32, 5R 0°.

4x � 2y � 5z � 22 � 0
4x � 2y � 5z � 19 � 0
4x � 2y � 5z � 0

13x � 11y � 29z � 12 � 0
z � 2 � 4t � 3s
y � �3 � 7t � 2s,
x � 1 � 3t � 5s,

t, s�R;� s15, �2, 3 2r
!
� 11, �3, 2 2 � t1�3, 7, �4 26x � 5y � 12z � 46 � 0

bcx � acy � abz � abc � 0
� 18, �7, 5 2r
!
� 14, 9, �3 2 � 411, �4, 2 2r
!
� 14, 9, �3 2 � t11, �4, 2 2

r
!
� 1�1, 2, 1 2 � t13, 1, �2 2

t � �1s � 0
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25. A plane has two parameters, because a
plane goes in two different directions,
unlike a line that goes only in one
direction.

26. This equation will always pass through
the origin, because you can always set

and to obtain (0, 0, 0).
27. a. They do not form a plane, because

these three points are collinear.

b. They do not form a plane, because
the point lies on the line.

28.
29.
30. a., b.

c.
d. no

31. a.
b.
c.

32. a. These lines are coincident. The
angle between them is 

b. ,

33. a.

b.

c.

d.

e.

f.

34. a.
b.
c.
d.

e.
f.

Chapter 8 Test, p. 484

1. a. i.

ii.
b. no

2. a.

b. (6, 4, 3)
3. a.

b.
4. a.

b.

5. a.

b.

6. a. about 
b. i. 4

ii.

c. The y-intercepts are different and
the planes are parallel.

7. a.

b.

c. The equation for the plane can be
written as For
any real number t,

so 
(0, 0, t) is on the plane. Since this is
true for all real numbers, the z-axis
is on the plane.

Chapter 9

Review of Prerequisite Skills,
p. 487

1. a. yes c. yes
b. no d. no

2. Answers may vary. For example:
a. ;

b. ;

c. ;

d. ;

e. ;

f.
;

3. a.
b.
c.
d.
e.
f.

4.
5. is not parallel to the plane. is on

the plane.
is parallel to the plane.
is not parallel to the plane.

6. a.
b.

7.

8.

Section 9.1, pp. 496–498

1. a.

b. This line lies on the plane.
2. a. A line and a plane can intersect in

three ways: (1) The line and the
plane have zero points of
intersection. This occurs when the
lines are not incidental, meaning
they do not intersect.
(2) The line and the plane have only
one point of intersection. This
occurs when the line crosses the
plane at a single point.
(3) The line and the plane have an
infinite number of intersections.
This occurs when the line is

s�Rr
!
� 11, 2, �3 2 � s15, 1, 1 2p: x � 2y � 3z � 6,

3y � z � 13
� s10, 1, 0 2 , s, t�R

r
!
� 11, �4, 3 2 � t11, 3, 3 2x � 6y � 10z � 30 � 0

x � y � z � 2 � 0
L3

L2

L1L1

5x � 11y � 2z � 21 � 0
x � y � z � 6 � 0
11x � 6y � 38 � 0
6x � 5y � 3z � 0
4x � 3y � 15 � 0
y � 0
2x � 6y � z � 17 � 0

t�R� 6t,
z � �1y � 5 � 10t,x � 2 � 10t,

t�R
r
!
� 12, 5, �1 2 �  t 110, �10, �6 2,t�R

z � �1 � 3t,y � 5t,x � 2 � 3t,
t�Rr

!
� 12, 0, �1 2 � t 1�3, 5, 3 2 ,t�R

z � 5 � 5t,y � 3 � 10t,x � 1 � 5t,
t�Rr

!
� 11, 3, 5 2 � t15, �10, �5 2 ,t�Ry � �11t,x � �1 � �2t,

t�Rr
!
� 1�1, 0 2 � t 1�2, �11 2 ,t�Ry � 7 � 14t,x � �3 � 7t,

t�Rr
!
� 1�3, 7 2 � t 17, �14 2 ,t�Ry � 5 � 2t,x � 2 � 5t,

t�Rr
!
� 12, 5 2 � t 15, �2 2 ,

01t 2 � 0,A10 2 � B10 2 �

Ax � By � 0z � 0.

y

z

x

4

6

2

–4

–2

–6

–4 –2–6 4 620

y

x

�
1

5

70.5°

x

4
�

y � 5

�2
�

1

2

a0, 5, �
1

2
b3x � 13y � 2z � 61 � 0

s, t�R� t15, 1, �1 2 ,r
!
� 14, �3, 5 2 � s12, 0, �3 2�x � 7y � 3z � 0

s, t�Rr
!
� s12, 1, 3 2 � t11, 2, 5 2 ,

x

2
�

y

3
�

z

4
� 1

2x � 3y � 8z � 28 � 0
s, t�R

z � 4 � s,y � 2 � 2s � 2t,
x � 1 � s � 3t,

s, t�R;� t13, 2, 0 2 ,� s11, �2, �1 2r
!
� 11, 2, 4 2

�5x � y � 7z � 18 � 0
y � 2z � 4 � 0

3x � y � 4z � 26 � 0
z � 3 � 0
29x � 27y � 24z � 86 � 0
2x � 4y � 5z � 23 � 0

z � 5 � 6ty � 3 � t,x � 1,
r
!
� 11, 3, 5 2 � t10, 1, 6 2 ; t�Rr
!
� 11, 3, 5 2 � t10, 6, 4 2 ,c � 4;b � 6,a � 0,

z � 5y � 3,x � 1 � t,
t�R;r

!
� 11, 3, 5 2 � t11, 0, 0 2 ,

x � 1

�6
�

x � 3

�13
�

x � 5

14

z � 5 � 14t;
y � 3 � 13t,x � 1 � 6t,

t�R;
r
!
� 11, 3, 5 2 � t1�6, �13, 14 2 ,

x � 1

�8
�

x � 3

6
�

x � 5

�2

z � 5 � 2t;
y � 3 � 6t,x � 1 � 8t,

t�R;r
!
� 11, 3, 5 2 � t1�8, 6, �2 2 ,

x � 1

�2
�

y � 3

�4
�

z � 5

�10

z � 5 � 10t;
y � 3 � 4t,x � 1 � 2t,

t�R;
r
!
� 11, 3, 5 2 � t1�2, �4, �10 2 ,86.82°Q32, 5R 0°.

4x � 2y � 5z � 22 � 0
4x � 2y � 5z � 19 � 0
4x � 2y � 5z � 0

13x � 11y � 29z � 12 � 0
z � 2 � 4t � 3s
y � �3 � 7t � 2s,
x � 1 � 3t � 5s,

t, s�R;� s15, �2, 3 2r
!
� 11, �3, 2 2 � t1�3, 7, �4 26x � 5y � 12z � 46 � 0

bcx � acy � abz � abc � 0
� 18, �7, 5 2r
!
� 14, 9, �3 2 � 411, �4, 2 2r
!
� 14, 9, �3 2 � t11, �4, 2 2

r
!
� 1�1, 2, 1 2 � t13, 1, �2 2

t � �1s � 0
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coincident with the plane, meaning
the line lies on the plane.

b. Assume that the line and the plane
have more than one intersection,
but not an infinite number. For
simplicity, assume two intersections.
At the first intersection, the line
crosses the plane. In order for the
line to continue on, it must have the
same direction vector. If the line has
already crossed the plane, then it
continues to move away from the
plane, and can not intersect again.
So, the line and the plane can only
intersect zero, one, or infinitely
many times.

3. a. The line is the x-axis.
b. The plane is parallel to the xz-plane,

but just one unit away to the right.
c.

d. There are no intersections between
the line and the plane.

4. a. For if we
substitute our parametric equations,
we have 

All values of t give a solution to the
equation, so all points on the line are
also on the plane.

b. For the plane 
we can substitute the

parametric equations derived from 

All values of t give a solution to this
equation, so all points on the line
are also on the plane.

5. a.

Since there are no values of s such
that this line and plane do
not intersect.

b.

Since there are no values of t such
that there are no solutions, and
the plane and the line do not intersect.

6. a. The direction vector is
and the normal is

So the
line is parallel to the plane,
but 

So, the point on the
line is not on the plane.

b. The direction vector is
and the normal is

,
so the line is parallel to the plane.

and

So, the point on the line is not on
the plane.

7. a.
b.

8. a. There is no intersection and the
lines are skew.

b.
9. a. not skew

b. not skew
c. not skew
d. skew

10. 8
11. a. Comparing components results in

the equation for each
component.

b. From we see that at 
When this occurs,

Substituting this into we get

Since both of these
lines have the same direction vector
and a common point, the lines are
coincidental.

12. a. 3

b.

13. 3
14. a.

b. 3
15. a. (4, 1, 12)

b.

16. a.

b. (0, 0, 0)
c. If and the intersection

occurs at (0, 0, 0).

17. a. Represent the lines parametrically,
and then substitute into the equation
for the plane. For the first equation,

Substituting into the plane equation,

Simplifying, So, the line
lies on the plane.
For the second line,

Substituting into the plane equation,

Simplifying, This line also
lies on the plane.

b.
18. Answers may vary. For example,

Section 9.2, pp. 507–509

1. a. linear
b. not linear
c. linear
d. not linear

2. Answers may vary. For example:
a.

b.
3. a. yes

b. no
4. a.

b.
The two systems are equivalent
because they have the same solution.

5. a.
b.
c.

6. a. These two lines are parallel, and
therefore cannot have an intersection.

b. The second equation is five times
the first; therefore, the lines are
coincident.

7. a.
b.

8. a.
b.

9. a.
b. not possible
c. k � 12

k � 12
6t � 6t � 6 � 17 � �11
213t � 3 2 � 1�6t � 17 2 �

2x � y � �11
2x � y � �11

t� Rz � 2s � t,y � s,x � t,
t� Ry � 2t � 3,x � t,

1�4, 3 21�3, 5 216, 1 2
1�2, �3 21�2, �3 2
1�3, 4, �8 22x � y � z � �10
x � 2y � z � �3
x � y � 2z � �15

r
!
� 12, 0, 0 2 � p12, 0, 1 2 , p�R.

11, �1, 3 2 0s � 0.
8 � 6s � 1 � 3 � 6s � 10 � 0.

z � 1 � 2s.y � �1,x � 4 � 3s,

0t � 0.
2t � 7 � 8t � 3 � 6t � 10 � 0.

z � 1 � 2t.y � 7 � 8t,x � t,

q � 0,p � 0

y

z

x

L1

L2

t� R
r
!
� 14, 1, 12 2 � t 142, 55, �10 2 ,
1�6, 1, 3 2
a 2

11
, 

53

11
, 

46

11
b

� 1�2, 3, 4 2 .1�30, 11, �4 2 � 417, �2, 2 2L2,
t � 4.s � 0.
1�2, 3, 4 2 ,L1,

s � t � �4

14, 1, 2 2
1�11, 1, 0 21�19, 0, 10 2
� 0
211 2 � 41�2 2 � 411 2 � 13 � 1

� 0,
m
! # n!n

!
� 12, �4, 4 2 ,m
!
� 12, 5, 4 2

� �5 � 0.
21�1 2 � 211 2 � 310 2 � 1

m
! # n!� 0.n

!
� 12, �2, 3 2 ,m
!
� 1�1, 2, 2 2

1 � 0,

� 411 � 4t 2 � 13 � 1
211 � 2t 2 � 41�2 � 5t 2�5 � 0,

� 312s2 � 1 � �5
21�1 � s 2 � 211 � 2s 2
416 � 2t 2 � 11 � 0
211 � t 2 � 315 � 2t 2 �

r
!
� 11, 5, 6 2 � t 11, �2, �2 2 :4z � 11 � 0,

2x � 3y � 2x � 3y �

12 � 3t 2 � 4 � 0
1�2 � t 2 � 411 � t 2 �

x � 4y � z � 4 � 0,

y

z

x

r
!
� s11, 0, 0 2
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10. a infinitely many
b.

c. This equation will not have any
integer solutions because the left
side is an even function and the
right side is an odd function.

11. a.
b. Since they have different direction

vectors, these two equations are not
parallel or coincident and will
intersect somewhere.

12. a.
b.
c.
d.
e.
f.

13. Answers may vary. For example:

a.

b.

c.

14.
15. a.

b.
c.

Section 9.3, pp. 516–517

1. a. The two equations represent planes
that are parallel and not coincident.

b. Answers may vary. For example:

2. a.

the two planes are
coincident.

b. Answers may vary. For example:

3. a. ;
the two planes intersect in a line.

b. Answers may vary. For example:

4. a. and 
The value for m is unique, but p just
has to be twice q and arbitrary
values can be chosen.

b. and 
The value for m is unique, but p and
q can be arbitrarily chosen as long
as 

c.
This value is unique, since only one
value was found to satisfy the given
conditions.

d.
The value for m is unique from the
solution to c., but the values for 
p and q can be arbitrary since the
only value which can change the
angle between the planes is m.

5. a.

b.

c. Since t is an arbitrary real number,
we can express t as part b. 

.
6. a. yes; plane

b. no
c. yes; line
d. yes; line
e. yes; line
f. yes; line

7. a.
b. no solution
c.
d.

e.

f.
8. a. The system will have an infinite

number of solutions for any value 
of k.

b. No, there is no value of k for which
the system will not have a solution. 

9.

10. The line of intersection of the two
planes,

Since this is true, the line is contained
in the plane.

11. a.

b. about 1.73
12. 8x � 14y � 3z � 8 � 0

s�Rx � 1 � s, y � 1 � s, z � s,

0 � 0
5 � 6 � 11 � 10s � 6s � 16s � 0
161s 2 � 11 � 0
511 � 2s 2 � 312 � 2s 2 �

5x � 3y � 16z � 11 � 0
s�R;z � s;y � 2 � 2s,x � 1 � 2s,

s�R
r
!
2 � 1�2, 3, 6 2 � s1�5, �8, 2 2 ,

s�Rz � 4,y � s,x � s � 8,

s�Rz � 1 �
3

4
s,y � s,x �

5

4
s,

s�R
z � s,y � �s � 1,x � �s � 5,

s�Rz � s,y � �2,x � �2s,

t�Rz � t, s, y � s,x � 1 � s � t,

s�R
t � �3s,

t�Rz � �
1

3
 t,y � t,x � �3t,

s�Rz � s,y � �3s,x � 9s,

q � 1;p � 1,m � �20,

m � �20;
p � 2q.

p � 3;q � 1,m �
1
2,

p � 2;q � 1,p � 2q,m �
1
2,

x � y � z � 3x � y � z � �1,

s�Rz � �2,y � s,x � 1 � s,
2x � 2y � 2z � �2
x � y � z � �1,

s, t�R;

z � t;y � s,x �
1

2
�

1

2
 s � t,

x � y � z � �2x � y � z � 1,

k � ;2
k � �2
k � 2

b � c, a � b 21a � c, �a �

y

z

x

L2

L3

Three coincident lines

L1

y

z

x

L1

L3
L2

Lines meet in a point

y

z

x
L1

L3
L2

The lines form a triangle

y

z

Two parallel lines cut
by the third line

x

L1

L3

L2

y

L3

z

Two lines coincident and
the third parallel

x

L2
L1

y

z

x

L1

L2

L3

Three lines parallel

1�2, 3, 6 212, 4, 1 2160, 120, �180 214, 6, �8 213, 4, 12 21�1, �2, 3 2
y � �1

3 b � 2
3 ax � �a � b,

t� Ry �
11

4
�

1

2
 t,

x � t,
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Mid-Chapter Review, 
pp. 518–519

1. a.
b.
c.

2. a, c. Answers may vary. For example:

;
;

,

b.
d.

e.
3. a.

b.

c.

4. a.

b.

c. The lines found in 4.a. and 4.b. do
not intersect, because they are in
parallel and distinct planes.

5. a.
b.
c.

6. Since there is no t-value that satisfies
the equations, there is no intersection,
and these lines are skew.

7. a. no intersection
b. The lines are skew.

8.
9. a.

b.
These lines are the same, so either
one of these lines can be used as
their intersection.

10. a. Answers may vary. For example:
i. coincident

ii. parallel and distinct

iii. skew

iv. intersect in a point

b. i. When lines are the same, they
are a multiple of each other.

ii. When lines are parallel, one
equation is a multiple of the
other equation, except for the
constant term.

iii. When lines are skew, there are
no common solutions to make
each equation consistent.

iv. When the solution meets in a
point, there is only one unique
solution for the system.

11. a. when the line lies in the plane
b. Answers may vary. For example:

;

12. a.
b. no solution
c.

13. a. The two lines intersect at a point.
b. The two planes are parallel and do

not meet.
c. The three planes intersect at a point.

14. a.

b.
c.

Section 9.4, pp. 530–533

1. a.
b. This solution is the point at which

all three planes meet.
2. a. Answers may vary. For example,

and

b. These three planes are intersecting
in one single plane because all three
equations can be changed into one
equivalent equation. They are
coincident planes.

c.
d.

3. a. Answers may vary. For example,

and 

and 
b. no solutions

4. a.

b. This solution is the point at which
all three planes meet.

5. a. Since equation equation ,
equation and equation are
consistent or lie in the same plane.
Equation meets this plane in a
line.

b. and 
6. If you multiply equation by 5,

you obtain a new equation,
which is

inconsistent with equation .
7. a. Yes, when this equation is alone,

this is true.
b. Answers may vary. For example:

3x � 3y � 3z � 12
2x � 2y � 2z � 4

x � y � z � 2

3

5x � 5y � 15z � �1005,

2

t�Rz � 1 � t,y � t,x � 0,

1

32

2�3

a�3, 
11

4
, �

3

2
b

2x � 2y � 8z � 5.
x � y � 4z � 3,2x � y � 3z � �2,

3x � 2y � 7z � 2;
x � y � 4z � 3,2x � y � 3z � �2,

s, t�Rx � t � s � 4,z � s,y � t,
s, t�Rz � s � t � 4,y � s,x � t,

2x � 2y � 2z � 8.
3x � 3y � 3z � 12

1�9, �5, �4 2
2x � y � z � 1 � 0
u � 90 °

a�
1

2
, �

3

2
, �

3

2
b

12, 1, 4 213, 8 2t, s�R
r
!
� t 13, �5, �3 2 � s11, 1, 1 2 ,t�Rr
!
� t 13, �5, �3 2 ,

y

z

x

L1

L2

L1

L2
y

z

x

y

z

x

L1L2

y

z

x

L1 L2

t�R
13, 1, 2 21�3, 6, 6 2

a�Ra � ;3,
a � �3
a � 3

t�Rz � s,

y � �
2

5
s �

94

5
,x � �

11

5
s �

227

5
,

t�Rz � t,

y � �
2t

5
�

117

40
,x � �

11t

5
�

1

40
,

1�7, 0, 10 2t�R

r
!
� a�

19

7
, 

30

7
, 0 b � t13, 3, �7 2 ,t�R

r
!
� 1�7, 20, 0 2 � t10, �2, 1 2 ,1�1, �2, 5 21�1, �2, 5 2x � �1, y � �2, z � 5
z � 7 � 211 2 y � �5 � 311 2 ,x � �8 � 711 2 ,t � 1

t�Rz � 7 � 2t,
y � �5 � 3t,C: x � �8 � 7t,

1�1, �2, 5 2 t�Rz � 7 � 2t,
y � �5 � 3t,x � �8 � 7t

t�Rz � 5y � �2,x � 3 � t,
t�Rz � 3 � 2t,
y � 1 � 3t,x � 2 � 3t,

10, 3, 5 212, 0, 10 21�2, 6, 0 2
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8. a. is the point at which
the three planes meet.

b. is the point at which
the three planes meet.

c. is the point at
which the three planes meet.

d. is the point at which the
three planes meet.

9. a. and

the planes intersect in a
line.

b. no solution
c. and 

the planes intersect in a line.
10. a. and 

b. and 

11. a.

Equation equation 

Equation or 

Equation equation 
Equation or 
Since the y-variable is different in
Equation and Equation , the
system is inconsistent and has no
solution.

b. Answers may vary.  For example:

c. The three lines of intersection are
parallel and coplanar, so they form
a triangular prism.

d. Since a
triangular prism forms.

12. a. Equation and equation have
the same set of coefficients and
variables; however, equations 
equals 3, while equation equals
6, which means there is no possible
solution.

b. All three equations equal different
numbers, so there is no possible
solution.

c. Equation equals 18, while
equation equals 17, which
means there is no possible solution.

d. The coefficients of equation are
half the coefficients of equation ,
but the constant term is not half the
other constant term.

13. a.

b.

c.
d. no solution
e.
f.

14. a.

b.

15. a.
b.
c.

16.

Section 9.5, pp. 540–541

1. a.

b. or 4.31

c. or 5.76

2. a. or 2.24

b. or 20.16

3. a. 1.4
b. about 3.92
c. about 2.88

4. a.

If you substitute the coordinates
the formula changes to

which reduces to 

b.

c. the answers are the same

5. a.

b. or 1.4

c. or 1.11

d. or 18.46

6. a. about 1.80
b. about 2.83
c. about 3.44

7. a. about 2.83
b. about 3.28

8. a.

b. about 1.65

9. about 

10.

11. a. about 
b. D and G
c. about 

Section 9.6, pp. 549–550

1. a. Yes, the calculations are correct.
Point A lies in the plane.

b. The answer 0 means that the point
lies in the plane.

2. a. 3 c. 2 e. or 0.41

b. 3 d. or 0.38

3. a. 5
b.
c. Answers may vary. For example:

4. a. 4 b. 4 c. 2

5. or 0.67

6. 3
7. about 
8. a. about 

b. is the point on the first
line that produces the minimal
distance to the second line at point

Review Exercise, pp. 552–555

1.

2. no solution
3. a. no solution

b.
4. a. All four points lie on the plane

b. about 
5. a. 3

b. or 0.08

6.
7. a. no solution

b. no solution
c. no solution

t�Rr
!
� 13, 1, 1 2 � t 12, �1, 2 2 ,

1

12

0.19
3x � 4y � 2z � 1 � 0

199, 100, 101 2
�

4

99

V1�1, �1, 0 2 .
U11, 1, 2 23.46

1.51

2

3

a�
1

6
, 0, 

1

2
b

6x � 8y � 24z � 13 � 0

5

13

11

27

3.61 units2

1.75

a 38

21
, �

44

21
, 

167

21
b

a�
11

14
, 

5

14
, 

22

14
b3.06;

a 17

11
, 

7

11
, 

16

11
b

240

13

4

�13

7

5

3

24
5 ;

24

5

d �
0C 0

�A2 � B2
.

d �
0A10 2 � B10 2 � C 0

�A2 � B2
,

10, 0 2 ,
d �

0Ax0 � By0 � C 0
�A2 � B2

504

25

5

�5

236

�1681

56

13

3

5

13, 6, 2 2m � �2
m � ;2, m�R
m � 2
t�R

z � t,y �
1

3
t � 2,x � �

2

3
t � 3,

p � q � 5
10, 0, 0 2 t�Rz � t,y � 2,x � �t,

t�Rz � t,y � t,x � 0,

t�Rz � t,y �
5t � 5

3
,x �

t � 2

3
,

14, 3, �5 2

3

1

3

2

2

1

21

1n1
!
� n2
!2 # n3

!
� 0,

m3 � n2
!
� n3
!
� 1�1, 0, 1 2m2 � n1

!
� n3
!
� 12, 0, �2 2m1 � n1

!
� n2
!
� 13, 0, �3 2n3

!
� 11, �1, 1 2n2
!
� 11, �2, 1 2n1
!
� 11, 1, 1 2

54

y � 0� �y � 05

�3�2

y �
1

2
 � 2y � 14

�3�1

x � y � z � 03

x � 2y � z � 02

x � y � z � 11

s, t�R

z � s,y � t,x �
t � 3s

2
,

t�Rz � t,y � t � 2,x � 0,

t�R;z � t,y � 2,x � �t,

t�R;z � t,

y � �
15

7
�

3

7
t,x � �

1

7
t �

9

7
,

14, 2, 3 21�99, 100, �101 21�6, 12, 3 21�1, �1, 0 2
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8. a.

b.

c.

9. a.

b.

10. a. These three planes meet at the point

b. The planes do not intersect.
Geometrically, the planes form a
triangular prism.

c. The planes meet in a line through
the origin, with equation 

11. 4.90
12. a.

Since the line’s direction vector is
perpendicular to the normal of the
plane and the point lies
on both the line and the plane, the
line is in the plane.

b.
c.

The point is on the
plane since it satisfies the equation
of the plane.

d.
13. a.

b.
14. a.

b.

15. a.
b. about 

16. a. 1
b.

17. a.
b.

18.

19.

20.

21. a.

;

;

; 
b. All three lines of intersection found

in part a. have direction vector
and so they are all

parallel. Since no pair of normal
vectors for these three planes is
parallel, no pair of these planes is
coincident.

22.

and

23.

24.

25.
26. a.

b.

c. about 
27.

Chapter 9 Test, p. 556

1. a.
b.

2. a. or 1.08

b. or 13.33

3. a.

b.
4. a.

b. The three planes intersect at the
point  

5. a.

b. The three planes intersect at this line.
6. a.

b.
7.

Cumulative Review of Vectors,
pp. 557–560

1. a. about 
b. scalar projection: ,

vector projection:

c. scalar projection: ,

vector projection:

2. a.

b. about 

3. a.

b. 3

c.

4. a.
b. 18

5. x-axis: about 42.0°, y-axis: about
111.8°, z-axis: about 123.9°

6. a.
b.
c. about 8.66 square units
d. 0

7. and 

8. a. vector equation: Answers may vary.
;

parametric equation:

b. If the x-coordinate of a point on the
line is 4, then or

At the point on
the line is 

Hence,
is a point on the line.

9. The direction vector of the first line is
and of the second line is

So they
are collinear and hence parallel.
The lines coincide if and only if for
any point on the first line and second 
line, the vector connecting the two 
points is a multiple of the direction 
vector for the lines. (2, 0, 9) is a point 
on the first line and is a 
point on the second line.

for Hence, the
lines are parallel and distinct.

k�R.� k1�1, 5, 2 2 � 1�1, 5, �1 212, 0, 9 2 � 13, �5, 10 213, �5, 10 2

11, �5, �2 2 � �1�1, 5, 2 2 .1�1, 5, 2 2C14, �13, �3 2� 14, �13, �3 2 .12, �3, 1 2 � 21�1, 5, 2 2t � �2,t � �2.
2 � t � 4,

t�Rz � 1 � 2t,
y � �3 � 5t,x � 2 � t,

t�Rr
!
� 12, �3, 1 2 � t1�1, 5, 2 2 ,

a 1

�2
, 

1

�2
, 0ba� 1

�2
, �

1

�2
, 0b

1�42, �30, �6 21�7, �5, �1 2
�7i
!
� 19j

!
� 14k

!

3

2

1

2

51.9°
t�R
x � 8 � 4t, y � t, z � �3 � 3t,

a�28

9
, 

14

9
, 

28

9
b

�
14

3

a� 52

169
, 

56

169
, �

168

169
b

�
14

13

111.0°

10.20
t�Rz � t,y � 1 � t,x � �1,

n � �3m � �1,

t�R

z � t,y �
3t

4
�

1

2
,x � �

1

2
�

t

4
,

11, �5, 4 2 .11, �5, 4 214, 0, 5 2 t�Rz � t,y � 1 �
t

5
,x �

4t

5
,

40

3

13

12

0 � 0
3 � 1 � 5 � 1 � 0

3 � 1�1 2 � 1�5 2 � 1 � 0
13, �1, �5 2

6x � 8y � 9z � 115 � 0
33.26 units2

a 13

2
, 2, �

3

2
b t�R� t 1�5, �4, �3 2 ,r

!
� 1�1, �4, �6 2C � �4B � 2,A � 5,

a 29

7
, 

4

7
, �

33

7
b

y �
7

6
x2 �  

3

2
 x �

2

3

a�
1

2
, �1, 

1

3
b
a�

1

2
, 1, �

1

3
b ,a 1

2
, �1, �

1

3
b

a 1

2
, �1, �

1

3
b , a�

1

2
, 1, 

1

3
b ,

a1

2
, 1, 

1

3
b , a1

2
, 1, �

1

3
b , a1

2
, �1, 

1

3
b , 

111, 2, �5 2 ,
t�Rz � �1 � 5t,t�R

t 111, 2, �5 2 ,r
!
� 17, 0, �1 2 �

t�R� t 111, 2, �5 2 , r
!
� a�

37

2
, 0, 

15

2
b

t�R� t111, 2, �5 2 , r
!
� a 45

4
, 0, �

21

4
b

a�
5

3
, 

8

3
, 

4

3
b

a4, �
7

4
, 

7

2
b

a �
2

3
, b �

3

4
, c �

1

2

t�Rz � t,y � 3 � t,x � 7 � 3t,
z � 1y � �1,x � 2,

t�Rr
!
� 10, 0, �1 2 � t 14, 3, 7 2 ,0.45

�10x � 9y � 8z � 16 � 0
t�R
r
!
� 1�2, �3, 0 2 � t 11, �2, 1 2 ,1�2, �3, 0 2 .13, 0, �1 25.48

7x � 2y � 11z � 50 � 0

1�1, �1, �5 2�1 � 21�1 2 � 1�5 2 � 4 � 0
x � 2y � z � 4 � 0
1�1, �1, �5 2

13, 1,�5 2
m
!
� n
!
� 12, 1, 0 2 11, �2, 1 2 � 0

s�Rr
!
� 13, 1, �5 2 � s12, 1, 0 2 ,x � 2y � z � 4 � 0

t�Rz � �5t,y � �7t,
x � t,

1�1, 5, 3 2 .t�R

z � t,y �
1

4
�

1

12
t,x �

9

8
�

31

24
t,

t�Rz � t,

y � �
1

2
�

5

12
t,x �

1

2
�

1

36
t,

s, t�R
z � s,y � t,x � 3t � 3s � 7,

z � �
1

2
y �

1

4
,x � 3,

t�Rz � t,y � 1 �
2

7
t,x � �

5

7
t,
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8. a.

b.

c.

9. a.

b.

10. a. These three planes meet at the point

b. The planes do not intersect.
Geometrically, the planes form a
triangular prism.

c. The planes meet in a line through
the origin, with equation 

11. 4.90
12. a.

Since the line’s direction vector is
perpendicular to the normal of the
plane and the point lies
on both the line and the plane, the
line is in the plane.

b.
c.

The point is on the
plane since it satisfies the equation
of the plane.

d.
13. a.

b.
14. a.

b.

15. a.
b. about 

16. a. 1
b.

17. a.
b.

18.

19.

20.

21. a.

;

;

; 
b. All three lines of intersection found

in part a. have direction vector
and so they are all

parallel. Since no pair of normal
vectors for these three planes is
parallel, no pair of these planes is
coincident.

22.

and

23.

24.

25.
26. a.

b.

c. about 
27.

Chapter 9 Test, p. 556

1. a.
b.

2. a. or 1.08

b. or 13.33

3. a.

b.
4. a.

b. The three planes intersect at the
point  

5. a.

b. The three planes intersect at this line.
6. a.

b.
7.

Cumulative Review of Vectors,
pp. 557–560

1. a. about 
b. scalar projection: ,

vector projection:

c. scalar projection: ,

vector projection:

2. a.

b. about 

3. a.

b. 3

c.

4. a.
b. 18

5. x-axis: about 42.0°, y-axis: about
111.8°, z-axis: about 123.9°

6. a.
b.
c. about 8.66 square units
d. 0

7. and 

8. a. vector equation: Answers may vary.
;

parametric equation:

b. If the x-coordinate of a point on the
line is 4, then or

At the point on
the line is 

Hence,
is a point on the line.

9. The direction vector of the first line is
and of the second line is

So they
are collinear and hence parallel.
The lines coincide if and only if for
any point on the first line and second 
line, the vector connecting the two 
points is a multiple of the direction 
vector for the lines. (2, 0, 9) is a point 
on the first line and is a 
point on the second line.

for Hence, the
lines are parallel and distinct.

k�R.� k1�1, 5, 2 2 � 1�1, 5, �1 212, 0, 9 2 � 13, �5, 10 213, �5, 10 2

11, �5, �2 2 � �1�1, 5, 2 2 .1�1, 5, 2 2C14, �13, �3 2� 14, �13, �3 2 .12, �3, 1 2 � 21�1, 5, 2 2t � �2,t � �2.
2 � t � 4,

t�Rz � 1 � 2t,
y � �3 � 5t,x � 2 � t,

t�Rr
!
� 12, �3, 1 2 � t1�1, 5, 2 2 ,

a 1

�2
, 

1

�2
, 0ba� 1

�2
, �

1

�2
, 0b

1�42, �30, �6 21�7, �5, �1 2
�7i
!
� 19j

!
� 14k

!

3

2

1

2

51.9°
t�R
x � 8 � 4t, y � t, z � �3 � 3t,

a�28

9
, 

14

9
, 

28

9
b

�
14

3

a� 52

169
, 

56

169
, �

168

169
b

�
14

13

111.0°

10.20
t�Rz � t,y � 1 � t,x � �1,

n � �3m � �1,

t�R

z � t,y �
3t

4
�

1

2
,x � �

1

2
�

t

4
,

11, �5, 4 2 .11, �5, 4 214, 0, 5 2 t�Rz � t,y � 1 �
t

5
,x �

4t

5
,

40

3

13

12

0 � 0
3 � 1 � 5 � 1 � 0

3 � 1�1 2 � 1�5 2 � 1 � 0
13, �1, �5 2

6x � 8y � 9z � 115 � 0
33.26 units2

a 13

2
, 2, �

3

2
b t�R� t 1�5, �4, �3 2 ,r

!
� 1�1, �4, �6 2C � �4B � 2,A � 5,

a 29

7
, 

4

7
, �

33

7
b

y �
7

6
x2 �  

3

2
 x �

2

3

a�
1

2
, �1, 

1

3
b
a�

1

2
, 1, �

1

3
b ,a 1

2
, �1, �

1

3
b

a 1

2
, �1, �

1

3
b , a�

1

2
, 1, 

1

3
b ,

a1

2
, 1, 

1

3
b , a1

2
, 1, �

1

3
b , a1

2
, �1, 

1

3
b , 

111, 2, �5 2 ,
t�Rz � �1 � 5t,t�R

t 111, 2, �5 2 ,r
!
� 17, 0, �1 2 �

t�R� t 111, 2, �5 2 , r
!
� a�

37

2
, 0, 

15

2
b

t�R� t111, 2, �5 2 , r
!
� a 45

4
, 0, �

21

4
b

a�
5

3
, 

8

3
, 

4

3
b

a4, �
7

4
, 

7

2
b

a �
2

3
, b �

3

4
, c �

1

2

t�Rz � t,y � 3 � t,x � 7 � 3t,
z � 1y � �1,x � 2,

t�Rr
!
� 10, 0, �1 2 � t 14, 3, 7 2 ,0.45

�10x � 9y � 8z � 16 � 0
t�R
r
!
� 1�2, �3, 0 2 � t 11, �2, 1 2 ,1�2, �3, 0 2 .13, 0, �1 25.48

7x � 2y � 11z � 50 � 0

1�1, �1, �5 2�1 � 21�1 2 � 1�5 2 � 4 � 0
x � 2y � z � 4 � 0
1�1, �1, �5 2

13, 1,�5 2
m
!
� n
!
� 12, 1, 0 2 11, �2, 1 2 � 0

s�Rr
!
� 13, 1, �5 2 � s12, 1, 0 2 ,x � 2y � z � 4 � 0

t�Rz � �5t,y � �7t,
x � t,

1�1, 5, 3 2 .t�R

z � t,y �
1

4
�

1

12
t,x �

9

8
�

31

24
t,

t�Rz � t,

y � �
1

2
�

5

12
t,x �

1

2
�

1

36
t,

s, t�R
z � s,y � t,x � 3t � 3s � 7,

z � �
1

2
y �

1

4
,x � 3,

t�Rz � t,y � 1 �
2

7
t,x � �

5

7
t,
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10. vector equation:

parametric equation:

11.

12.

13. a.

Answers may vary. For example,
and 

b.

Answers may vary. For example,
and 13, 2, 1 2 .1�3, �2, 2 2

(0, 0, 0)

(3, 2, 1)
y

z

x

(–3, –2, 2)

16, 0, �3 2 .10, 3, �3 2

y

(0, 0, 3)

(0, 3, 0)
(6, 0, 0)

z

x

a 3

2
, �

31

6
, 

13

6
b�13

t�Rz � 4 � t,
y � t,x � 0,

t�R;r
!
� 10, 0, 4 2 � t10, 1, 1 2 ,

A n s w e r s688 NEL

b.

20. a. 16°
b. The two planes are perpendicular if

and only if their normal vectors are
also perpendicular. A normal vector
for the first plane is and 
a normal vector for the second plane 
is The two vectors 
are perpendicular if and only if their
dot product is zero.

Hence, the normal vectors are
perpendicular. Thus, the planes are
perpendicular.

c. The two planes are parallel if and 
only if their normal vectors are 
also parallel. A normal vector for 
the first plane is and a
normal vector for the second plane 
is Since both normal
vectors are the same, the planes 
are parallel. Since

the point is on the 
second plane. Yet since 

is not on the first plane.
Thus, the two planes are parallel but
not coincident.

21. resultant: about 56.79 N, 37.6° from 
the 25 N force toward the 40 N force,
equilibrant: about 56.79 N,
from the 25 N force away from the 
40 N force

22. a.  

a
a

–b

–b

142.4°

10, �1, 0 2210 2 � 31�1 2 � 210 2 � 1 � 2 � 0,

10, �1, 0 2210 2 � 31�1 2 � 210 2 � 3 � 0,

12, �3, 2 2 . 12, �3, 2 2

� 0
� 214 2 � 31�3 2 � 11�17 212, �3, 1 2 # 14, �3, �17 2
14, �3, �17 2 . 12, �3, 1 2

y

(0, 0, 6)

(0, –3, 0)

(2, 0, 0)

z

x

c.

Answers may vary. For example,
and 

14.
15.
16. a.

b. about 1.49 units
17. a.

b.
c.
d.

18. 336.80 km h, N 12.1° W
19. a.

s, . To verify, find
the Cartesian equation corresponding
to the above vector equation and see
if it is equivalent to the Cartesian
equation given in the problem. A
normal vector to this plane is the
cross product of the two directional
vectors.

So the plane has the form
for some

constant D. To find D, we know that
(0, 0, 6) is a point on the plane, so

So,
or So, the

Cartesian equation for the plane is
Since this is

the same as the initial Cartesian
equation, the vector equation for the
plane is correct.

3x � 2y � z � 6 � 0.

D � �6.6 � D � 0,
310 2 � 210 2 � 16 2 � D � 0.

3x � 2y � z � D � 0,

� 13, �2, 1 2111 2 � 010 2 2� 1012 2 � 1�3 2 11 2 , �310 2 � 112 2 ,n
!
� 11, 0, �3 2 � 10, 1, 2 2

t�R� t10, 1, 2 2 ,r
!
� 10, 0, 6 2 � s11, 0, �3 2>x � 2z � 1 � 0

z � 3 � 0
x � y � 12z � 27 � 0
3x � 5y � 4z � 7 � 0

12x � 9y � 6z � 24 � 0
t�Rq

!
� 11, 0, 2 2 � t1�11, 7, 2 2 ,1�7, 10, 20 2 11, 1, �1 2 .10, 3, 6 2

y

(0, 0, 0)

(1, 1, –1)

(0, 3, 6)

z

x



b.

23. a.

b.

24. a.

b. about 
c. about 

25. a.
b.
c.
d.

s,
26. a. yes; 

b. no
c. yes;

27. 30°

28. a.

b. 84
29. ,

30.
31. a. 0.8 km

b. 12 min
32. a. Answers may vary.

b. The line found in part a will lie in
the plane if
and only if both points 
and lie in this plane. We
verify this by substituting these
points into the equation of the
plane, and checking for consistency.
For A:

For B:

Since both points lie on the plane,
so does the line found in part a.

33.
34. parallel: N,

perpendicular: about N
35. a. True; all non-parallel pairs of lines

intersect in exactly one point in 
However, this is not the case for
lines in (skew lines provide a
counterexample).

b. True; all non-parallel pairs of
planes intersect in a line in 

c. True; the line has
direction vector (1, 1, 1), which is
not perpendicular to the normal
vector to the plane

k is any constant.
Since these vectors are not
perpendicular, the line is not
parallel to the plane, and so they
will intersect in exactly one point.

d. False; a direction vector for the line
is (2, 1, 2).

A direction vector for the line
is 

or (2, 1, 1) (which is
parallel to . Since 
(2, 1, 2) and (2, 1, 1) are obviously
not parallel, these two lines are not
parallel.

36. a. A direction vector for

is (0, 3, 1),

and a direction vector for

is (1, 1, k).

But (0, 3, 1) is not a nonzero scalar
multiple of (1, 1, k) for any k, since
the first component of (0, 3, 1) is 0.
This means that the direction
vectors for and are never
parallel, which means that these
lines are never parallel for 
any k.

b. 6; 

Calculus Appendix

Implicit Differentiation, p. 564

1. The chain rule states that if y is a
composite function, then 

To differentiate an 
equation implicitly, first differentiate
both sides of the equation with respect
to x, using the chain rule for terms 
involving y, then solve for 

2. a.

b.

c.

d.

e.

f.

3. a.

b.

c.

d.

4. (0, 1)
5. a. 1

b. and 

6.
7.

8.

9. a.

b.

10. a.

b.

c.

11. a.

one tangent
b.

one tangent

 �
4x4 � 9x214x2 � 3 22

 �
12x4 � 9x2 � 8x414x2 � 3 22

 �
3x2 � 14x2 � 3 2 � 8x414x2 � 3 22

 
dy

dx
�

3x2 � 8x Q x3

4x2 � 3R
4x2 � 3

 y �
x3

4x2 � 3

 
dy

dx
�

3x2 � 8xy

4x2 � 3

4x4 � 9x214x2 � 3 22y �
x3

4x2 � 3
;

3x2 � 8xy

4x2 � 3

4�x � y � 1

41x � y 22 � 1

y �
1

2
x �

3

2

7x � y � 11 � 0
�10

a�
3

�5
, ��5 ba 3

�5
, �5 b

y �
11

10
1x � 11 2 � 4

y � �
3�3

5
 x � 3

y �
2

3
1x � 8 2 � 3

y �
2

3
x �

13

3

�
2x

2y � 5

�
13x

48y

9x

16y

�y2

2xy � y2

x2

5y

�
x

y

dy
dx.

dy
dx �

dy
du du

dx.

12, �4, �2 2
L2L1

L2: x � y � k �
z � 14

k

y � 2

3
� zL1: x � 2,

1�4, �2, �2 2 21�4, �2, �2 2 ,x � 1
�4 �

y � 1
�2 �

z � 1
�2

x
2 � y � 1 �

z � 1
2

x � 2y � 2z � k,
11, �2, 2 2

x � y � z

R3.

R3

R2.

3394.82
1960

20 km>h at N 53.1° E

6 � 213 2 � 414 2 � 16 � 0

2 � 21�1 2 � 413 2 � 16 � 0

B16, 3, 4 2 A12, �1, 3 2x � 2y � 4z � 16 � 0

t�Rr
!
� 16,  3,  4 2 � t14,  4,  1 2 ,

1�1, 1, 0 2�x � 3y � z � 11 � 0
t�Rr

!
� t1�1, 3, 1 2 ,

�
3

2

x � 2 � 2t, y � t, z � 3t, t�R

x � 0, y � �1 � t, z � t, t�R
t�R

z � s,y � t,x � 1 � 3s � t,
t�Rz � �3 � t,y � t,x � 1,

11, 2, �3 2 t�Rz � 1,y � �1 � t,x � t,
85.6°
74.9°

BD
!
� 110, �5 2OC
!
� 18, 9 2 ,a�
6

7
, �

2

7
, 

3

7
b

a 6

7
, 

2

7
, �

3

7
b

2a
2a

1
2

b

1
2

b+
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b.

23. a.

b.

24. a.

b. about 
c. about 

25. a.
b.
c.
d.

s,
26. a. yes; 

b. no
c. yes;

27. 30°

28. a.

b. 84
29. ,

30.
31. a. 0.8 km

b. 12 min
32. a. Answers may vary.

b. The line found in part a will lie in
the plane if
and only if both points 
and lie in this plane. We
verify this by substituting these
points into the equation of the
plane, and checking for consistency.
For A:

For B:

Since both points lie on the plane,
so does the line found in part a.

33.
34. parallel: N,

perpendicular: about N
35. a. True; all non-parallel pairs of lines

intersect in exactly one point in 
However, this is not the case for
lines in (skew lines provide a
counterexample).

b. True; all non-parallel pairs of
planes intersect in a line in 

c. True; the line has
direction vector (1, 1, 1), which is
not perpendicular to the normal
vector to the plane

k is any constant.
Since these vectors are not
perpendicular, the line is not
parallel to the plane, and so they
will intersect in exactly one point.

d. False; a direction vector for the line
is (2, 1, 2).

A direction vector for the line
is 

or (2, 1, 1) (which is
parallel to . Since 
(2, 1, 2) and (2, 1, 1) are obviously
not parallel, these two lines are not
parallel.

36. a. A direction vector for

is (0, 3, 1),

and a direction vector for

is (1, 1, k).

But (0, 3, 1) is not a nonzero scalar
multiple of (1, 1, k) for any k, since
the first component of (0, 3, 1) is 0.
This means that the direction
vectors for and are never
parallel, which means that these
lines are never parallel for 
any k.

b. 6; 

Calculus Appendix

Implicit Differentiation, p. 564

1. The chain rule states that if y is a
composite function, then 

To differentiate an 
equation implicitly, first differentiate
both sides of the equation with respect
to x, using the chain rule for terms 
involving y, then solve for 

2. a.

b.

c.

d.

e.

f.

3. a.

b.

c.

d.

4. (0, 1)
5. a. 1

b. and 

6.
7.

8.

9. a.

b.

10. a.

b.

c.

11. a.

one tangent
b.

one tangent

 �
4x4 � 9x214x2 � 3 22

 �
12x4 � 9x2 � 8x414x2 � 3 22

 �
3x2 � 14x2 � 3 2 � 8x414x2 � 3 22

 
dy

dx
�

3x2 � 8x Q x3

4x2 � 3R
4x2 � 3

 y �
x3

4x2 � 3

 
dy

dx
�

3x2 � 8xy

4x2 � 3

4x4 � 9x214x2 � 3 22y �
x3

4x2 � 3
;

3x2 � 8xy

4x2 � 3

4�x � y � 1

41x � y 22 � 1

y �
1

2
x �

3

2

7x � y � 11 � 0
�10

a�
3

�5
, ��5 ba 3

�5
, �5 b

y �
11

10
1x � 11 2 � 4

y � �
3�3

5
 x � 3

y �
2

3
1x � 8 2 � 3

y �
2

3
x �

13

3

�
2x

2y � 5

�
13x

48y

9x

16y

�y2

2xy � y2

x2

5y

�
x

y

dy
dx.

dy
dx �

dy
du du

dx.

12, �4, �2 2
L2L1

L2: x � y � k �
z � 14

k

y � 2

3
� zL1: x � 2,

1�4, �2, �2 2 21�4, �2, �2 2 ,x � 1
�4 �

y � 1
�2 �

z � 1
�2

x
2 � y � 1 �

z � 1
2

x � 2y � 2z � k,
11, �2, 2 2

x � y � z

R3.

R3

R2.

3394.82
1960

20 km>h at N 53.1° E

6 � 213 2 � 414 2 � 16 � 0

2 � 21�1 2 � 413 2 � 16 � 0

B16, 3, 4 2 A12, �1, 3 2x � 2y � 4z � 16 � 0

t�Rr
!
� 16,  3,  4 2 � t14,  4,  1 2 ,

1�1, 1, 0 2�x � 3y � z � 11 � 0
t�Rr

!
� t1�1, 3, 1 2 ,

�
3

2

x � 2 � 2t, y � t, z � 3t, t�R

x � 0, y � �1 � t, z � t, t�R
t�R

z � s,y � t,x � 1 � 3s � t,
t�Rz � �3 � t,y � t,x � 1,

11, 2, �3 2 t�Rz � 1,y � �1 � t,x � t,
85.6°
74.9°

BD
!
� 110, �5 2OC
!
� 18, 9 2 ,a�
6

7
, �

2

7
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3

7
b

a 6

7
, 

2

7
, �

3

7
b

2a
2a

1
2

b

1
2

b+
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c.

one tangent
d.

two tangents

12.

Multiply by 

as required.

13.
14.

Let be the point of intersection
where and 
For 

At 

For 

At 

At point the slope of the
tangent line of is the negative
reciprocal of the slope of the tangent
line of Therefore, the
tangent lines intersect at right angles,
and thus, the two curves intersect
orthogonally for all values of the
constants k and P.

15.

Let be the point of tangency.

Equation on tangent line l and P is

x-intercept is found when 

Therefore, the x-intercept is 

For the y-intercept, let 

y-intercept is 

The sum of the intercepts is

Since is on the curve, then 

or 
Therefore, the sum of the intercepts

as required.
16. and

Related Rates, pp. 569–570

1. a.

b.

c. when 

d.

e. rad s

2. a. decreasing at s
b. about 0.58 m
c. Solve 

3. area increasing at 100 cm2 s; 
perimeter increasing at 20 cm s

4. a. increasing at 300 cm3 s
b. increasing at 336 cm2 s

5. increasing at 40 cm2 s

6. a.

b.

7.

8.
9.

10.

11.

12. a.

b.

c.

13.

14. Answers may vary. For example:
a. The diameter of a right-circular

cone is expanding at a rate of 
4 cm min. Its height remains
constant at 10 cm. Find its radius
when the volume is increasing at a
rate of cm3 min.

b. Water is being poured into a 
right-circular tank at the rate of 

m3 min. Its height is 4 m and
its radius is 1 m. At what rate is the
water level rising?

c. The volume of a right-circular cone
is expanding because its radius is
increasing at 12 cm min and its
height is increasing at 6 cm min.
Find the rate at which its volume is
changing when its radius is 20 cm
and its height is 40 cm.

15. 0.145p m3>year

>>
>12p

>80p

>
50

p
 cm>min; 94.25 min 1or about 1.5 h 2

1

8p
 cm>s or about 0.04 cm>s

2

49p
 cm>s or about 0.01 cm>s

1

72p
 cm>s5�13 km>h214 m>s8 m>min

4 m>s
1

p
 km>h

5

3p
 m>s

5

6p
 km>h > >> >>1x 2 � 0.T¿¿

>5.9 °C

>du

dt
�
p

10

dx

dt
�

dy

dt

t � 0.25
ds

dt
� 70 km>h,

dS

dt
� �3 m2>min

dA

dt
� 4 m>s2

1x � 4 22 � 1y � 1 22 � 18
1x � 2 22 � 1y � 5 25 � 18

� k,is 1k1
2 22 a

1
2 � b

1
2 � k

1
2.�a � �b � �k,

P1a, b 2� 1a1
2 � b

1
2 22� a � 2�a�b � b

�
a

1
2b

1
2 1a � 2�a�b � b 2

a
1
2b

1
2

�
a

3
2b

1
2 � 2ab � b

3
2a

1
2

a
1
2b

1
2

a�b � b�a

�b
�

a�b � b�a

�a

a�b

�a
� b.

y � b

�a
� �

�b

�a
.

x � 0,

a�b � b�a
�b

.

 x �
a�b � b�a

�b

 �b�a � ��bx � a�b

 
�b

x � a
� �

�b

�a

y � 0.

y � b

x � a
� �

�b

�a
.

dy

dx
�

�b

�a

P1a, b 2 
dy

dx
� �

�y

�x

 
1

2
x

1
2 �

1

2
y

1
2 

dy

dx
� 0

x2 � y2 � k.

xy � P
P1a, b 2 ,

dy

dx
� �

b

a

P1a, b 2 , 
dy

dx
� �

y

x

 1 # y �
dy

dx
 x � P

xy � P,

dy

dx
�

a

b

P1a, b 2 , 
dy

dx
�

x

y

 2x � 2y 
dy

dx
� 0

x2 � y2 � k,
b � 0.a � 0

P1a, b 2

y
xy = p

x

P(a, b)

x2 – y2 = k

0

xy = p

x2 – y2 = k

2x � 3y � 10 � 0 and x � 4

 
dy

dx
�

y

x
,

 
dy

dx
�

x
1
2y

3
2 1y � x 2

x
3
2y

1
2 1y � x 2

 
dy

dx
 Qx3

2y
3
2 � x

5
2y

1
2R � x

1
2y

5
2 � x

3
2y

3
2

x
3
2y

3
2 � x

5
2y

1
2 

dy

dx
� x

3
2y

3
2 

dy

dx
� x

1
2y

5
2 � 0

x
1
2y

3
2 ady

dx
x � yb � 0x

3
2y

1
2 ay � x 

dy

dx
b �

2x2y2:

x
1
2

2y
1
2

  

dy
dx 

x � y

x2
� 0

y
1
2

2x
1
2

 
1y �

dy
dx x

y2
�

�
1

2
a y

x
b�1

2

 

dy
dx  x � y

x2
� 0

1

2
a x

y
b�1

2 1y �
dy
dx  x

y2
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16.

17.

18.
19.

20. a.

b.

21. a.

b.

The Natural Logarithm and its
Derivative, p. 575

1. A natural logarithm has base e; a
common logarithm has base 10.

2. Since let 

Therefore,

But as 

Therefore,

If 

Try etc.

3. a.

b.

c.

d.

e.

f.

4. a.
b.

c.

d.

e.

f.

5. a. 2e
b.

c.

The value shown is approximately
2e, which matches the calculation
in part a.

This value matches the calculation
in part b.

6. a.
b. no solution
c.

7. a.
b.

c. The equation on the calculator is in
a different form, but is equivalent to
the equation in part a.

8.

9. a. and (1, 0)

b.

c. The solution in part a is more
precise and efficient.

10.

11. a.

b.

c. about 
d. 6.36 s

12.

13. a.

b. The function’s domain is
.

The domain of the derivative is
.

The Derivatives of General
Logarithmic Functions, 
p. 578

1. a.

b.

c.

d.

e.

f.

2. a.

b.

c.

d.

e.

f.

3. a.

b.

4. a.

b.

c.

d.
x ln 313x 2 1ln x 2 � 3x

x ln 3

2 ln 5 � ln 4

ln 3

2x � 3

21x2 � 3x 2 ln 12 2
211 � x2 2 ln 10

1

8 log2 18 2 1ln 3 2 1ln 2 2
5

52 ln 2

2x � 11x2 � x � 1 2 ln 7

212x � 6 2 ln 8
�

11x � 3 2 ln 8

�215 � 2x 2  ln 10

�612x � 3 2  ln 3

1

x ln 8

11x � 2 2  ln 3

3

x ln 6

�1

x ln 10

�3

x ln 7

2

x ln 4

1

x ln 3

1

x ln 5

5x�R 0 x 7 0 and x � 165x�R 0 x 7 16
1

x ln x

1

2

�12.8 km>h>s
�90

3t � 1

90 km>hy � �
1
2  x � ln 2

a 1

e
, 

1

e2 bx � 2y � 12 ln 2 � 4 2 � 0

x � 3y � 1 � 0
x � 0, ;�e � 1

x � 0

0.1

1

2
e�u a 1

2
e�u ln u �

1

u
b

tet ln t � et

t1ln t 22
�ze�z

e�z � ze�z

et ln t �
et

t

1
ln x � 1

2z � 3

21z2 � 3z 2
3t2 � 4t

t3 � 2t2 � 5

1

21x � 1 2
15

t

2x

x2 � 1

5

5x � 8

n � 100 000,
 � 2.704 81
 � 1.01100

 e � a1 �
1

100
b 100

n � 100,

e � lim 
nSq
11 �

1
n 2n.

nSq.1
nS 0,

e � lim
1
nS0
a1 �

1

n
b n

.

h �
1
n.e � lim 

hS0
11 � h 2 1n,

y2

k2
�

y21l � k 22 � 1

x2 � y2 � a l

2
b 2

8

25p
 cm>s

4

5p
 cm>s62.8 km>h144 m>min

�3

4
 m>min

2

p
 cm>min
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e.

f.

5.

6.

7.
8. Since the derivative is positive at

the distance is increasing at
that point.

9. a.
b.

vertical asymptote at 
c. The tangent line will intersect this

asymptote because it is defined for

10.
critical number at and

function is decreasing for
and increasing for 

11. a. point of inflection at 
b. is a possible point of

inflection. Since the graph is always
concave up, there is no point of
inflection.

12. The slope of at (1, 0) is 

Since the slope of at
(0, 1) is greater than the slope of

at .

Logarithmic Differentiation, 
p. 582

1. a.
b.
c.
d.

2. a.

b.

c.

d.

3. a.
b.

c.

4.

5.

6.
7. and 

8.

9.

10.

11.

12.

13. a.

b.
14. Using a calculator, and

So, .

Vector Appendix

Gaussian Elimination, 
pp. 588–590

1. a.

b.

c.

2. Answers may vary. For example:

3. Answers may vary. For example:

4. a. Answers may vary. For example:

b. , ,

5. a.

b.

c.

6. a.

b.
c. no solution

d. , z � �5y � �4,x � �
9

4

x � 13, y �  9, z � �6

y � �3x � �
9

2
,

y � z � 0
x � �2

�z � 0
y � 2z � �3
x � 2y � 4

�2x � z � 0
2x � y � 0

2x � 3y � 1
x � 2y � �1

z � �
4

9
y � �

8

9
x � �

22

9

£1 0 �1 �1

0 �1 2 0

0 0 �36 16

§
£2 1 6 0

0 �2 1 0

0 0 �37 4

§
c2 3 0

0 �5.5 1
d

c1 1.5 0

0 �5.5 1
d

£ 2 �1 �1 �2

1 �1 4 �1

�1 �1 0 13

§
£ 2 0 �1 1

0 2 �1 16

�3 1 0 10

§
£ 1 2 �1 �1

�1 3 �2 �1

0 3 �2 �3

§

ep 7 pepe � 22.46.
ep � 23.14

a1e 2 � �e
1
e �3

t � e;

� 2t ln t � 3t 4a1t 2 �
t

1
t

t4
31 � 2 ln t � 1ln t 22

� t
1
t a 1 � ln t

t2
b ,v1t 2

y � x

xcos x a sin x ln x �
cos x

x
b

� a 2 1sin x � x cos x 2
x sin x

�
4x

x2 � 1
b

a x sin x

x2 � 1
b2

1

8

32 1ln 4 � 1 22
ln 4 � 2

12, 4 � 4 ln 2 211, 1 21e, e
1
e 2�

11

36

y � 3212 ln 2 � 1 2 1x � 128 ln 2 � 48 2�
4

27

e2 � e # 2e�1
2ee

a 1

t
b t a ln 

1

t
� 1 b

Qx�xR ln x � 2

2�x

� a 1

x � 1
�

2

x � 3
�

3

x � 2
b

1x � 1 2 1x � 3 231x � 2 23
2xln xln x

x

exe�1 � ex
ptp�1
15�2 x3�2�1
�10x�10�1

6 80

4

2

–4

–2

6

8

y

x

2 4–4 –2

11, 0 2y � log3x

y � 3xln 3 7 1,

1
ln 3.y � log3 x

x � 0
x � 0

x 7 2x 6 �2
x � �2;

x � 2,x � 0,
D � 5x�R 0 x 6 �2 or x 7 26;x � 0.

x � 0

6 80

4

2

–4

–2

6

8
y

x

2 4–4 –2

y � 0.1x � 1.1

t � 15,

y � 49.1x � 235.5

�
1

x ln 1a 2
�

k

kx ln 1a 2
dy

dx
�

f ¿ 1x 2
f 1x 2 ln 1a 2

y � loga kx

y

–4 0

10

5

–5

15

20

x

1612 204 8

y � 1.434x � 4.343

4x � 1 � x ln 13x2 2
2x ln 51x � 1 2 32

ln x � 1

ln 2
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e.

f.

5.

6.

7.
8. Since the derivative is positive at

the distance is increasing at
that point.

9. a.
b.

vertical asymptote at 
c. The tangent line will intersect this

asymptote because it is defined for

10.
critical number at and

function is decreasing for
and increasing for 

11. a. point of inflection at 
b. is a possible point of

inflection. Since the graph is always
concave up, there is no point of
inflection.

12. The slope of at (1, 0) is 

Since the slope of at
(0, 1) is greater than the slope of

at .

Logarithmic Differentiation, 
p. 582

1. a.
b.
c.
d.

2. a.

b.

c.

d.

3. a.
b.

c.

4.

5.

6.
7. and 

8.

9.

10.

11.

12.

13. a.

b.
14. Using a calculator, and

So, .

Vector Appendix

Gaussian Elimination, 
pp. 588–590

1. a.

b.

c.

2. Answers may vary. For example:

3. Answers may vary. For example:

4. a. Answers may vary. For example:

b. , ,

5. a.

b.

c.

6. a.

b.
c. no solution

d. , z � �5y � �4,x � �
9

4

x � 13, y �  9, z � �6

y � �3x � �
9

2
,

y � z � 0
x � �2

�z � 0
y � 2z � �3
x � 2y � 4

�2x � z � 0
2x � y � 0

2x � 3y � 1
x � 2y � �1

z � �
4

9
y � �

8

9
x � �

22

9

£1 0 �1 �1

0 �1 2 0

0 0 �36 16

§
£2 1 6 0

0 �2 1 0

0 0 �37 4

§
c2 3 0

0 �5.5 1
d

c1 1.5 0

0 �5.5 1
d

£ 2 �1 �1 �2

1 �1 4 �1

�1 �1 0 13

§
£ 2 0 �1 1

0 2 �1 16

�3 1 0 10

§
£ 1 2 �1 �1

�1 3 �2 �1

0 3 �2 �3

§

ep 7 pepe � 22.46.
ep � 23.14

a1e 2 � �e
1
e �3

t � e;

� 2t ln t � 3t 4a1t 2 �
t

1
t

t4
31 � 2 ln t � 1ln t 22

� t
1
t a 1 � ln t

t2
b ,v1t 2

y � x

xcos x a sin x ln x �
cos x

x
b

� a 2 1sin x � x cos x 2
x sin x

�
4x

x2 � 1
b

a x sin x

x2 � 1
b2

1

8

32 1ln 4 � 1 22
ln 4 � 2

12, 4 � 4 ln 2 211, 1 21e, e
1
e 2�

11

36

y � 3212 ln 2 � 1 2 1x � 128 ln 2 � 48 2�
4

27

e2 � e # 2e�1
2ee

a 1

t
b t a ln 

1

t
� 1 b

Qx�xR ln x � 2

2�x

� a 1

x � 1
�

2

x � 3
�

3

x � 2
b

1x � 1 2 1x � 3 231x � 2 23
2xln xln x

x

exe�1 � ex
ptp�1
15�2 x3�2�1
�10x�10�1

6 80

4

2

–4

–2

6

8

y

x

2 4–4 –2

11, 0 2y � log3x

y � 3xln 3 7 1,

1
ln 3.y � log3 x

x � 0
x � 0

x 7 2x 6 �2
x � �2;

x � 2,x � 0,
D � 5x�R 0 x 6 �2 or x 7 26;x � 0.

x � 0

6 80

4

2

–4

–2

6

8
y

x

2 4–4 –2

y � 0.1x � 1.1

t � 15,

y � 49.1x � 235.5

�
1

x ln 1a 2
�

k

kx ln 1a 2
dy

dx
�

f ¿ 1x 2
f 1x 2 ln 1a 2

y � loga kx

y

–4 0

10

5

–5

15

20

x

1612 204 8

y � 1.434x � 4.343

4x � 1 � x ln 13x2 2
2x ln 51x � 1 2 32

ln x � 1

ln 2
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e.

f.
7. a. It satisfies both properties of a

matrix in row-echelon form.
1. All rows that consist entirely of

zeros must be written at the
bottom of the matrix.

2. In any two successive rows not
consisting entirely of zeros, the
first nonzero number in the lower
row must occur further to the
right that the first nonzero
number in the row directly above.

b. A solution does not exist to this
system, because the second row has
no variables, but is still equal to a
nonzero number, which is not
possible.

c. Answers may vary. For example:

8. a. no; Answers may vary. For example:

b. no; Answers may vary. For example:

c. no; Answers may vary. For example:

d. yes

9. a. i. 

ii. 
iii. 

iv. 

b. i. The solution is the point at
which the three planes meet.

ii. The solution is the point at
which the three planes meet.

iii. The solution is the line at which
the three planes meet.

iv. The solution is the line at which
the three planes meet.

10. a.
The three planes meet at the point

b.
The three planes meet at this line.

c.
The three planes meet at this line.

d.
The three planes meet at the point

e. ,

The three planes meet at this line.
f.

The three planes meet at the point

11. ,

,

12.

13. , ,

14. a.
b.
c. or 

Gauss-Jordan Method for
Solving Systems of Equations,
pp. 594–595

1. a.

b.

c.

d.

2. a.
b. (3, 2, 0)
c. (1, 1, 0)
d.

3. a.
b.
c.
d.

e. ,

f. , ,

4. a.
b.

5. a.
b. ,
c. The matrix cannot be put in reduced

row-echelon form.
6. a. Every homogeneous system has at

least one solution, because (0, 0, 0)
satisfies each equation.

b.

The reduced row-echelon form
shows that the intersection of these
planes is a line that goes through
the point . 

, ,

7. 12, 3, 6 2 t�Rz � t,y � �
1

3
 tx � �

2

3
 t

10, 0, 0 2

≥ 1 0
2

3
0

0 1
1

3
0

0 0 0 0

¥

k�Rk Z 3
k � 3

z � 14x � 38, y � 82,
z � 6y � 2, x � �1,

z �
1

6
y �

1

3
x �

1

2

z � 0y �
1

3
x � �4,

z � �1x � 0, y � 0,
z � �4x � 1, y � 2,
z � 7y � 5,x � 3,

z � 11y � 10,x � �1,
18, �1, �4 2
1�7, �2 2

£1 0 0 8

0 1 0 �1

0 0 1 �4

§
£1 0 0 1

0 1 0 1

0 0 1 0

§
£1 0 0 3

0 1 0 2

0 0 1 0

§
c1 0 �7

0 1 �2
d

a � 1a � �2
a � 1
a � �2

r � 33q �
9

121
p �

143

9

y � 2x2 � 7x � 2

z � c � b � 2ay �
3c � 4b � 5a

3

x �
7a � 3c � 5b

3

1500, 1000, �1500 2 .z � �1500y � 1000,x � 500,

t�Rz � t,y � 2 � t,x � �
1

2

10, 4, �2 2 . z � �2y � 4,x � 0,

t�Rz � t,y � 3t,x � �1,

t�Rz � t,y � t,x � �2t,
1�3, �4, 10 2 . z � 10y � �4,x � �3,

t�Rz � t,
y � �3 � 2t,x � �12 � 9t,

t�R
z � �6,y � t,x � 2t � 6,

z � 2y � 31,x � �7,

z �
1

2
y � 0,x � �

5

2
,

£�1 2 1 0

0 0 1 �6

0 0 0 0

§
£1 0 2 �3

0 1 �10 11

0 0 3 6

§
£�1 0 1 3

0 1 0 0

0 0 2 1

§
£�1 1 1 3

�2 2 2 3

�1 1 1 3

§

x � 4, y � 8, z � �2
z � t, s, t�R

y � s,x � 2 � 3t � s,
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A
Absolute extrema, 130, 132, 192
Absolute minimum, 133, 134–137
Absolute value and limit, 43–44
Acceleration, 119, 120, 122–129,

139, 155
Addition. See also Sum

triangle law, 285
vectors, 282–292, 302–306, 320,

321, 328
Algebraic vectors, 278, 310–312

operations with, 319–326
representation, 319

Amplitude, 223
Archimedes, 5
Area, 5

circle, 116, 117
cross product, 411, 412
optimization, 141–142
rectangle, 117
square, 117

Associative property
dot product, 375
vectors, 303, 306, 328

Asymptote, 162, 181
See also Horizontal asymptote,

Vertical asymptote
continuity, 48
exponential function, 228
logarithmic function, 228
rational function, 188–189

Asymptotes, 181
Augmented matrix, 561
Average rate of change, 2, 3, 26,

29–31, 55, 61
Average velocity, 23–24, 55

See also Velocity

B
Back substitution, 504
Barrow, Isaac, 5
Bearing, 288

C
Cartesian coordinate system, 161
Cartesian equations, 479

coefficients, 470–471
direction vector, 438–439
lines, 435–444, 479, 486
planes, 461–469, 479, 486, 487
variables, 472–475

Chain rule, 99, 104, 109, 561, 562
exponential function, 229
Liebniz notation, 100, 101
power of a function rule, 88, 102
product rule, 103
quotient rule, 103–104

Charles, Jacques, 47

Coefficient matrix, 561
Cofunction identities, 224
Coincident vectors, 277
Collinear vectors, 295, 343
Commutative property

addition, 328
dot product, 373, 375
vectors, 302–304, 306, 328

Composite function, 99
derivative, 99–106
exponential function, 229

Composite sinusoidal functions,
derivative, 253

Composition of forces, 353
Computer programming, 426

vectors, 478
Concave down/up, 199, 204
Concavity, 198–206

second derivative, 199–203
test for, 204

Conjugate, 6, 8–9
Consistent equations, 504
Consistent systems of planes,

520, 525
Constant function rule, 76
Constant multiple rule, 78, 109
Constant rule, 109
Continuity, 48–55, 71

See also Discontinuity
asymptote, 48
domain, 48
natural logarithm, 574

Continuous function, 71
Coplanar vectors, 338
Cosine function/law/ratio,

223, 272
composite, differentiating, 253
derivative, 250–257, 262
dot product, 379

Cost, 154
minimum, 148, 149–151

Critical numbers, 172, 178
local extrema, 176

Critical points, 172, 192
Cross product, 417

application, 409–415
area, 411, 412
calculating, 406
definition, 403
distributive law, 406
formula, 402
properties, 406
scalar law, 406
unit vectors, 412
vector, 401–408

Cubic function, 162
first derivative, 200–201
graphing, 180
second derivative, 200–201

Curve sketching, 161, 207–213
Cusp, 70

D
de Fermat, Pierre, 5
Decreasing functions, 165–171
Dependent variable, 22, 561
Derivative, 61, 65–75

composite function, 99–106
composite sinusoidal

functions, 253
cosine function, 250–257, 262
domain, 73
existence, 70
exponential function, 227–234,

262, 571–575
general exponential function,

235–240
general logarithmic function,

576–578
graphing, 168
graphing calculator, 107
horizontal tangent, 81
intervals of decrease/increase,

166–168
limit, 65
natural logarithm, 571–575
notation, 72
polynomial functions,

76–84, 177
rational function, 89, 95
sine function, 250–257, 262
sinusoidal functions, 250–257
tangent, 69, 80
tangent function, 258–261, 262

Derivative function, 65–75
Descartes, Rene, 5, 310
Difference quotient, 14, 15, 63
Difference rule, 79, 109

See also Subtraction
Difference vectors, 286, 322
Differentiable, 70, 71, 72
Differentiation, 5
Direction, 343
Direction angles and vectors,

395–396
Direction cosines, 395
Direction numbers, 427, 524
Direction vectors, 295–296, 350,

352, 427
Cartesian equation, 438–439
line, 445
planes, 475
slope, 435

Discontinuity, 70, 192
See also Continuity

Displacement, 122, 139
See also Difference vectors

Distance, 551
dot product, 539
minimum, 143–144
point and plane, between,

542–550

point to line, 534–541
skew lines, 545–548

Distributive property/law
cross product, 406
dot product, 373, 375, 380
vectors, 303, 304, 306, 328

Domain, 2, 3, 162, 163
continuity, 48
derivative, 73
exponential function, 228
function, 2
logarithmic function, 228

Dot product, 417
application, 409–415
associative property, 375
commutative property, 373, 375
cosine law, 379
distance, 539
distributive property, 373,

375, 380
intersection of line 

and plane, 491
magnitude property, 375
parallelogram, 383
perpendicular, 375–376
properties of, 373
sign of, 371
vectors, 371–378, 379–387

E
Elastic demand, 64
Elasticity of demand, 64, 108
Elementary operations, 501, 502,

503, 521–522
Elementary row operations, 561, 562,

563, 565
End behaviour, 163, 187–188, 192
Equal vectors, 277
Equilibrant, 353, 417
Equivalent systems, 501
Euler’s number, 227, 232
Euler, Leonhard, 227
Existence

derivative, 70
limit, 37, 44

Exponent laws, 62
Exponential form, 62
Exponential function, 221

asymptote, 228
chain rule, 229
composite function, 229
derivative, 227–234, 262,

571–575
domain, 228
minimum value, 573
optimization, 241–247
properties of, 222
range, 228
slope of tangent, 231
tangent, 573

Index
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Exponents, properties of, 222
Extended product rule, 87
Extreme values, 130–138

See also Absolute extrema,
Absolute minimum, Local
extrema, Local 
maximum/minimum,
Maximum, Minimum

sinusoidal function, 254

F
Factor theorem, 63
Factoring, 2, 3

limit, 45
First derivative, 172, 178, 192

See also Derivative, First 
derivative test

cubic function, 200–201
quartic function, 201–202
root function, 202–203

First derivative test, 172, 178, 192
Forces, 282–283, 351, 352, 353, 417

equilibrant, 353–356
resultant, 353, 354, 356
sum, 353
triangle of, 359–361
vectors, 353

Function notation, 2, 81, 109

G
Gauss-Jordan Method, 568,

569–572
Gaussian elimination, 561
General exponential function,

derivative, 235–240
General logarithmic function,

derivative, 576–578
Geometric vectors, 278
Graphing

See also Sketching
cubic function, 180
derivative, 168
limit, 36–37
linear function, 180
polynomial function, 177,

208–209, 215
quadratic function, 180
quartic function, 180
rational function, 95,

209–212, 215
tangent, 80

Gravity, 125, 352

H
Higher-order derivatives, 119
Horizontal asymptote, 162, 163,

181–195
limit, 189
rational functions, 184

Horizontal tangents, 174
derivative, 81

Hyperbolic function, 234
Hypotenuse, 272

I
Identity matrix, 572
Implicit differentiation, 561, 563

logarithmic differentiation,
579–580

Inconsistent equations, 504
Inconsistent system and planes,

526–529
Increasing functions, 165–171
Independent variable, 22, 561
Indeterminate form, 42, 55
Inelastic demand, 64
Inequality, 116, 162
Infinite discontinuity, 48
Infinite limits, 183
Inflection points, 198–206
Instantaneous rate of change, 2, 3, 4,

26, 29–31, 55, 61
Instantaneous velocity, 25, 55
Integers in power of a function 

rule, 88
Integration, 5
Intercepts, 192
Interval notation, 117
Intervals of decrease/increase, 165

derivative, 166–168

J
Jump discontinuity, 48

L
Lagrange, Joseph Louis, 68
Law of motion, 129
Liebniz notation, 81, 109

chain rule, 100, 101
Limit, 11, 12, 13–21, 34–39,

55, 162
absolute value, 43–44
derivative, 65
existence, 37, 44
factoring, 45
graphing, 36–37
horizontal asymptote, 189
indeterminate form, 42
infinity, at, 184–187, 189
one-sided, 45
polynomial function, 40–41
properties, 40–47
rational function, 41
reciprocal function, 184
root function, 41
table of values, 35–36
vertical asymptote, 183

Linear combination, 343
vectors, 334–341

Linear equations
back substitution, 504
consistent, 504
inconsistent, 504
number of solutions, 501
parameter, 505–506, 508
planes, 510–517
systems of, 499–509

Linear function, 180

Linear rule, 109
Lines, 2, 423, 424, 485, 488, 551

angles between two, 441–442
Cartesian equation, 435–444,

479, 486
coincident, 492, 493, 500
direction vector, 445
distance between parallel, 537
distance from point, 534–541
equation, 2
equivalence, 446–447
intersecting, 489–498, 500
normal, 486
parallel, 493, 500
parametric equations, 429–431,

445–450, 479, 486, 487
perpendicular, 62
scalar equations, 435
skew, 492, 493, 494–495
symmetric equations,

445–450, 479
vector equations, 429–431,

435–444, 445–450, 479,
486, 487

vectors, 427
Local extrema, 172, 192

critical numbers, 176
Local maximum/minimum,

166, 178
Logarithmic differentiation,

579–582
Logarithmic function, 221

asymptote, 228
domain, 228
range, 228

Logistic model, 247

M
Magnitude, 275, 284, 343

dot product, 375
resultant, 284
vectors, 284, 295–296, 323, 324,

331, 350, 352
Marginal cost/revenue, 151, 154
Matrix, 561

properties of, 564
reduced row-echelon form, 568,

569, 570, 572
Maximum, 117, 130–138,

140, 155
profit, 155
revenue, 148–149
sinusoidal function, 254

Maximum average profit, 243
Method of fluxions, 115
Microbiology, 226
Minimum, 117, 130–138, 140, 155

cost, 148–151
distance, 143–144
exponential function, 573

Motion, 120, 129
Multiplication of vectors, 293–301,

305, 306, 321
See also Product, Scalar 

multiplication

N
Natural logarithm

continuity, 574
derivative, 571–575
one-to-one function, 574

Natural logarithmic function, 228
Natural number, 227, 232
Newton, Sir Isaac, 1, 5, 115, 129
Normal, 70, 72, 438, 439–440

lines, 486
planes, 461–469, 486, 512, 524

O
Oblique asymptote, 91, 190, 192
One-to-one function, 574
Opposite vectors, 276, 279, 280
Optimization, 141–147, 155

area, 141–142
exponential function, 241–247
volume, 142–143

P
Parabola, 165
Parallel lines, 440, 441
Parallel vectors, 295, 343
Parallelogram and dot product, 383
Parallelogram law of addition,

283, 328
Parallelopiped, 329
Parameter, 429
Parametric equations, 427,

428–434, 479
lines, 429–431, 445–450, 479,

486, 487
planes, 453–460, 464–466,

479, 486
Period, 223
Perpendicular, 62

dot product, 375–376
line, 62
vectors, 382, 384

Perpendicular lines, 440, 441
vector equations, 431–433

Planes, 423, 485, 488, 551
Cartesian equations, 461–469,

479, 486, 487
coincident, 510–517, 520–533
consistent systems, 520, 525
coplanar points, 463–464
direction vectors, 475
distance between parallel planes,

544–545
distance from a point, 542–550
inconsistent system, 526,

527–529
intersecting, angle between, 467
intersection of three, 520–533
intersection of two, 510–517
intersection with line,

489–498
line of intersection, 520
linear combinations, 453
linear equations, 510–517
non-intersection, 526–527
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normal, 461–469, 486, 512, 524
parallel, 453, 466, 510–517, 529
parametric equations, 453–460,

464–466, 479, 486
perpendicular, 466
point of intersection, 572
scalar equations, 486
sketching, 470–477
spanning sets of vectors, 453
vector equations, 453–460,

464–466, 479, 486, 487
vectors, 315–316, 338

Point discontinuity, 48
Point of inflection, 198–206
Point-slope form, 10–21
Points, 311, 485, 488, 551

coordinates of, 313
vectors, 311, 313–315, 322,

330–331
Polynomial functions

derivative, 76–84, 177
graphing, 177, 208–209, 215
limit, 40–41

Position vectors, 310, 316, 343
Power function, 77
Power of a function rule, 88–93, 102,

104, 109
chain rule, 88, 102
integers, 88

Power rule, 77, 78, 109
Product and vector, 401–408

See also Multiplication, Scalar 
multiplication

Product rule, 85–93, 94, 109
chain rule, 103
extended, 87

Projections and vectors, 390–400
Pythagorean identities/theorem, 224,

272, 322, 566

Q
Quadratic function, 162, 165

graphing, 180
Quartic function

first derivative, 201–202
graphing, 180
second derivative, 201–202

Quotient identities, 224
Quotient rule, 94–98, 109

chain rule, 103–104

R
Radian, 223
Radian measure, 223
Radical expression, 5–9
Range, 162, 163

exponential function, 228
logarithmic function, 228

Rate of change, 22–31, 65, 226, 261
Rational function, 181

asymptote, 188–189
derivative, 89, 95
end behaviour, 187–188
graphing, 95, 209–212, 215

horizontal asymptote, 184
limit, 41
vertical asymptote, 181–183

Rationalizing the denominator, 6, 7–9
Rationalizing the numerator, 8–9
Reciprocal function/identity, 163, 224

limit, 184
Reduced row-echelon form, 568, 569,

570, 572
Reflection identities, 224
Related rates, 565–570
Resolution of vectors, 357, 358
Resultant, 283, 343, 353

magnitude, 284
Right circular cone, 567
Right circular cylinder, 116

surface area, 116, 117
volume, 116, 117

Right-handed system, 311,
312–313, 316

Right triangle, 272, 566
Root function, 16, 162

first derivative, 202–203
limit, 41
second derivative, 202–203

Row operations, 561, 562, 563
Row-echelon form, 562, 564

S
Scalar equations

lines, 435
planes, 486

Scalar law and cross product, 406
Scalar multiplication and vectors,

293–301, 305, 306
See also Multiplication, Product

Scalar product, 371
Scalar projections, 390

calculating, 393
characteristics, 392

Scalars, 275
Secant line, 2, 11, 13–21

slope, 2
Second derivative, 119, 122–129,

139, 198–206
concavity, 199–203
cubic function, 200–201
quartic function, 201–202
root function, 202–203

Second derivative test, 199, 204
Set notation, 117
Similar triangles, 568
Sine function/law/ratio, 223, 272

derivative, 250–257, 262
Sinusoidal function

derivative, 250–257
extreme values, 254
maximum/minimum, 254
slope of tangent, 254
transformation, 223

Sketching planes, 470–477
Skew lines, 492–495

distance, 545–548
Slope, 2, 3

direction vectors, 435

secant line, 2
tangent, 10–21, 55, 65, 198, 562
tangent line, 2, 3

Slope–y-intercept form, 10–21
Spanning sets, 334–341, 343
Speed, 120
Sphere, volume of, 93
Square, area of, 117
Standard form, 3
Sum, 343, 353

See also Addition
vectors, 322

Sum rule, 79, 109
Symmetric equations, 479

line, 445–450, 479

T
Tangent, 5

derivative, 69, 80
equation, 80
exponential function, 573
graphing, 80
slope, 10–21, 55, 65, 198, 562
vertical, 70

Tangent function/ratio, 223, 272
composite, derivative of, 258–259
derivative, 258–261, 262

Tangent line, 2
slope, 2, 3

Torque, 414, 417
Transformation of sinusoidal 

function, 223
Triangle law of addition, 285
Trigonometric identities, 224

U
Unit vector, 297–298, 319, 327
Upper triangle, 562

V
Variables, 22

Cartesian equations, 472–475
Vector equations, 427–434, 479

lines, 429–431, 435–444,
445–450, 479, 486, 487

perpendicular line, 431–433
planes, 453–460, 464–466, 479,

486, 487
Vectors, 271, 275–281, 287, 343,

349, 352, 417, 424, 426
addition, 282–292, 302–306,

320, 321, 328, 355
angle between, 381
associative property, 303,

306, 328
coincident, 277
collinear, 295
combination, 287
commutative property, 302–304,

306, 328
components, 357, 358
computer programming, 478
coplanar, 338

cross product, 401–408
difference, 286, 322
direction, 295–296, 350, 352
direction angles, 394–395, 396
distributive property, 303, 304,

306, 328
dot product, 371–378, 379–387
equal, 277
equilibrant, 354, 355, 356
equivalent, 304–305
forces, 353
linear combinations, 334–341
lines, 427
magnitude, 284, 295–296, 323,

324, 331, 350, 352
multiplication, 293–301, 305,

306, 321
noncollinear, 338
operations with, 327–333
opposite, 276
parallel, 295
parallelogram law, 283
perpendicular, 382, 384
planes, 315–316, 338
points, 311, 313–315, 322,

330–331
position, 310, 323, 331
product, 401–408
projections, 390–400
properties of, 302–309
representation, 319, 327
resolution, 357, 358
resultant, 283, 353, 354, 356
scalar multiplication, 293–301,

305, 306
scalar projection, 397
spanning sets, 334–341
sum, 322, 353
triangle law of addition, 285–286
unique, 310
unit, 297–298, 327
velocity, 365–371

Velocity, 22, 24–25, 55, 119, 120,
122–129, 139, 155, 287–289, 291,
296–297, 350, 365–371, 417

Vertical asymptote, 162, 163, 181–195
limit, 183
rational function, 181–183

Vertical cusp, 174, 175
Vertical lines, 437–438
Vertical tangent, 70
Volume, 116, 567

optimization, 142–143
von Liebniz, Gottfried Wilhelm, 1, 5

X
x-intercept, 163

Y
y-intercept, 163

Z
Zero vector, 285, 289, 292
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